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Data-Driven Movement Subunit Extraction
from Skeleton Information for Modeling Signs
and Gestures
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Abstract

Sequence modeling for signs and gestures is an open research problem. In that
direction, there is a sustained effort towards modeling signs and gestures as a se-
quence of subunits. In this paper, we develop a novel approach to infer movement
subunits in a data-driven manner to model signs and gestures in the framework
of hidden Markov models (HMM) given the skeleton information. This approach
involves: (a) representation of position and movement information with measure-
ment of hand positions relative to body parts (head, shoulders, hips); (b) modeling
these features to infer a sign-specific left-to-right HMM; and (c) clustering the
HMM states to infer states or subunits that are shared across signs and updat-
ing the HMM topology of signs. We investigate the application of the proposed
approach on sign and gesture recognition tasks, specifically on Turkish signs Hos-
piSign database and Italian gestures Chalearn 2014 task. On both databases, our
studies show that, while yielding competitive systems, the proposed approach leads
to a shared movement subunit representation that maintains discrimination across
signs and gestures.

1 Introduction

Sign language (SL) is a visual mode of communication for the Deaf community. To
convey information, SL uses multiple visual channels such as hand gestures (hand
shape, location and movement), facial expression, body posture, lip movement. In or-
der to develop efficient sign language processing systems, it is desirable to model signs
as a sequence of subunits, akin to phoneme- or phone-based speech processing [5]. As
subunits allow robust parameter estimation as well as can remove the constraint that all
signs in the lexicon needs to be observed during training. Furthermore, subunits can
allow data sharing across languages [22]. The multistream nature of SL implies that
the development of such a subunit set is a highly challenging task.

The main language structure of the SL lies in the hand gesture supplemented with
non-manual components (facial expression, lip movements, body posture). Thus, most
of the studies focus on the manual components i.e. hand gesture. There exist two
linguistic-oriented approaches to define hand gesture: the Stokoe system [29] and the
Movement-Hold model [24]. In the Stokoe system, a sign is described as a simulta-
neous series of three major formational units: hand shape, locations and movements,
while the Movement-Hold model fragments the signs in two types of sequentially or-
dered segments: movement and hold (location) segments. In both approaches, the
movement is a relevant structure in the sign production that needs to be modeled. In



the literature, it is well understood that the hand shape information can be modeled
as a sequence of subunits based on HamNoSys [7, 17,23]. However, the continuous
aspect of the movement makes modeling of movement information as subunits diffi-
cult. The focus of this paper lies in automatic derivation of movement subunits for sign
language and gesture processing. In the literature, there are two strands of research in
that direction.

The first strand of research makes the assumption that some annotation of signs
is available. Pitsikalis et al. [26] incorporated phonetic transcription into data-driven
subunits. They first converted HamNoSys symbols into Posture-Detention-Transition-
Steady Shift (PDTS) model. Then they combined these structured sequences of la-
bels with visual tracking features for timing information via an HMM-based system
to obtain the phonetic subunits. Cooper et al. [10] used hand labeled data and com-
pared three types of subunits: appearance-based, 2D tracking-based and 3D-tracking
based. Two sign-level classifiers were tested: an HMM-based approach and the se-
quential pattern (SP) boosting. Koller et al. [21] used gloss annotations and gloss
time boundaries to generate sequences of subunits using HMM-based modeling and
expectation-maximization algorithm. Elakkiya and Selvamani [11] extracted manual
and non-manual features by using Parallel HMMs and introduced a novel Bayesian
Parallel HMM (BPaHMM) to combine the visual and linguistic transcriptions of the
sign lexicon to form a subunit gesture base.

The second strand of research involves extraction of subunits without using anno-
tation information. In this case, subunits extraction typically involves unsupervised
segmentation and clustering. There exist two lines of thoughts based on the order in
which segmentation and clustering steps are carried out, i.e.,

1. clustering followed by segmentation: Bauer and Kraiss [3] used k-means al-
gorithm to cluster the data where each cluster is then represented as a fenonic
baseform. Temporal structure is then achieved with the HMM-based structure
defined based on this fenonoic model [18]. Han et al. [2,15,16] used hand motion
speed and trajectory to locate subunit boundaries and then temporal clustering by
Dynamic Time Warping (DTW) is adopted to merge similar subunits.

2. segmentation followed by clustering: Sako and Kitamura [28] extracted depend
subunits by training a multi-stream isolated sign HMM for each word where
the feature vector of each frame is splited into three phonetic stream, and by
clustering each state of the multistream using an inter-state distance with a tree
based algorithm in order to tie the states. Fang et al. [13] segmented signs using
HMMs in which each state represents one segment. Then they used a temporal
clustering algorithm based on modified k-means algorithm where DTW is em-
ployed as the distance computation criterion. In that study, CyberGloves and
Pohelmus 3SPACE-position trackers were used. Based only on simple position
measurements obtained from video, Theodorakis et al. [30] used, as an initial
segmentation step, the model based segmentation proposed by [13], and then
employed a hierarchical clustering of whole dynamic models (HMMs) to find
the shared segments.

In this paper, we propose a novel HMM-based approach to extract movement data-
driven subunits from skeleton information for sign and gesture modeling. In this ap-
proach, no prior knowledge of the number of subunits or segmentation or linguistic
annotation is used. The approach involves: (a) extraction of position and movement
features from 3D skeleton information that also incorporate information related to head,



shoulders and hips; (b) inferring a left-to-right HMM for each sign by modeling the po-
sition and movement features; and finally (c) clustering the states of the HMMs across
the signs through a measure of discrimination to infer subunits and representing each
sign in terms of those subunits. We demonstrate the potential of the approach through
sign language/gesture recognition studies on two databases: (i) HospiSign database,
which contains Turkish phrases produced by native or early signers in a controlled en-
vironment and (ii) Chalearn14 database, which contains Italian gestures that do not
have well defined linguistic structures akin to sign language and are produced in an
uncontrolled environment.

The remainder of the paper is organized as follow: Section 2 provides a brief
overview on HMM-based approach for recognizing signs and gestures. Section 3
presents the proposed approach for subunit extraction. Section 4 presents the exper-
imental setup and Section 5 presents the results and analysis. Finally, Section 6 con-
cludes with discussion and directions for future research.

2 HMM-Based Sign Language/Gesture Recognition

In this section we provide a short background on the HMM-based framework for sign
language/gesture recognition, which also forms the basis for the subunits extraction.
We present the framework in the context of sign language, while keeping the model
general enough to be applicable to the gesture recognition task as well.

In the statistical sign language recognition (SLR) approach, given an input video
as a sequence of images/features X = (x,--- ,Xr), the goal is to obtain the most likely
sign (in the case of isolated SLR) or sign sequence (in the case of continuous SLR) S*,

S* =argmax P(S|X,0), (D
Se.s

where . denotes the set of all possible signs or sign sequences, S represents a sign or
sign sequence and ® denotes the set of parameters of the system. For simplicity, in the
remainder of this section ® is dropped. As direct estimation of P(S|X) is a non-trivial
task!, typically Bayes’ rule is applied, leading to,

. p(X|S)P(S)
I ”
= argmax p(X|S)P(S) . 3)
N4

Equation (3) is obtained as a result of the assumption that p(X) does not affect the
optimization. P(S) is referred to as the language model, and can be estimated based
on the relative frequency of the signs on the training data. A common way to model
p(X|S) in the literature is to use HMMs [25]. HMM is a well-known method to handle
temporal pattern recognition. Furthermore its ability to compensate time and amplitude
variations is valuable in sign recognition.

More precisely p(X|S) in an HMM-based framework can be estimated by summing

Tt is worth mentioning that recently there are approaches emerging which directly model P(S|X) [7,14].



over all possible state sequences 2, i.e.,

p(X|S) =Y, p(X,0I5), )
Q2
T
= Z Hp(xt|QI)P(qt|%71) ) (5)
Qe2t=1
T
%rQneaétI;Ilp(Xt‘CIt)P(%V]t—l) ) (6)

where Q = (q1,--- ,qs,- -+ ,qr) denotes a sequence of HMM states. Equation (5) is ob-
tained by making i.i.d. and first order Markov assumptions. Equation (6) is obtained
by applying the Viterbi approximation. The so-called local emission score p(x;|q;) can
be estimated using different techniques. In this paper, we exploit using Gaussian mix-
ture models (GMMs) and artificial neural networks (ANNS) to estimate the emission
score. The approach using GMMs is referred to as HMM/GMM approach [27], and
the approach using ANNS is referred to as hybrid HMM/ANN approach [6,22,23,31].
In the HMM/GMM approach,

N
P(Xt|‘1r) = Z CHJV(XZ;#I‘HEW) ) (7)
n=1

where N denotes the number of Gaussian components per mixture for each state; c,,
i, and £, denote respectively the mixture weight, mean and covariance for the n'”
Gaussian modeling the state.

In the hybrid HMM/ANN approach, an ANN is used to estimate the posterior prob-
ability P(g;|x;). The posterior probabilities are then converted to scaled-likelihoods (sl)
of HMM states and are used as local emission score, i.e.,

P(x|q:) _ P(g:|x:)
p(x) P(q:) .

Psi (Xt |Qt) = ®)

3 Proposed Approach

The proposed approach consists of three steps: (1) extraction of features based on
skeleton information (Section 3.1), (2) inference of a sign-specific hidden Markov
model (Section 3.2), and (3) inference of subunits by clustering HMM states across
signs (Section 3.3).

3.1 Feature Extraction

In this paper, we focus on two parameters characterizing a sign: the hand location and
the hand motion. To represent these manual features, inspired from [1], we decided to
use continuous position and velocity features. Position features are given by the 3D
coordinate of a human skeleton and velocity features are delta features computed on
them. Other skeleton joints such as head, neck, shoulders and hips are used for scale
normalization and also in order to have the relative position of the hands with respect
to the signer’s body, as described in more detail below.

For each frame ¢, we first normalize position features of the left and right hand,
p:, by the width of the head. Then three types of 3D coordinate of the hands are



recalculated depending on three coordinate systems. The first one takes the head as the
center; the second one uses the right shoulder as the center for the right hand, and uses
the left shoulder as the center for the left hand; and the third one takes the right hip
as the center for the right hand, and takes the left hip as the center for the left hand.
Therefore, depending on the center C, the position feature p; would be:

hand — C
P

= anemr 9
|head, — necky| /4’ ©)

where C € {head, shoulder, hip}; hand, shoulder, hip are vectors of x,y,z coordi-
nates of respectively left and right hand, shoulder and hip; and head contains x,y,z
coordinate of the head twice. head,, neck, are y coordinate of the head and neck re-
spectively.

The velocity features, V,C, are estimated for each coordinate system by computing
the difference between the position features at time ¢ and time 7 — 2.

vei=pf—p,. (10)

The resulting features are of size 36: 18 positions features—(3 left + 3 right hand
position features) x 3 coordinate systems—and 18 velocity features.

3.2 Inference of Sign-Specific HMM

In this step, given the training data and cross validation data, we obtain a sign-specific
HMM for each sign. This step is akin to getting a segmentation model for each sign.
We investigate two methods to obtain sign specific HMMs, namely, CV-based method
and train-based method.

CV-based method: In CV-based approach, first a range of possible number of
states is setted: [Npin, Ninax]. Then an HMM, ///,fm, with n states is modeled for each
sign §” € {S'---SM}, Yn € [Npin, Nax]. The emission distribution for each state is
modeled by a single Gaussian distribution with diagonal covariance. Finally, from the
set of HMMs for each sign, the HMM that yields the best performance for a sign on
the cross validation data set is selected as the sign specific HMM for that sign. Fig. 1
illustrates this process. Given the inferred HMM with N" states for each sign S™, the
resulting sign model is a sequence of Gaussian distributions, %Sm, Vg € [1,N5"].

Train-based method: An alternative method is to obtain a segmentation model
only based on the training data. We refer to this approach as the train-based approach.
In this approach, the number of states, N, is common across all the signs and is defined

Model Selection
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Figure 1: Ilustration of the CV-based sign-specific HMM inference



HMM state clustering
A. For each pair of states,
compute Bhattacharyya distance (Bhatt)
between the corresponding Gaussians
B. Cluster the states with Bhatt less than a threshold 7
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Figure 2: Clustering the HMM states based on the Bhattacharyya distance between the
corresponding Gaussians. The clustered states are shown with the same color

such that the recognition accuracy saturates on the training data. This choice ensures
that the states represent minimum discriminative segments. Again, similar to CV-based
approach, the emission distribution of each state is modeled by a single Gaussian dis-
tribution with diagonal covariance.

3.3 Subunit Inference and Lexicon Development

Given the sign-specific HMMs and their parameters, in this step the HMM states are
clustered through a measure of discrimination. More precisely, this is done by pooling
all the single Gaussians of all the HMM states of all the signs and computing Bhat-
tacharyya distance [4,20] between each pair of Gaussian distributions:

1 _
Bhatt(N, N2) = g(l»‘l — ) 2 (1 - )
Ptz 1
VdetX detX, ’

2

where A := A (U,X1) and A5 := A (U,,X,) are two Gaussian distributions and
Y= % Two states are considered to be the same if the Bhattacharyya distance
between their Gaussian distributions is lower than a threshold 7, see Fig. 2. The intu-
itive explanation is that two segments or HMM states are modeling similar movement
information if the probability density functions (pdfs) of those states are similar. Since
the exploited features are based on position and velocity of both hands, we can expect
the clusters to describe the set of movement subunits. Furthermore, our approach of
extracting subunits using skeleton information is theoretically consistent at the mea-
surement level as well as the model level. More precisely, the measurement and the
feature space are in the 3D coordinate system and the Bhattacharyya distance used to
cluster the HMM states has a geometric similarity measure interpretation [4].

Given the clustered states as subunits, a lexicon can be generated in which each
sign is presented as a sequence of subunits, as illustrated in Fig. 3.

The subunit based lexicon can then be used to train an HMM, ///fﬁlm i for each sign
S™, as illustrated in Fig. 4 for the case where the emission distributions are modeled by
GMM.

In this step, the only hyper-parameter is the threshold 7. We show that this can
be determined in a cross-validation manner by: (i) getting a subunit based lexicon for



different values of 7 € (0,2.7]; (ii) training a HMM/GMM SLR system for each of
those subunit based lexicons; and finally (iii) selecting the lexicon that yields the best
SLR system on the development data. As a by-product, this ensures that the subunit
inference process maintains the discrimination between signs.

4 [Experimental Setup

In this paper, we apply the proposed approach on signer-independent SLR and ges-
ture recognition tasks to investigate its potential. In this section, we first describe the
databases used for evaluating our proposed approach. We then present the setup for the
recognition systems used in our studies.

4.1 Databases

We evaluated the proposed approach on two databases: (1) HospiSign database, which
contains phrases produced by native signers, and (2) Chalearn14 database, which con-
tains various gestures produced by non-experts.

4.1.1 HospiSign Database

The HospiSign database is a subset of 33 phrase classes of the continuous Bosphorus-
Sign database [9]. The content is Turkish Sign Language (TSL) related to the health
domain. The HospiSign subset includes 6 signers, with each sign being repeated ap-
proximately 6 times by each signer. The database is publicly available by request from
the authors (https://www.cmpe.boun.edu.tr/pilab/BosphorusSign/
home_en.html). The database has been recorded with a Kinect camera. We have
used the skeletal joint coordinates that are provided in the database as the basis for our
feature extraction.

In order to conduct a signer-independent experiment, we have used a leave-one-
signer out cross-validation study. Furthermore, as we need a development set for tun-
ing the hyper-parameters, we have left another signer out for this purpose. Therefore,
as can be seen from Table 1, we have conducted six experiments where in each experi-
ment, one signer is used for testing, one signer is used as the development set, and the
rest of the signers are used for training. For each experiment, we have presented the
average performance over the signers as the final result. Table 2 presents the average
number of samples in the train, development and test sets over the six experiments.

Lexicon generation

1
Sl L su' su? sul
m 5
S —_— S'llb SUQ Sud
M
SY L, sul su? o suP

Figure 3: The generated subunit-based lexicon based on the clustered states obtained
in Fig. 2
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Figure 4: Subunit-based sequence modeling

Table 1: The HospiSign database segmentation of training, development and testing
data according to signers. The numbers in the table refer to the signers’s number

Exp 1 Exp 2 Exp 3 Exp 4 Exp 5

34, 24, 23, 23, 23, 34, 14, 13, 13, 13, 24, 14, 12, 12, 12, 23, 13, 12, 12 12, 23, 13, 12, 12, 12, 23,
56 56 56 46 45 56 56 56 46 45 56 56 56 46 45 56 56 56 36 35 46 46 46 36 34 45
Dev 1 1 1 1 1 2 2 2 2 2 3 3 3 3 3 4 4 4 4 4 5 5 5 5 5 6
Test 2 3 4 5 6 1 3 4 5 6 1 2 4 5 6 1 2 3 5 6 1 2 3 4 6 1

Train

Table 2: Description of the HospiSign and Chalearn14 databases in terms of average
number of samples

Train Dev  Test
# samples, HospiSign 874 210 210
# samples, Charlearn14 6800 2506 3579

4.1.2 Chalearnl4 Database

The Chalearn14 database consists of isolated gestures drawn from 20 Italian gestures
and performed by several different users. The data was recorded in the context of the
Task 3 of the Chalearn challenge of 2014. The database is publicly available by request
from the authors (http://gesture.chalearn.org/2014-1looking—at—-people—challenge).
For efficient comparison to the existing results we used the train/development/test
setups given by the competition for the Chalearn14 database. Table 2 presents the
number of samples in the train, development and test sets. It is worth mentioning
that in the Chalearn 2014 competition, the segmentation of videos in the test set was
not provided. Therefore the task contained two parts: (1) segmentation of videos into
gestures/non-gestures, and (2) classifying the gestures. As our focus in this paper is on
classifying the gestures, we have used the ground truth segmentations on the test set.

4.2 Systems

We built HMM/GMM and hybrid HMM/ANN systems using sign-specific sequence
modeling approach and the subunit-based sequence modeling approach. The HMMs
were trained and tested with the HTK toolkit [32] adapted for sign language. For a



better segmentation, i.e. to avoid sign irrelevant movement being taken into account
in the sign, we added a transition model at the beginning and end of each HMM. For
preserving the continuity of the entire model, we modeled the transition model as a
three-states left-to-right HMM. The three-states transition HMM structure with one
state skip is presented in Fig. 5.

4.2.1 HMM/GMM Systems

In the case of sign-specific sequence modeling, we modeled the signs with left-to-right
HMMs using Gaussian state-output distributions. The number of Gaussian compo-
nents per mixture varies between 1 and 56. We used the two segmentation approaches
explained in Section 3.2 to determine the number of HMM states per sign. In the CV-
based framework, the average number of HMM states per sign was 8 for the HospiSign
database and 3 for the Chalearn14 database. In the train-based framework, the derived
number of HMM states per sign was 9 for both databases.

In the subunit-based model, we trained HMM/GMM systems where each subunit
was modeled with a single HMM state. The number of Gaussian components per
mixture also varied between 1 to 56, and was set based on the recognition accuracy on
the development set.

4.2.2 Hybrid HMM/ANN Systems

For building the hybrid HMM/ANN systems, we first obtained the alignments in terms
of the HMM states using the trained HMM/GMM systems. We then trained ANNS,
more precisely multilayer perceptrons (MLPs) classifying HMM states with output
non-linearity of softmax and minimum cross-entropy error criterion, using Quicknet
software [19]. We used 36-dimensional position and velocity features with four frames
preceding context and four frames following context as the MLP input. In our exper-
iments we trained MLPs with different number of hidden units (600, 800, 1000) and
hidden layers (0, 1, 2, 3). The number of hidden units and hidden layers as well as
other hyper-parameters such as learning rate and the batch size were chosen according
to the frame-level accuracy on the development set.

We estimated the scaled likelihoods in the hybrid HMM/ANN systems by dividing
the posterior probabilities derived from MLPs with the prior probabilities of the classes
estimated from relative frequencies in the training data. These scaled likelihoods were
then used as emission probabilities for HMM states.

The performance of the developed systems are evaluated in terms of recognition
accuracy (RA):

RA— # of correctly predicted signs/gestures (12)
~ total # of signs/gestures in the reference '

o055

Figure 5: Structure of the three-states transition model




5 Results and Analysis

In this section, we first present the recognition results on the HospiSign and Chalearn14
databases. We then contrast the performance of the proposed approach with the existing
approaches in the literature.

5.1 SLR on HospiSign

Table 3 presents the HMM/GMM SLR system results in terms of RA on the HospiSign
database. It can be observed that the subunit-based modeling approach leads to devel-
opment of a comparable SLR system to the sign-specific sequence modeling approach.
This is interesting as the number of states per sign in the CV-based sign-specific system
is optimized according to the segmentation approach explained in Section 3.2, and the
train-based subunit-based system is able to perform comparable to this system despite
considerably reducing the total number of states by in average 22%.

Table 3: HMM/GMM results on the HospiSign database depending on the segmenta-
tion approach explained in Section 3.2 (train-based and CV-based)

Experiment sign-specific seq. modeling || subunit-based seq. modeling
Train-based CV-based || Train-based CV-based

Exp 1 92.56 91.95 91.95 90.75
Exp 2 89.48 89.73 87.9 87.96
Exp 3 91.71 92.89 92.13 90.85
Exp 4 88.11 89.47 89.49 89.72
Exp 5 91.62 90 91.6 91.17
Exp 6 92.97 91.98 90.6 88.3

Average

RA + sid 91.08 £1.88 | 91 +1.44 || 90.61 =1.65 | 89.8 £1.38

Table 4 presents the hybrid HMM/ANN results on the HospiSign database. It can
be observed that the use of neural networks instead of GMMs for estimating the lo-
cal emission scores leads to significant improvements in the performance of all the
systems.

Comparing the results on the six experimental setups explained in Section 4.1.1
shows that irrespective of the development set chosen, the systems perform similar to
one another in most of the cases.

5.2 Gesture Recognition on Chalearn14

Table 5 presents the HMM/GMM and hybrid HMM/ANN results on Chalearn14 database.
In the HMM/GMM systems based on the sign-specific sequence modeling, the average
number of Gaussian mixtures used is 40. Indeed, the number of Gaussian mixtures
plays an important role in the performance of the systems as increasing the number
of mixtures from 1 to 40 leads to around 25% absolute improvement in the gestures
recognition accuracy. This improvement can be explained by the wild setup and the
gesture framework which implies significant signer variation. So the balance between
the number of states and the number of mixtures is more difficult to set compared to
HospiSign framework where increasing the number of mixtures does not change the
recognition accuracy. In the Chalearnl4 case, the subunit-based HMM/GMM model

10



Table 4: Hybrid HMM/ANN results on HospiSign database depending on the segmen-
tation approach explained in Section 3.2 (train-based and CV-based)

Experiment sign-specific seq. modeling subunit-based seq. modeling
Train-based CV-based Train-based CV-based

Exp1 96.58 94.76 96.87 94.46
Exp 2 95.97 95.11 95.12 94.07
Exp 3 96.46 96.97 95.86 96.17
Exp 4 95.47 95.75 95.13 94.45
Exp 5 94.29 94.02 94.97 96.48
Exp 6 95.13 94.83 95.4 94.52

Average

RA + std 95.65 +0.86 | 9524 £1.01 || 95.56 £0.71 | 95.03 +£1.02

Table 5: HMM/GMM and hybrid HMM/ANN results on Chalearn14 database depend-
ing on the segmentation approach explained in Section 3.2 (train-based and CV-based)

sign-specific subunit-based
System seq. modeling seq. modeling
Train-based | CV-based || Train-based | CV-based
HMM/GMM 80.83 83.46 86.09 78.6
Hybrid HMM/ANN 81.31 82.98 83.77 78.51

seems to better handle this balance since we can notice a significant improvement com-
pared to the sign-specific model.

Finally, when comparing CV-based method and train-based method in obtaining
the sign specific HMM, it can be seen that subunit-based sign models resulting from
sign specific HMMs obtained by the train-based method yields better systems for both
databases. The performance difference is more pronounced in the case of Chalearn14
database, when compared to the HospiSign database. This can be due to the fact that
in HospiSign the signs were produced in a controlled scenario by native or L1 signers,
where as in Chalearn14 the signs were produced in a wild scenario not necessarily by
native signers. As a consequence, CV-based method may need more development data.
This needs further investigation and is part of our future work.

5.3 Comparison to Existing Studies

In this section, in order to ascertain that our approach is leading to useful systems,
we contrast our results with the performance of systems reported on HospiSign and
Chalearn14 databases using only the skeleton information.

5.3.1 Comparison on HospiSign Database

In [9], various manual features such as hand shape, hand position and hand movement
were extracted and temporal modeling using either dynamic time warping (DTW) or
temporal templates was performed. In the case of using DTW, the signs were classified
using k-Nearest Neighbors (k-NN). In the case of using temporal templates, random
decision forest (RDF) was used for classifying the signs.

For a fair comparison, as in [9] the average performance was calculated over the
signers, we also first computed the average performance for each signer over our six ex-
periments (explained in Section 4.1.1), and then we computed the average performance

11



over the signers as the final accuracy. Table 6 provides the comparison of our approach
using the hybrid HMM/ANN framework with the proposed approach in [9] when us-
ing DTW along with k-NNs using hand joint distances and hand movement distances
as features. Furthermore, we have presented the results in the case of using temporal
templates with the random decision forests as it yielded one of the best results in [9].
It can be observed from Table 6 that both sign-specific and subunit-based sequence
modeling approaches yield comparable systems to the systems developed in [9]. Fur-
thermore, the lower standard deviation w.r.t DTW & k-NN based systems indicates that
the proposed approach is yielding a more consistent system across different signers.

5.3.2 Comparison on Chalearnl4 Database

In the Chalearn 2014 competition, various approaches for feature extraction, temporal
segmentation and classification of gestures were investigated. In order to evaluate the
proposed approaches, Jaccard index was used as the evaluation metric. Jaccard index
is a commonly used metric for evaluating the gesture spotting. The Jaccard index is

defined as: A B
Jpg= 228 Ong (13)

AsgUBgg '
where A, , is the ground truth for gesture g at sequence s, and By is the prediction for
this gesture at sequence s [12].

Table 7 contrasts with the performance of the systems in the competition that used
only the skeleton information like the proposed approach. As discussed earlier, we have
evaluated using the ground truth information on the test set. In order to get an idea on
how the systems resulting from the proposed approach perform when the ground truth
information is not available, we evaluated our systems based on the segmentations used
in the system reported in [8].> When considering segmentation and classification, we
can observe that the systems based on the proposed approach are neither the best nor
the worst. Thus, indicating that the proposed approach is worth pursuing.

6 Discussion, Conclusions and Future Directions

This paper proposed a data-driven approach for movement subunit extraction from the
skeleton information for modeling signs and gestures without any annotation informa-

’In [8] a random forest was used to recognize the gestures and non-gestures. We would like to thank
Necati Cihan Camgoz for sharing the test set segmentations with us.

Table 6: Comparison of performance on Hos piSign database w.r.t the study reported
in [9].

Approach Features Accuracy
Our approach HMM/ANN with tram—be.lsed position 95.65 + 0.86
sign-specific seq. modeling and movement
HMM/ANN with train-based position
Our approach subunit-based seq. modeling and movement 9356 £0.71
. DTW & k-NN using position
Approach in [9] hand movement distance and movement 93.81 4636

position, movement

and hand shape 96.67 £ 1.80

Approach in [9]  Temporal templates & RDF
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tion. The approach involves three steps: (i) extracting position and movement infor-
mation given measurement of relative position of the hands with respect to the signer’s
body; (ii) inferring a sign-specific HMM using the training or cross-validation data;
and (iii) clustering the HMM states across all the signs into subunits and developing a
subunit based lexicon. Validation of the derived subunits through SL and gesture recog-
nition studies showed that the subunit based system achieves performance comparable
to or better than the best whole sign/gesture HMM based system. This indicates that
the subunits based sign/gesture representations obtained by our approach maintains
discrimination like whole sign/gesture HMM. Furthermore, the performances obtained
on the two databases are in-line with the results reported in the literature.

Table 8 compares a few closely related subunit extraction studies. As it can be
seen that the previous approaches have focused on processing images or movement
information captured via gloves, while our approach focuses on modeling skeleton
information, which can be easily and reliably obtained nowadays. Also, not all of
these works have focused on investigating signer independence and generalization of
the approach on multiple databases, as done in the present paper. Although HMMs
have been previously used for subunit extraction, they have not been used the way
our approach does by considering discrimination at all levels, including the Sako and
Kitamura approach [28] which clusters HMM states similar to our approach. More
precisely, in our approach sign/gesture level discrimination is ascertained at both seg-
mentation and clustering steps. At the segmentation step, a sign specific HMM is
obtained through sign/gesture recognition. At the clustering step, the HMM states are
clustered by comparing their pdfs through Bhattacharyya distance, which is a discrimi-
native measure [20], and thresholding it by evaluating sign/gesture level discrimination
on a cross-validation data. As a result, whole sign HMMs in our approach automati-
cally become as a reference point, like whole word HMMs in speech recognition. This
can not be said about the other approaches.

Our future work will focus along the following directions with extensions to con-
tinuous sign language modeling:

1. For subunits based approach to be effectively used, it is desirable that the derived
subunits are database and language independent. In the case of modeling hand
shape subunits based on HamNoSys, this aspect has been well understood and
exploited [7,22]. The proposed approach of movement subunit derivation gener-
alizes across different databases. However, it is yet to be ascertained how much

Table 7: Comparing the performance of our approach with the performance of related
approaches reported in the Chalearn 2014 competition in terms of Jaccard index

Team/Approach Accuracy  Features Classifier

Train-based subunit-based seq.
modeling (ground truth seg.)
CV-based sign-specific seq.
modeling (ground truth seg.)
Ismar [8] 0.7466 Skeleton  Random forest
Train—pased subunit-based seq. 0.6863 Skeleton  HMM/GMM
modeling (seg. from [8])
CV-based sign-specific seq.
modeling (seg. from [8])
Terrier 0.5390  Skeleton Random forest
YNL 0.2706  Skeleton HMM, SVM

0.8655 Skeleton ~HMM/GMM

0.8422 Skeleton ~HMM/GMM

0.6825 Skeleton HMM/ANN

13



Table 8: Comparison of our approach to existing studies

Features Clustering Recognition Signer indep.
Ref. based Segment. algorithm study study
. images multi-stream tree based
Sako and Kitamura [28] processing HMM algorithm v v
Bauer and Kraiss [3] gloves HMM k-means v X
Han et al, [15] image.s discontinuity DTW v X
processing detector
Fang et al. [13] gloves HMM modified k-means X X
. HMM
Theodorakis et al. [30] ~_'Toecs HMM hierarchical x X
processing .
clustering
pair-wise
Our approach skeleton HMM clustering with v v
Bhatt. dist.

are the derived movement subunits database or language independent. We will
investigate this direction by exploring methods to model the relationship between
the symbolic representation of movement information in HamNoSys representa-
tion of signs and the derived subunits, similar to modeling grapheme-to-phoneme
(G2P) relationship for G2P conversion in speech processing [5].

Hand gesture or manual components in SL consists of hand shape, location and
movement information. In this work, the focus was on modeling hand location
and movement information by deriving subunits. A question that remains to be
answered is: how to model jointly the hand movement subunits and hand shape
subunits? We will investigate this direction along with the incorporation of RGB
information.
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