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Abstract

Modeling directly raw waveform through neural networks for speech processing is gaining more and
more attention. Despite its varied success, a question that remains is: what kind of information are
such neural networks capturing or learning for different tasks from the speech signal? Such an insight
is not only interesting for advancing those techniques but also for understanding better speech signal
characteristics. This paper takes a step in that direction, where we develop a gradient based approach
to estimate the relevance of each speech sample input on the output score. We show that analysis of
the resulting “relevance signal” through conventional speech signal processing techniques can reveal the
information modeled by the whole network. We demonstrate the potential of the proposed approach by
analyzing raw waveform CNN-based phone recognition and speaker identification systems.

Index Terms: deep learning, CNN visualization, raw waveforms

1 Introduction

Traditionally automatic speech processing involves feature extraction followed by statistical modeling.
The typical features being short-term spectral based features, which are extracted by applying speech
production and speech perception knowledge. In recent years, with advances in neural networks espe-
cially deep learning, there is interest in reducing as much as possible hand crafted feature extraction. For
instance,

1. by modeling intermediate representations such as filterbank outputs with a linear [1] or Mel
scale [2] and spectrograms [3, 4]; or

2. by directly modeling raw speech signal [5, 6, 7, 8, 9, 10, 11, 12] using convolution neural networks
(CNNs) at the input stage.

The interest of this paper lies in the latter case, where there is limited understanding about the
information that is being modeled by the CNNs. Depending upon how the block processing is set or
determined, we can split the approaches into two categories. First category, where the block processing
is based on standard short-term or “segmental” processing (processing signal of about 1 − 3 pitch period
duration) [13, 6, 9, 14]. In the context of speech recognition, in [6] it was observed that the CNN filters
modeling 35ms of speech signal tend to behave as a log-spaced frequency selective filter-bank. Whilst,
in [7], some of the filters in the second convolution layer were found to behave like multi-resolution
RASTA filters. Second category, where the block processing is determined during the training process in a
task dependent manner [5, 11, 12]. In this case, it was found that for speech recognition the first layer of
the CNN models “sub-segmental” speech signal (signal of duration below one pitch period) and captures
formant information [15, 16]. In speaker recognition task, it was found that segmental modeling focuses
on voice source related [12], while sub-segmental speech modeling focuses on vocal tract system related
speaker discriminative information [17]. Similar observations have been made for the task of gender
recognition [18]. These understandings are limited in the sense that they have been gained by analyzing
the convolution layer(s). They not necessarily reveal the information that is being modeled as a whole
from the input speech.

In computer vision research, it has been shown that gradient-based methods via relevance signal can
help in visualizing the influence of each pixel in the input image on the prediction score [19, 20, 21, 22].
Inspired from that work, this present paper develops a gradient-based signal level and spectral level
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relevance map extraction approach to understand the task-dependent information modeled by the CNN-
based system. In this approach, for a given input-target pair, the contribution of each input speech signal
sample is first estimated and then analyzed using speech signal processing techniques. To the best of
our knowledge, this is the first work which enables to visualize and analyze what is learned by an entire
neural network trained on raw waveforms.

Section 2 presents relevant background work. Section 3 presents the proposed gradient-based visual-
ization approach and Section 4 demonstrates its utility through phone recognition and speaker identifi-
cation case studies. Finally, in Section 5 we conclude.

2 Relevant Background

In this work, we focus on the second category of CNN-based approach where block processing of the
signal is often determined during the training process. Specifically, the approach that was first proposed
for phone/speech recognition [5, 16] and has been later extended to other speech processing tasks, such
as speaker recognition, presentation attack detection, gender recognition. As illustrated in Fig. 1, the
network architecture consists of convolution layers followed by a multilayer perceptron. Each output oc,
c = 1, . . . ,C corresponds to a class. The parameters of the CNN and the MLP are jointly trained using
cross entropy criterion.

Figure 1: Architecture of the raw waveform based CNN system.

Fig. 2 illustrates the first convolution layer processing. At each time frame, the CNN takes as input a
signal of length wseq. This varies across applications. For instance, for speech recognition it is between
250-310 ms while for speaker recognition it is about 500 ms. kW and dW are the kernel width and kernel
shift, respectively, which decides the block processing applied on the signal. nf denotes the number of
filters in the convolution layer.

wseq Convolution

nf

dW

kW

Figure 2: Illustration of first convolution layer processing.

In order to gain insight into the information that is being modeled, two level of analysis have been
proposed [16]. First level of analysis is visualization of the cumulative frequency of the learner filters:

Fcum =

nf∑
k=1

Fk/‖Fk‖2, (1)

where Fk is the frequency response of filter fk. Second level of analysis interprets learned filters collec-
tively as a spectral dictionary, leading to a sparsity point of view to understanding the network. This
approach provides spectral information that is being modeled by CNN via analyzing the frequency re-
sponse of filters to a given input. The magnitude frequency response s of the input signal x ∈ RkW is
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computed as:

s =

∣∣∣∣∣
nf∑
k=1

〈x, fk〉 DFT[fk]

∣∣∣∣∣ . (2)

If the atoms of the dictionary, i.e. {fk} are sines and cosines, then s would be the magnitude of the discrete
Fourier transform of x. In regular case, the dictionary is usually overcomplete and the inner product
〈x, fk〉 represents the weights (which are usually sparse) corresponding to the spectral contribution of
atoms/filters.

3 Gradient-based Extraction of Spectral Relevance Map

In this section, we first motivate the need for extraction of spectral relevance map and then derive it.

3.1 Motivation

The analysis methods described in the previous section have helped in gaining insight into the works
on speech recognition, presentation attack detection, speaker recognition and gender recognition [5, 11,
12, 18]. These analyses methods limits to the first convolution layer and provide insight into the spectral
information being modeled by the first convolution layer. It does not however provides information about
about what the CNN has learned as a whole or how the changes in the input affect the prediction score.
To address this issue, we propose the use of gradient-based methods, where the gradient of a specific
unit, which is usually the output unit that yields the highest score, is computed with respect to the input.
The resultant gradient signal is referred to as “relevance” signal. This approach has helped in computer
vision research to gain insight into the information in the image that the neural network focuses on.
Several gradient-based methods have been proposed [21, 19, 20], and for CNNs they most differ by how
the gradient of rectified linear units (ReLU) is computed during backpropagation. In this work we have
considered the Guided backpropagation approach [20].

Fig. 3a shows an example of an input waveform fed to the CNN. The result of applying guided back-
propagation given the input is shown in Fig. 3b. Note that it is not trivial to interpret the relevance signal
as it is. Fig. 3c shows the auto-correlations of a short segment of input waveform and its corresponding
time domain relevance signal. It can be observed that the time domain relevance signal contains informa-
tion related to the periodicity of the speech signal. This suggests that spectral level interpretation could
provide better insights.
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Figure 3: (a) Input Waveform, (b) Time domain relevance signal and (c) Autocorrelation plot.

3.2 Adaptation to frequency domain

Let x = [x0 . . . xN−1] is a raw audio frame (N = wseg), belonging to class c, which is fed to a neural
network. Next, discarding the softmax layer so as to remove influence from other classes, consider yc the
output unit corresponding to the class c. The gradient in the time domain with respect to input sample is
defined as f[n] = ∂yc

∂xn
, n = 0, . . .N− 1. Similarly, the gradient in the frequency domain can be expressed

as g[k] = ∂yc

∂Xk
where Xk =

∑N−1
n=0 xn exp(−i 2πkn

N
). Applying the chain rule, one can express the two
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measures as:
∂yc

∂Xk
=

N−1∑
n=0

∂yc

∂xn

∂xn

∂Xk

=
1
N

N−1∑
n=0

∂yc

∂xn

∂
∑N−1
j=0 Xje

i 2πjn
N

∂Xk

=
1
N

N−1∑
n=0

∂yc

∂xn
ei

2πkn
N

=
1
N

N−1∑
n=0

f[n]ei
2πkn
N

(3)

Thus,
g[k] = DFT−1{f[n]}, (4)

it is complex and symmetric. The spectral relevance map can be visualized by plotting the amplitude of
the first half of the signal, i.e. |g[k]|, for k = 0, . . . , dN2 e− 1.

It is worth noting that the derived result is valid for any linear transformation, invertible with respect
to x. In other words, if X =Mx, where the M is invertible, then ∂yc

∂X =M−1 ∂yc
∂x . Thus, other transforms

could also be investigated.

4 Case studies: Phone classification and Speaker Identification

In this section, we present case studies on phone classification and speaker identification to demonstrate
the utility of the proposed gradient-based spectral visualization approach. For the sake of simplicity, we
carry out the investigations with CNNs trained on TIMIT corpus, as this allows contrasting between the
two tasks. We used Keras-TensorFlow framework [23, 24] to train the neural networks and to perform
guided backpropogation to obtain relevance signal. For analysis of the relevance signal, we use Praat
toolkit [25] and MATLAB [26]. Section 4.1 presents the phone classification study and Section 4.2
present the speaker identification study.

4.1 Phone Classification

This section first presents the description of CNN-based phone classification system that is analyzed. We
then present visualization of the relevance signal. Finally, a study quantifying the observations made in
the visualization in an objective manner is presented.

4.1.1 System description

We trained a phone classifier on TIMIT dataset following the protocol that is used to benchmark phone
recognition systems. We chose the hyper-parameters of the system with one hidden layer from the ex-
isting work in [16]. The hyper-parameters are presented in Table 1. In the original study the hyper-
parameters were obtained through cross validation on the development set. The system yields phone
error rate of 22.8% on the development set, and 23.6% on the test set.

Table 1: CNN architecture for phone classification. The input to the network is of length 250ms speech signal. nf
denotes the number of filters in the convolution layer. nhu denotes the number of hidden units in the hidden layer.
kW denotes kernel width. dW denotes kernel shift (stride). Mpool+ReLU refers to max pooling followed by ReLU
activation.

Layer kW dW nf/nhu
Conv1 30 10 80
Mpool+ReLU 3 3 -
Conv2 7 1 60
Mpool+ReLU 3 3 -
Conv3 7 1 60
Mpool+ReLU 3 3 -
MLP - - 1024
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(a) Original (b) Short Kernel

Figure 4: F0 contours for example waveform and corresponding relevance signal obtained for phoneme classification
system.
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(a) TIMIT female:original
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(b) TIMIT female:SRM
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(c) TIMIT male:original
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(d) male:SRM
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(e) AEV female:original
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(f) AEV female:SRM
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(g) AEV male:original
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(h) AEV male:SRM

Figure 5: Example of original and spectral relevance maps (SRM) for vowel /iy/. (a-d): TIMIT; (e-h): AEV dataset,
overlaid with spectral envelop (dashed:blue) and LP spectra (solid:red).

4.1.2 Visualization of relevance signal and spectral relevance map

Fig. 4 shows the original signal and relevance signal obtained for phone /ah/ uttered in TIMIT utterance
‘sa1.wav’ by speaker with ID ‘fcjf0’ along with the pitch frequency F0 contours for the two signals obtained
using Praat. It can be observed at the signal level there are differences but the F0 contours are similar.
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Figs. 5a-d show the short-term spectrum of the original signal and the short-term spectral relevance
maps (SRMs) of /iy/ produced by a male speaker and a female speaker in exactly same phonetic context
(i.e., speaking same text/word) in TIMIT corpus. Figs. 5e-h show the short-term spectrum of the original
signal and the short-term spectral relevance maps (SRMs) of /iy/ produced by a male speaker and a
female speaker in American English Vowels (AEV) dataset [27]. The analysis window size used was of
length 25 ms. It can be observed that although the original signal and relevance signal differ in temporal
domain, the harmonic structure and the envelop structure seem to be similar. Also, the network is able
to generalize for unseen data (AEV in our case), and the formant structure of a particular sound unit is
highlighted irrespective of the speaker.

4.1.3 Quantitative analysis

In order to ascertain that the relevance signal is indeed containing F0 and formant information, we per-
formed a quantitative study on AEV dataset, since the steady state durations, F0 and formant information
is available a priori. The analysis is done for 48 female and 45 male speakers following the standard pro-
tocol. In the steady state region, we computed F0 and first two formants (F1 and F2). The formants were
computed using 16th order linear prediction analysis and is averaged over a context of 10 frames around
the centre frame in the steady state region. We consider that the F0 and formant values are correct if it
is with in the range F±∆, where F is the F0 or F1 or F2 value and ∆ is the respective standard deviation
as specified in AEV dataset. Table 2 shows the average percentage accuracy of F0, F1 and F2 values
for different phonemes. As it can be seen that the F0, F1 and F2 estimated from the relevance signal
match well with the estimates provided in the AEV dataset. This shows that, despite the CNN modeling
sub-segmental speech signal (about 2ms) at the input layer, the network as a whole is capturing both F0
and formant information.

Table 2: Average accuracy in (%) of fundamental frequencies, and formant frequencies of vowels produced by 45
male and 48 female speakers, estimated from relevance signal of AEV dataset.

/ah/ /eh/ /iy/ /oa/ /uw/

F0
F 93 91 91 94 92
M 92 90 89 93 90

F1
F 90 92 93 91 93
M 88 92 92 89 93

F2
F 94 94 94 95 94
M 94 93 94 94 93

4.2 Speaker Identification

Section 4.2.1 presents the system description. Section 4.2.2 presents visualization of the relevance signal
and Section 4.2.3 presents a quantitative analysis.

4.2.1 System description

In the speaker recognition approach proposed in [12], inspired from the speech recognition work, the
hyper-parameters were determined based on cross-validation. It was found that the first convolution
layer in this case models about 18ms speech signal and it captures voice sourced related information.
Building on the observation that sub-segmental speech modeling in the case of speech recognition models
formant information, the latter work [17] used the same first convolution layer configuration as speech
recognition, with the aim being to ascertain whether that enables modeling vocal tract system related
speaker discriminative information. We trained two CNN-based classifiers along those lines to classify
the 462 speakers in the training set of the TIMIT phone recognition setup. We refer to these CNNs as
segmental and sub-segmental CNNs. Table 3 provides the architecture information for the two cases. For
each speaker, 9 utterances were used for training the CNN and 1 utterance is used for validation. The
utterance-level accuracy obtained on the validation set is 98.3% (sub-segmental) and 94.5% (segmental),
respectively.
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Table 3: CNN architecture for speaker identification. The input to the network is of length 510ms. Definition of
notations can be found in Table 1.

Layer kW dW nf/nhu

sub-segmental

Conv1 30 10 80
Mpool+ReLU 3 3 -
Conv2 10 1 80
Mpool+ReLU 3 3 -
MLP - - 100

segmental

Conv1 300 10 100
Mpool+ReLU 5 5 -
Conv2 10 1 200
Mpool+ReLU 5 5 -
MLP - - 200

(a) Original

(b) segmental CNN (c) sub-segmental CNN

Figure 6: F0 contours for example waveforms and corresponding relevance signal obtained for the two speaker
identification systems.

4.2.2 Visualization of relevance signal and spectral relevance map

Fig. 6 presents an example speech signal and the relevance signal obtained for segmental CNN and sub-
segmental CNN. Below each of the signal we also show F0 contours using Praat. It can be observed that
the segmental CNN models F0 information better than the sub-segmental CNN.

Figs. 7a-b shows the spectral relevance map on two waveforms belonging to two different speakers:
one female and one male speaker, obtained for the sub-segmental CNN. The spectral relevance map is the
averaged log spectra computed over a window of 25ms and shift of 10ms. As explained earlier, these two
figures show which frequencies in the raw speech signal have a high influence on the prediction score.
The observations on these two plots are consistent with what we found on many examples belonging to
different speakers and are the following:

1. There is a highly localized peak, which appears to correspond to the value of the F0 of the speaker,
as shown on the respective figures. For example, in Fig. 7a, this peak is at 190Hz. The F0 of the
10ms frame at the center of the input waveform estimated using Praat software is 202Hz. Similarly,
in Fig. 7b, the second peak lies at 110Hz, while the estimated F0 is 114Hz.

2. There are two high frequency regions that are emphasized. A first region between 2000 and 3500
Hz and between 3500 and 5000 Hz. This is consistent with other studies [28, 29, 30], where authors
performed an analysis of which frequency sub-bands are the most useful for speaker discrimination
on the TIMIT database using either F-ratio measure [28, 29, 30] or vector ranking method [30]
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They also found that mid/high frequencies were discriminative: respectively between 2500Hz and
4000Hz [28], between 2000Hz and 4000Hz [29] and between 3000Hz and 4500Hz [30].

Fig. 7c-d show the corresponding spectral relevance maps for segmental CNN. It can be observed that
unlike the case of sub-segmental CNN, segmental CNN give more emphasis on the very low frequency
bands, mainly around F0. A very localized peak can be observed around the fundamental frequency.
These observations are in-line with the observations made in studies presented in [12].
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(b) male speaker
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(c) female speaker
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(d) male speaker

Figure 7: Example of average spectral relevance maps of two speakers: (a,b) CNN with short kernel and (c,d) CNN
with long kernel, overlaid with spectral envelop (dashed:blue) and LP spectra (solid:red).

4.2.3 Quantitative analysis

In order to verify that the relevance signals contain F0 information, we conducted a quantitative study
on TIMIT database by extracting and comparing the F0 contours of input speech waveform and with F0
contours of the relevance signal of segmental and sub-segmental CNN for all the ten utterances from 462
speakers. We performed the analysis only for the voiced frames in the original speech signal. The result
is quantified in terms of the frame level F0 value deviation between F0 contour of the relevance signal
with respect to the F0 contour of the input speech waveform. Approximately, 20% of the frames with F0
value zero in the F0 contour of the relevance signal are not considered in the calculation. For segmental
CNN, the mean F0 deviation was 4Hz while for sub-segmental CNN it was 15Hz. This indicates that F0
information is captured by both segmental CNN and sub-segmental CNN. However, the sub-segmental
CNN is selective, i.e. it seems to not model F0 information in all voiced frames.
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(b) Phone Classification
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(c) Speaker Identification

Figure 8: Spectrogram of an example waveform and corresponding spectral relevance maps obtained for phoneme
classification CNN and speaker identification sub-segmental CNN.

4.2.4 Phone classification versus speaker identification

As mentioned earlier, sub-segmental CNN for speaker identification applies the same block processing
as the phone classification CNN. In other words, both process 30 samples with a 10 samples shift. A
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question that arises: do the two systems focus on same kind of spectral information? Fig. 8 illustrates
the difference in the information captured by the phone classification CNN and speaker verification sub-
segmental CNN for /ah/ uttered by a TIMIT speaker. It can be observed that the phone classification
CNN relevance signal retains well information related to the first two formants (around 1000 Hz) when
compared to the speaker identification CNN relevance signal. We have performed informal listening tests
on the relevance signals obtained with the two CNNs on a few TIMIT utterances. We have found that the
relevance signal obtained with phone classification CNN is “intelligible”, while the relevance signal of the
speaker identification CNN is not. A detailed investigation along this line is part of our future work.

5 Discussion and Conclusion

Inspired from computer vision research, this paper proposed a gradient-based visualization approach for
understanding the information modeled by CNN-based systems, which take raw signal as input. Through
case studies on phone classification and speaker identification tasks, we showed that the relevance signal
obtained through guided backpropagation can be analyzed using conventional speech signal processing
techniques to gain insight into the information modeled by the whole neural network. These case studies
also bring out the limitations of the spectral dictionary based approach to analyze first convolution layer
(presented in Section 2). More precisely, spectral dictionary based analysis applied on phone classifi-
cation task reveals that the CNN is modeling formant information [16] but it does not reveals that F0
information is also modeled. Similarly, on speaker identification task, a contrast between the findings of
sub-segmental CNN analysis with the findings reported in [17] shows that F0 modeling and emphasis on
high frequency regions is not revealed by the spectral dictionary based approach.

The relevance signal provides clues about the information modeled from the input signal by the whole
neural network. However, it does not explains how the neural network is able to achieve that. Our future
work will focus along that direction, where we aim to extend the proposed gradient-based approach to
unravel the information modeled between the different intermediate layers and the output.
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[13] Zoltán Tüske, Pavel Golik, Ralf Schlüter, and Hermann Ney, “Acoustic modeling with deep neural
networks using raw time signal for LVCSR,” in Proc. of Interspeech, 2014.

[14] Szu-Wei Fu, Yu Tsao, Xugang Lu, and Hisashi Kawai, “Raw waveform-based speech enhancement by
fully convolutional networks,” in Proc. of Asia-Pacific Signal and Information Processing Association
Annual Summit and Conference, 2017.

[15] Dimitri Palaz, Mathew Magimai.-Doss, and Ronan Collobert, “Analysis of CNN-based speech recog-
nition system using raw speech as input,” in Proc. of Interspeech, 2015.

[16] Dimitri Palaz, Mathew Magimai.-Doss, and Ronan Collobert, “End-to-end acoustic modeling us-
ing convolutional neural networks for automatic speech recognition,” Idiap-RR Idiap-RR-18-2016,
Idiap, 6 2016.

[17] Hannah Muckenhirn, Mathew Magimai.-Doss, and Sébastien Marcel, “On learning vocal tract sys-
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