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Abstract—This contribution presents a new database to address current challenges in face recognition. It contains face video
sequences of 75 individuals acquired either through a laptop webcam or when mimicking the front-facing camera of a smartphone.
Sequences have been acquired with a device allowing to record visual, near-infrared and depth data at the same time. Recordings
have been made across three sessions with different, challenging illumination conditions and variations in pose. Together with the
database, several experimental protocols are provided and correspond to real world scenarios, when a mismatch in conditions
between enrollment and probe images occurs. A comprehensive set of baseline experiments using publicly available baseline
algorithms show that extreme illumination conditions and pose variations are remaining issues. However, the usage of different data
domains - and their fusion - allows to mitigate such variation. Finally, experiments on heterogeneous face recognition are also
presented using a state-of-the-art model based on deep neural networks, and showed better performance. When applied to other
tasks, this model proved to surpass all existing baselines as well. The data, as well as the code to reproduce all experiments are made
publicly available to help foster research in selfie biometrics using latest imaging devices.

Index Terms—Face Recognition, Database, Multistream, lllumination, Pose, Heterogeneous, Reproducible Research.

1 INTRODUCTION

ACE recognition is a popular topic in computer vision,

with a wide range of applications such as physical
access control, remote authentication or smart device un-
locking, to name a few. After more than 30 years of active
research, face recognition in controlled environments can be
considered mature, as evidenced by numerous applications
deployed at scale, like automatic gates at border crossing
in airports. However, there are challenges remaining. Large
variations in pose and in illumination conditions have
been consistently identified as the main limitations of face
recognition systems [1] [2] [3]. Thanks to the availability of
very large face datasets together with the recent and rapid
progress of deep neural networks, noticeable progress have
been made and computer-based face recognition is now
close to human performance. However, most of these recent
approaches have been made on faces retrieved from web-
based color images, and although such data exhibit some
variations in terms of pose and illumination conditions,
they remain quite modest. Furthermore, recent studies show
that state-of-the-art face recognition systems are prone to
presentation attacks (or spoofing) [4]. Hence, for a typical
application, i.e. authentication on a smartphone, to be suc-
cessful and widely accepted, such threats should be taken
into account. Consequently, both academia and the industry
are investigating new sensors for secure face recognition
(e.g. the Apple iPhone X).

The usage of 3D data can greatly help to alleviate all
of the aforementioned challenges. Indeed, it can cope with
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pose and illumination variations [5] [6] and can help the
detection of presentation attacks [7]. However, most 3D
approaches require high-resolution scanners, which are
both bulky and extremely costly. The recent development of
low-cost RGB-D devices allowed researchers to investigate
face-related tasks with such data. As a consequence, several
RGB-D face databases, mostly collected with the Microsoft
Kinect device, have been proposed in recent years [8] [9].
Examples relevant to our work include the CurtinFace
database [10], the Eurecom database [11], the KaspAROV
database [12] and the Lock3DFace database [13], that are all
dedicated to face recognition.

While current approaches using RGB-D data can, to
some extent, cope with pose and illumination variations [10]
[3], near-infrared (NIR) imaging has also been shown to be
robust to illumination variations, even in extreme conditions
[2]. As a consequence, this modality has also been exten-
sively studied in the context of face recognition, whether in
a single [14] [15] or multimodal setting [2]. Therefore, there
also exists face database containing both RGB and near-
infrared (NIR) images: examples include the CASIA NIR-
VIS 2.0 [16] and the Near-Infrared and Visible-Light (NIVL)
from the University of Notre Dame [17]. However, these
databases do not contain 3D data, and are usually composed
of frontal faces acquired in a controlled environment.

Although there exist datasets providing all three modali-
ties, significant differences with the proposed dataset should
be noted. For instance, the Multi-Dim database [18] con-
tains, for each subject, high-quality 3D face scans, 2D high-
quality still color images and surveillance video clips in
both the visual spectrum and the near-infrared spectrum.
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In this case, images are extracted from different devices
and are not aligned (RGB and NIR devices were not set
in the same location) and consequently do not contain the
same conditions in terms of both pose and illumination.
The CASIA-HFB database [19] also contains RGB, NIR and
depth information. It was recorded in a typical laboratory
setting, where the subject quietly sits in front of the camera.
While there are some variations in expression, the pose
is always frontal and illumination conditions do not vary.
Finally, the Lock3DFace database [13] is maybe the closest
to ours, since it was recorded using a Kinect v2 device. It
hence allowed to record RGB, NIR and depth data at the
same time, but unfortunately, most of the subjects were
recorded during one session only, preventing the dataset
from having variations in illumination conditions. Besides,
it is worth mentioning that none of the databases presented
above contain recordings carried out in outdoor settings, and
hence do not provide a wide-range of realistic conditions for
probe images. Table 1 summarizes relevant multimodal face
databases (including ours) with their respective features.

Fig. 1. lllustration of the capture process when the device is mimicking
the front-facing camera of a smartphone.

In order to help the research community tackle cur-
rent limitations in face recognition, we present the FARGO
database: a face dataset containing RGB, depth and near in-
frared (NIR) video sequences. No less than 75 subjects have
been recorded with an Intel®RealSense™Camera (model
SR300), and constitute, to the best of our knowledge, the
first public face dataset with synchronized RGB, NIR and
depth sequences acquired in various conditions, including
outdoors.

Equipped with this new database, we also provide
various baseline experiments in several face verification
scenarios. Frontal face verification experiments are
conducted in each of the modalities, and on a variety
of mismatched, challenging illumination conditions.
Then, fusion of different algorithms, but also of different
modalities are presented. Experiments on pose-varying
and heterogeneous face recognition are also reported. Note
that all experiments presented in this contribution are
reproducible and that the data', as well as the code® are
both publicly and freely available. Several algorithms are
compared for each of the different tasks: one is based on

1. https:/ /www.idiap.ch/dataset/fargo
2. https:/ /gitlab.idiap.ch/bob/bob.paper.fargo_tbiom_2019
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Gabor local features [20] and another relies on a advanced
statistical model, Inter-session Variability [21]. Recent
approaches using deep convolutional networks, comprising
the classical VGG model [22], the computationally efficient
LightCNN [23], and models especially dedicated to pose-
invariant face recognition [24] or heterogeneous face
recognition [25] have also been also considered. Although
the main purpose of this dataset is face recognition, we
believe that it could benefit other face-related tasks, such as
facial feature localization, head pose estimation, and so on.

The rest of this contribution is organized as follows: Sec-
tion 2 presents the FARGO database and the face verification
protocols in more details. Section 3 describes the algorithms
used as baselines. Section 4 is dedicated to the experimental
evaluation: it presents results on the various face verifica-
tion tasks and also provides a discussion and qualitative
results. Finally, Section 5 summarizes our contribution and
concludes the paper.

2 THE FARGO DATABASE

The FARGO database has been recorded across a time
period of 5 months on three different sites. 75 subjects
have been recorded, among which 20 are females and 55
males. At the time of recording, most of the subjects were
aged between 20 and 30 years old - the exact age is avail-
able as metadata. The recordings have been made using
an Intel®RealSense™SR-300 device, allowing to capture
classical RGB, Near-Infrared (NIR) and depth maps video
sequences at the same time. Each subject was recorded
during three sessions. The first session took place in an
indoor environment with controlled lighting, ensuring the
face to be well lit. The second session has been recorded
in a very dark room, and the third one has been recorded
outdoor, and hence contains arbitrary illumination condi-
tions. Figure 2 provides example images for each session. In
each session and for each subject, four video sequences were
recorded: two where the device was mounted as a webcam
on a laptop, and two where the device was mimicking the
frontal camera of a mobile phone (see Figure 1).

Py

(a) controlled (b) dark (c) outdoor

Fig. 2. Example of images acquired in each session.

During each recording, the subject has been asked to
remain still for the first five seconds, and then to move his
head to the left, to the right, to the top and to the bottom,
while still looking at the device. This has been done for two rea-
sons: the movements in yaw will allow to address the chal-
lenge of face recognition across pose and the movements in
pitch are trying to mimic the typical pose variations one can
observe when using a front-facing smartphone camera. For
all recorded face video sequences, 13 specific frames have
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TABLE 1
Overview of multimodal face databases dedicated to face recognition.

Name # of subjects  NIR depth  light variation = pose variation selfie mode annotations
Eurecom 52 X v no yaw X 6 points
HIT-D RGB-D 106 X v no moderate X none
CurtinFaces 52 X v yes yaw + pitch X none
CASIA NIR-VIS 2.0 725/ X moderate moderate X eyes
NIVL 402 v X no no X eyes
CASIA HFB 100 v v no no X eyes
KaspAROV 108  v/(52 subj.) v yes yaw + pitch X none
Lock3DFace 509 v v no yaw + pitch X 4 points
Multi-Dim 124 v v yes moderate X unknown
FARGO 7% v v yes yaw + pitch v 16 points

been manually annotated. Roughly, these frames correspond
to a frontal view of the face, to the extreme positions attained
when the subject moves her/his head (left, right, top and
bottom), plus two frames in between the extreme position
and the frontal view. Selected frames have been annotated
with 16 keypoints corresponding to salient facial features,
as depicted in Figure 3.

Fig. 3. The 16 annotated fiducial points.

2.1 Protocols

In our different scenarios, the specific task of face verifica-
tion is addressed: a client is claiming her/his identity and
supports this claim by providing an image of her/his face
(usually called a probe). The goal here is to decide whether
the claim is legit by comparing the probe image with a
previously enrolled model. In our framework, face verifi-
cation is made on still images. As a consequence, various
frames from different video sequences have been extracted,
depending on the task at hand. Experimental protocols are
provided for three different tasks corresponding to current
challenges in face recognition:

1) Frontal face verification across illumination condi-
tions: images for enrollment are in clean conditions,
whereas probe images contains low or arbitrary
(outdoor) illumination conditions.

2) Pose-varying face verification: images for enroll-
ment contains frontal faces, but probe images con-
tain faces at a different pitch or yaw.

3) Heterogeneous face verification: images for enroll-
ment comes from one domain (i.e. RGB), probe
images are taken from another domain (i.e. NIR).

For each protocol, and as it is a standard practice in
biometrics, the dataset has been divided into 3 distinct
subsets, each containing 25 identities: training, development
and evaluation. Special care has been taken to balance these
subsets with respect to gender and recording location. The
training set is used to build our prior knowledge of the
problem and is not involved in verification experiments per
se (i.e. no identities present in this set will be used as either
clients or zero-effort impostors). The various parameters
of the different algorithms and the decision threshold are
tuned on the development set, and the final assessment
is made on the evaluation set. This framework ensures an
unbiased assessment and is widely adopted in biometric
verification experiments [26] [27].

2.1.1 Frontal Face Verification

One aim of this dataset is to assess the performance of the
different modalities in unmatched, difficult lighting condi-
tions. As a result, three face verification protocols (for each
of the modalities) have been devised. In particular, exper-
iments reflect the fact that usually, images for enrollment
are recorded under controlled conditions whereas probe
images could be acquired in arbitrary conditions. The three
protocols use the same clean images for both training and
enrollment, but differ in probe images:

1) Matched controlled (MC): probes are taken in con-
trolled conditions.

2) Unmatched dark (UD): probes are taken in dark
conditions.

3) Unmatched outdoor (UO): probes are taken in out-
door conditions.

The first scenario aims at establishing a baseline for
face verification performance, and the two unmatched con-
ditions are used to assess the behaviour of the different
modalities - and of the different algorithms - in more re-
alistic conditions. A summary of these protocols is given
in Table 2. For each subject, 10 images containing a frontal
face have been extracted in each recorded video sequence.
Since two recordings with two different mounting of the
device have been acquired in each session, there is a total of
40 images per subject in each illumination condition. This
yield a training set of 1000 images (25 subjects in clean
conditions). Note that the number of probe images is halved
for the MC protocol, since half of the images have been used
for enrollment.
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TABLE 2
Summary of the different protocols for frontal face verification: ¢ stands
for controlled, d for dark and o for outdoor. The number of images per
subject is given in parenthesis.

Training Dev Eval
Enroll Probe Enroll Probe
MC c (40) c(200 c(20) c(20) c(20)
uD c (40) c(20) d@#40) c(20) d40)
uo c (40) c(20)0 o0(40) c(20) o (40)

21.2

To address the problem of pose-varying face verification,
images at different poses have been extracted and clustered
to build additional probe images sets. For training and
enrollment images however, the same set as in frontal face
verification experiments is used: it contains frontal face im-
ages only. Note also that protocols with mismatched probes
in terms of pose are performed under controlled conditions.

The different probe sets have been built by taking advan-
tage of annotated frames. In particular, the annotated frames
at the end of each movement and the one between the fully
frontal position have been used. This allow to extract a set
of images in each directions, and also to ensure that the face
is not too frontal. Then, images corresponding to rotation
in yaw and in pitch have been clustered together, yielding
two additional probe sets. An example of probe images with
variation in poses extracted from one sequence is given in
Figure 4. Note that since not all the subjects were moving
their head at the same speed, the number of extracted
images may vary in each sequence. Consequently, probe sets
with variations in yaw and pitch contain an average of 22.5
and 26.8 images per subject respectively.

Pose-varying Face Verification

2.1.3 Heterogeneous Face Verification

To address the problem of heterogeneous face recognition,
two major protocols were designed. The first one addresses
the task of matching RGB images to NIR images and the
second one addresses the task of matching RGB images to
depth maps. The same protocols as in Section 2.1.1 are used
here. The difference lies in the modalities present in each
set. The training set contains images from both source and
target domains: this is required in the training procedure of
the Domain Specific Units algorithm (see [25] for details).
Enrollment is then done using images coming from the
source domain (i.e. RGB) and probe images come from the
the target domain (i.e. either NIR or depth).

3 FACE RECOGNITION ALGORITHMS

This section presents face recognition algorithms used to
establish baselines for the various face verification scenarios
of the FARGO database. The different approaches have been
selected since their implementation are publicly available,
and they have been shown to achieve high recognition rates
under different scenarios [28] [29] [23] while being quite
different from each other. Two other approaches based on
deep neural networks have also been investigated, since
they have specifically been designed to handle particular
tasks. The DR-GAN [24] was made to handle pose-varying
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face recognition and Domain Specific Units [25] addresses
heterogeneous face recognition.

3.1 Gabor Grid Graphs

The Gabor Grid Graph (GGG) algorithm has been proposed
by Giinther et al. [20]. As its name suggests, it relies on the
Gabor wavelet transform and borrows ideas from the Elastic
Bunch Graph Matching algorithm [30]. Rather than having
an elastic graph, this algorithm computes the response of
40 Gabor wavelets (8 orientations and 5 scales) on points
located on a regular grid across the image. A set of Gabor
Jets, which can be viewed as local texture features, is then
formed by concatenating the 40 responses at each image
location defined by the grid. Two Gabor jets, at respective
locations J and J’, are compared using a similarity mea-
sure given by [20]:

a; —a

ST, TN =Y %Taf +cos(¢; — ¢ —kFd)| (1)
j J

Face verification is achieved by comparing Gabor Jets ex-

tracted from a gallery of templates and the given probe. The

similarities at each grid location are then averaged to reach a

final score. Note finally that this algorithm does not require

any training phase.

3.2

The aim of Inter-Session variability (ISV) is to learn a
generative model to describe the distribution of local fea-
tures extracted from the face image [21]. Local features
are obtained by considering overlapping blocks within the
image. Each block is mean and variance-normalized before
extracting the D lowest-frequency components of the 2D
Discrete Cosine Transform. As a result, the face image is
represented with a set of K feature vectors of dimension D:
O = {01, 09, ..., 0k }. In order to build models for each client,
a Universal Background Model (UBM) is first trained using
a training set comprising different identities. A mean super-
vector m is then built by simply concatenating the GMM
component means. To derive a specific client model ¢;, the
UBM super-vector is adapted in the following way:

Inter-Session Variability

C; :m+di (2)

where d; is an offset characterizing client ¢. Since client
images may contain significant variations (such as facial
expressions for instance), this within-class variability is also
embedded in ¢; and may result in a degradation of ver-
ification performance. The aim of ISV is hence to model
and suppress this within-class variability. The super-vector
corresponding to the enrollment image j of client ¢ is in this
case written as:

Mij =m+u,;;+d;, 3)

where the extra term u; ; represents the particular condition
of image j, and d; is now closer to the true client offset, from
which external variability has been removed. ISV assumes
that within-client variation is contained in a linear subspace
of the GMM mean super-vector:

u;; = Uz, j, 4)
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Fig. 4. Example of probe images for pose-varying face verification. First row contains variation in yaw, whereas second row shows variations in

pitch.

where U is the low-dimensional subspace containing
within-client variation, and x; j~AN(0,Z). Similarly, the
client-dependent offset, d;, can be expressed as:

di = Dzi 5 (5)

where D is a diagonal matrix derived from the diagonal
variances of the UBM, and z; ~ N(0,Z). Latent variables
x;; and z; are estimated during enrollment and the client
specific super-vector (i.e. the client model) is finally given
by:

c,=m+d; (6)

At verification time, this model is compared to the super-
vector extracted from the probe image to generate a score.

3.3 Deep Convolutional Neural Networks

Thanks to the explosion of available data and the constant
advancement in computing power, computer vision tasks
can nowadays fully benefit of deep learning approaches.
Within this framework, detection and recognition tasks
are typically performed using (deep) Convolutional Neural
Networks (CNN) [31], and such models have become the
de facto standard. State-of-the-art systems in face recognition
are no exceptions, and among the huge amount of CNN-
based approaches addressing this problem, one can men-
tion DeepFace [32], FaceNet [33], and VGG [29]. All these
models relies on massive datasets to be trained (up to 200
millions images for [33]) and training them from scratch is
not a trivial task. In our contribution, deep convolutional
networks are used as feature extractors to represent the
identity of a client. In particular, the output of a specific
layer in the network (an embedding) is used as a feature
vector. Classification is then performed using a nearest-
neighbour classifier with the cosine distance:

(] - [lyll

where 2 is a feature extracted from an enrollment image
and y a feature extracted from a probe image. To derive the
feature vector z, four different architectures are investigated
in this work: they are described in more details in the next
subsections.

d(z,y) =1 @)

331 VGG

The architecture of the VGG network originates from a very
deep network designed in the first place for object recogni-
tion [22]. It is very deep in the sense that it contains no less
than 13 convolutional layers, followed by 3 fully-connected
layers. It has a substantial amount of free parameters (138
millions) and was hence trained on a dataset containing
around 2.6 millions images. Fortunately, a pre-trained VGG
model has been made available to the research community
3. In our work, it is used both as-is and when fine-tuned on
the FARGO training data. The output of the second fully-
connected layer (FC7) is used as a feature to represent a face
image.

3.3.2 Light CNN

The Light CNN [23] is a lightweight Convolutional Neu-
ral Network introducing the so-called Max-Feature-Map
(MFM) operation. The benefits of MEM is twofold: it allows
to obtain a more compact representation while increasing
the robustness of the model by performing filter feature
selection. Furthermore, the authors trained the proposed
architecture using a semantic bootstrapping method to mit-
igate the effect of noisy labels present in large databases.
In this work, the architecture containing 29 layers has been
used, and the released pre-trained model* is again used both
as-is and with fine-tuning. Finally, it is worth mentioning
that this architecture has 10 times less parameters than
VGG and is 5 times faster, making it a more practical for
a deployment on mobile devices.

3.3.3 DR-GAN

The recently proposed DR-GAN model [24] is especially
dedicated to face recognition across pose, and relies on
Generative Adversarial Networks (GAN) [34]. In this frame-
work two networks compete against each other: a generator
tries to synthetize “fake” images to fool the discriminator,
and makes it believe that they are actually real. The DR-
GAN model proposes an encoder-decoder architecture for
the generator, which is able to synthetize a face image of

3. http:/ /www.robots.ox.ac.uk/~vgg/software/vgg_face/
4. https:/ / github.com/ AlfredXiangWu/Light CNN



JOURNAL OF IATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015

a given identity, and at a given pose. For this purpose, an
input face image « is first forwarded through a CNN (Gepc)
to encode the identity f(x). Then the encoded identity is
concatenated with a conditional pose ¢ and some input
noise z. Finally, this concatenated vector is given as input
to a neural network (Gge.) consisting in several layers of
deconvolution operations, which result in an image of the
same dimension of the input. Its architecture is depicted in
Figure 5.
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Fig. 5. Encoder-decoder architecture of the DR-GAN

To perform recognition, this model can be used either
to synthetize frontal face images as a pre-processing step to
any frontal face verification algorithm, or by directly using
pose-independent identity vectors f(z). In our work, the
latter approach has been used. The original DR-GAN model
can be freely downloaded®, and the results presented in
this contribution have been obtained with this pre-trained
model.

3.3.4 Domain Specific Units

The Domain Specific Units (DSU) algorithm has been pro-
posed in [25] for the task of Heterogeneous Face Recog-
nition. It hypothesizes that Deep Convolutional Neural
Networks high level features trained with RGB images are
domain independent. With that established, the task of face
recognition between different image domains (RGB to NIR,
RGB to thermograms, etc.) can be carried out by adapting
the low level features of the target domain only. High level
features (Domain Independent Feature Detectors) are hence
shared between all image modalities and the low level ones
are trained specifically for each image domain (see Figure 6)

Using two different base architectures and two different
methods to train such networks, the authors showed recog-
nition rates improvements in three different image domains
(RGB images to NIR, RGB to sketches and RGB to Thermal).
In this work, the best setup from [25] is used. The selected
architecture is the Inception ResNet v2 [33], which has
been pre-trained with grayscale images of the MSCeleb-1M
dataset [35]. The pre-trained model has been made available
for download °. Using this model as a prior, the Domain
Specific Units (i.e. the first 5 layers) are trained using the
Siamese Neural Network method with the training set of the
FARGO database with both source and target modalities. In
this case, pairs of face images are processed: the image from

5. http://cvlab.cse.msu.edu/project-dr-gan. html
6. https:/ /gitlab.idiap.ch/bob/bob.bio.face_ongoing
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the source domain is forwarded to the main network, and
the image form the target domain is first forwarded through
its own few first layers, and then to the remaining layers of
the main network (which is shared among different image
modalities). The error £(6s, 0;) is then backpropagated, and
only the modality specific layers are updated. Figure 7
shows the DSU training procedure.
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Fig. 7. Siamese Neural Networks training: pairs of images from both the
source (zs) and the target (xz:) domains are forwarded. Only the first
layers (blue box), specific to the target modality, are udapted after error
backpropagation.
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4 EXPERIMENTS & RESULTS

In this section, experimental results are presented for a vari-
ety of scenarios and tasks. First, performance measures are
defined before proceeding with experiments on frontal face
verification in different illumination conditions. Different
fusion experiments - on both algorithms and modalities - are
then shown to improve verification performance. Baselines
for face verification across pose are then presented, and
the section ends with experiments on heterogeneous face
verification.

4.1

As required by ISO standard [36], the performance of a
biometric verification system should be reported in terms of
False Match Rate (FMR) and False Non-Match Rate (FNMR).
The FMR is defined as the expected probability that a zero-
effort impostor sample will be falsely declared to match a
enrolled client template. Mathematically, the FMR is com-
puted as:

Performance Measures

FMR — # of accepted impostor accesses

®)

# of impostor accesses
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Conversely, the FMNR is defined as the expected probability
that a client sample will be falsely declared not to match its
enrolled template. Mathematically, the FNMR is computed

as:
FNMR — # of rejected client accesses

9
# of client accesses ©)

Since both the FMR and the FNMR depends on a threshold
7, they are strongly related to each other: increasing the
FMR will reduce the FNMR and vice-versa. For this reason,
verification results are often presented using either Receiver
Operating Characteristic (ROC) or Detection-Error Tradeoff
(DET) curves, which basically plot the FMR versus the
FNMR for different thresholds [37]. In this contribution,
and to provide a single measure, the FNMR at FMR =
1% is reported. Note however that in following Tables,
both FNMR and FMR are reported on the evaluation set:
the threshold reaching a FMR of 1% is selected a priori on
the development set. As a consequence, applying the same
threshold on the evaluation set usually leads to a FMR close
to 1%, but with some variations.

4.2 Face Verification Under Difficult lllumination

In this section, experiments on frontal face verification with
strong mismatch in terms of illumination conditions are
presented. Experiments have been performed for all the
protocols defined in Section 2.1.1 and on each modality.
This allows to (i) assess baseline results for each of the al-
gorithms and (ii) quantify their performance in mismatched
conditions. Furthermore, since images and protocols are the
same across the different data streams, the differences across
modalities can be easily compared and discussed.

4.2.1 Preprocessing

In all experiments, the face is first located using a detector
based on a boosted cascade of LBP features [38]. For both
the Gabor Grid Graph and ISV algorithms, registered faces
are cropped, converted to grayscale and resized to 84x60
pixels. Face images are photometrically preprocessed using
LBP normalization [39] in the case of GGG, or with the
Tan-Triggs algorithm [40] in the case of ISV. For VGG,
face images have been cropped and resized according to
the requirements of the model (224x224). In the case of
LightCNN, face images were cropped, resized to 128x128
and converted to grayscale. Other than that, all algorithms
are used with their default parameters. Note that the ISV
background model has been trained using FARGO data
only, in contrast to the pre-trained CNN models (VGG and
LightCNN), which have been pre-trained on various large-
scale databases. Note finally that GGG does not require any
training phase.

4.2.2 Evaluation in the visual spectrum

Table 3 presents results obtained on RGB images. Note that
for approaches relying on deep neural networks (i.e. VGG
and LightCNN), results are presented with both the released
pre-trained model and also with the model fine-tuned using
FARGO training data, containing clean conditions only. As
expected, all algorithms in the Matched Controlled (MC)
protocol present low error rates. Indeed, in this case, images
used for enrollment and for probes are very similar to each
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other. A notable exception is the pre-trained LightCNN: this
suggests that the databases used for training this model may
be very different from ours.

TABLE 3
FMR and FMNR [%] on the evaluation sets in the visual (RGB)
spectrum.
MC UD Uo
FMR FNMR FMR FNMR FMR FNMR
GGG 1.6 5.2 25 70.0 0.8 69.3
Isv 0.6 2.4 21 57.7 0.8 59.2
VGG 0.1 52 0.8 72.0 0.8 45.7
VGG (ft) 52 5.0 1.7 88.7 0.9 85.2
LCNN 0.9 66.4 0.0 100.0 0.6 96.3
LCNN (ft) 0.3 0.4 6.3 80.4 1.7 38.0

When considering the more challenging UD protocol,
where probe images are acquired in a very dark room,
one can observe a dramatic drop in performance of all
algorithms, as expected. An interesting result though,
is that ISV is performing better than all deep learning
approaches, despite the fact that it has been trained on clean
FARGO data only. This may be explained by the ability
of the ISV algorithm to properly capture - and suppress
to some extent - the within-class variability. However,
performance in this case remains far from being acceptable:
with a FNMR of 57.7%, a legitimate client has a higher
chance to be rejected than to be accepted. Although such
conditions may seem extreme (see Figure 2), it may happen
in a real-life scenario: think of a person willing to unlock
his smartphone in a basement for instance. On the UO
protocol, the fine-tuned LightCNN model achieves the best
performance with a FMNR of 38%. This can be explained by
the fact that this model has been pre-trained on a very large
database, which likely contains outdoor conditions. While
results on the UO protocol are generally better than in dark
conditions, they could not be considered as satisfactory
either.

It is also worth noting the different behavior in both
CNN models: VGG usually reaches better performance
when it is not fine-tuned while the opposite is observed
for LightCNN. This may be due to the large number of
parameters in VGG, in conjunction with the small amount of
training data to perform the fine-tuning. This may lead to an
overfitting to the (clean) training conditions of the FARGO
database. On the other hand, since LightCNN contains
fewer parameters, this phenomenon is not observed and
results are significantly better when the model is fine-tuned.
Note that this observation contradicts the claim in [23],
where authors declare that “Light CNN achieves state-of-
the-art results on five face benchmarks without supervised
fine-tuning”. This also suggests that the proposed database
contains conditions that are not present in traditionally
used large face databases, typically collected from the web.
Overall, this first experiment shows that face recognition in
unconstrained environment is still a current issue, at least
with conventional imaging methods.
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4.2.3 Evaluation in the near-infrared spectrum

In this section, the same experiments as before, but on
the Near-Infrared (NIR) spectrum are presented. Note that
here, the FARGO training data contains NIR images. As a
consequence, the fine-tuning of the CNNs has been made
using this modality.

TABLE 4
FMR and FMNR [%)] on the evaluation sets in the near-infrared (NIR)
spectrum.
MC UD uo
FMR FNMR FMR FNMR FMR FNMR
GGG 14 14.0 1.8 15.1 0.9 80.9
ISV 1.0 1.2 0.8 3.0 04 62.1
VGG 1.2 29.4 1.6 24.5 1.2 62.3
VGG (ft) 9.8 13.2 0.5 69.1 0.7 90.4
LCNN 0.6 92.2 0.6 96.4 0.2 99.0
LCNN (ft) 0.5 0.2 0.5 1.6 0.5 26.0

Table 4 shows the performance using near-infrared im-
ages. As in the previous case, the fine-tuned LightCNN
model reaches the best performance on the MC protocol,
and the FNMR is even lower (0.2%) than with color images,
again suggesting than fine-tuning is effective for this model.
An interesting, although expected, observation is that NIR
images drastically improves the performance in the case of
very low-light condition, and this is the case for all algo-
rithms. However, when considering images taken outdoors,
all algorithms but the fine-tuned LightCNN perform worse
than on RGB images. Indeed, NIR imaging has issue to
properly deal with such conditions, and does not provide
good quality images. This may be due to the stronger near-
infrared components contained in sunlight [41].

4.2.4 Evaluation on depth maps

Since methods devised for traditional two-dimensional
face verification have already been applied directly to
depth maps (see [42] for instance), and for the sake of
completeness, results of our baseline algorithms applied
on depth images are provided here as well. Note that in
this case, no special preprocessing has been applied to the
face image: photometric normalization is not applicable on
depth maps. For registration, we used the detection results
obtained from the face detector on NIR images, since these
streams are both temporally and spatially aligned.

TABLE 5
FMR and FMNR [%] on the evaluation sets on depth maps.

MC UD uo

FMR FNMR FMR FNMR FMR FNMR
GGG 0.9 35.2 1.2 452 0.2 92.7
ISV 0.4 30.0 0.6 53.8 0.9 92.0
VGG 0.2 94.0 0.1 96.6 1.2 96.9
VGG (ft) 15.3 36.4 0.4 92.9 22 95.1
LCNN 0.5 97.4 0.4 98.1 0.3 99.4
LCNN (ft) 0.3 79.8 0.2 76.0 0.4 98.1

Table 5 presents results obtained using depth data. While
good performance was not expected using only such data,

8

the UD protocol provides an interesting insight for GGG
and ISV. In the case of dark conditions, and despite the
coarseness of depth data, better performance is observed
using this modality as compared to RGB images. This could
be explained by the fact that both of these algorithm are
acting on depth data only - as opposed to CNN approaches,
where pre-trained models on RGB images have been used.
In outdoor conditions however, depth data proves to be
useless: good quality depth information is hard to obtain
and hence contain many holes, for the same interference
reasons as with NIR.

4.2.5 Fusion

Since different algorithms and different modalities are avail-
able, the usage of score fusion is presented here. Fusion can
help face verification performance, and in our case, it makes
sense to investigate this strategy from two aspects:

1) From the algorithms point of view: since the algo-
rithms used in this work are very different from
each other, they might be complementary. Some al-
gorithms can fail in certain conditions where others
would be successful.

2)  From the modality point of view: different modalities
are available and as a consequence, one should
consider fusing verification results obtained with
each of them. Indeed, NIR images in dark conditions
are obviously a useful complement to RGB images
acquired in the same condition for instance.

Investigating all possible combinations between
algorithms and modalities fusion is beyond the scope of
this contribution. Experiments have hence been performed
using three algorithms in the same modality, and the
same algorithm was used across different modalities. In
particular, we did not consider fusing different algorithms
in different modalities (i.e. VGG in RGB fused with ISV in
NIR for instance). In our work, scores were fused using an
approach based on logistic regression; scores from different
systems are combined into a new feature vector, which is
then classified as either coming from the true client, or being
an impostor. This approach has already been successfully
applied in biometric verification [43].

Algorithm Fusion: Figure 8 shows DET curves on
the evaluation sets for the different protocols. Here we
report result when fusing GGG, ISV and LCNN(ft). These
algorithms have been selected since they are very different
from each other, hence having a better chance to be
complementary. Also, LCNN(ft) has been chosen since it it
the best performing CNN. The first row of Figure 8 shows
results of algorithms fusion in RGB and the second row in
NIR.

As can be observed on the curves in Figure 8, fusing the
algorithms generally yields better performance than any of
the algorithms alone for each condition and in each modality.
This shows that these three algorithms are complementary
to each other: one may fail on certain probe images,
where others will be successful. However, the increase
in performance improvement is not significant in the
visual spectrum. On the other hand, fusing the different
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algorithms in NIR is more effective and performance is
improved in all three protocols, with FNMRs going from
0.2% to 0.0%, from 1.6% to 1.0%, and from 26.0% to 14.4%
for the MC, UD and UO protocol respectively.

Modalities Fusion: Figure 9 shows DET curves on the
evaluation sets when fusing modalities. Note that here we
only provide results for the LCNN(ft) algorithm, since it
has been applied on the three modalities, and presents
the lowest error rates on average. Note in this case that
performance obtained with fusion does not necessarily
improve the result, and when it does, the increase in
performance is quite marginal. There are, in our opinion,
two main explanations for this behaviour: results obtained
with depth data may be more confusing than useful, and
actually penalise the fusion. Second, it is clear that NIR
imaging can cope with low lighting conditions, and again,
other modalities are not helping in this particular case.
However in the UO protocol, fusing the different modalities
helps at achieving better performance, suggesting that RGB
and NIR modalities carry complementary information.

4.3 Face Verification Across Pose

In this section, experiments for face verification in different
pose conditions are presented. Experiments are performed
for two different pose variations, namely pitch and yaw.
Basically, the same settings have been used here as in
Section 4.2 on frontal face verification (i.e. preprocessing
and default parameters). Additionally, results are also pro-
vided for a state-of-the-art model especially dedicated to
face recognition across pose: the so-called DR-GAN [24].
Experiments have been performed using RGB data only and
error rates are presented in Table 6.

TABLE 6
FMR and FMNR [%] on the evaluation sets for pose-varying face
verification in the visual spectrum.

Yaw Pitch

FMR FNMR FMR FNMR
GGG 0.6 80.4 0.8 51.4
ISV 1.1 447 1.0 37.4
VGG 0.4 47.0 0.8 39.6
VGG (ft) 0.6 82.8 14 64.2
LCNN 1.1 83.7 1.1 84.0
LCNN (ft) 1.1 21.0 1.0 18.5
DR-GAN 0.2 57.0 0.2 55.3

Generally, the error rates of the investigated baseline
algorithms are not so low, with best FNMRs of 21% and
18.5% for yaw and pitch respectively. From these results,
it can be seen that rotations in yaw are more difficult to
address than rotations in pitch. This is probably due to
the self-occlusion caused by large rotation in yaw, which
are not as important with pitch. A surprising result is the
poor performance obtained by the DR-GAN model, which
is especially tailored for pose-varying face recognition, and
has been trained on a two databases containing face images
with various rotations: CASIA WebFace [44] and AFLW [45].
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This is in contrast to ISV, where frontal images only have been
seen during both training and enrollment, and for which
performance is significantly better.

4.4 Heterogeneous Face Verification

In this section, experiments on heterogeneous face verifica-
tion (HFR) are presented. Experiments have been performed
on the MC, UD and UO protocols. In this case, unlike ex-
periments with single modalities of Section 4.2, the training
set now contains images from both the source and target
domain, to be used in the Siamese training approach (see
Figure 7). Besides, images used for enrollment are coming
from the source domain (i.e. RGB), whereas probes come
from the target domain (i.e. NIR or depth). Here, we are
interested in (i) assessing the behaviour of the selected CNN
in transfer learning between image domains, and (ii) in
quantifying the benefits of using Domain Specific Units
adaptation.

4.4.1 RGBto NIR

Table 7 presents FMR and FNMR obtained on the evaluation
set for the protocols defined in Section 2.1.1. One can see
that without adaptation (first line), performance is generally
worse than the one obtained when considering NIR images
for both enrollment and probe presented in Section 4.2.3
(see Table 4). However, when the CNN is adapted to ac-
count for the target modality, performance is significantly
improved. In the challenging UO protocol, the FNMR goes
down to 8.5%, despite the fact that enrollment and probe
images come from different modalities. This suggests that
(i) Domain Specific Units adaptation is of great help, and
that (ii) the selected architecture (Inception ResNet v2) in
conjunction with the Siamese training approach is very
effective: indeed, this is the best performance achieved so
far in outdoor conditions.

TABLE 7
FMR and FMNR [%] on the evaluation sets using RGB images for
enroliment and NIR images for probes.

MC UD uo
FMR FNMR FMR FNMR FMR FNMR
No adapt. 1.4 9.8 1.9 227 0.8 257
DSU 0.8 1.0 1.0 4.7 11 8.5

4.4.2 RGB to depth

Table 8 presents the two possible error rates (FMR and
FNMR) using the RGB to depth data in the evaluation set.
One can notice that performance using depth information
as probes is quite low, whether or not Domain Specific
Units adaptation is performed. These results are similar to
those presented in Table 5: it shows that applying CNNs
pre-trained with images in the visual spectrum are not
able to properly deal with depth data. In this case, using
Domain Specific Units adaptation does not guarantee an
improvement in performance - on the contrary to the RGB
to NIR case. Again, it stresses that the task of recognizing
people using low-quality depth maps as probes (with a
gallery of RGB images) is a very challenging task: none
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Fig. 8. DET curves of different algorithms and their fusion on the evaluation sets for frontal face verification protocols. The first row presents results
obtained in the visual spectrum, and the second row shows results on the near-infrared spectrum.
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Fig. 9. DET curves of different modalities and their fusion on the evaluation sets for frontal face verification protocols. DET curves have been

obtained with the fine-tuned LightCNN algorithm.

of the models (without and with DSU adaption) presents
FNMR lower than 90%.

TABLE 8
FMR and FMNR [%] on the evaluation sets using RGB images for
enroliment and depth maps for probes.

MC UD uo
FMR FNMR FMR FNMR FMR FNMR
No adapt. 8.1 91.2 7.4 93.8 5.8 92.8
DSU 1.2 95.8 3.4 90.5 3.2 97.3

4.5 Discussion

In this section, a discussion of obtained results is made. It
highlights successes, but also examines current challenges
by providing qualitative results: misclassified face images
in various scenarios are provided to illustrate limitations.

Experiments conducted on frontal face verification pro-
vide several insights. First, it should be noted that when
images used for enrollment and for probes are acquired
in clean illumination conditions, performance of current
approaches are satisfactory, and such a problem can be con-
sidered as solved. However, when illumination conditions
differs, the performance is not acceptable for a real-world,
day to day usage. However, Table 4 shows that near-infrared
(NIR) imaging can mitigate the case of dark environmen-
tal conditions. Figure 10 provides an example where the
best approach in the visual domain for this protocol (ISV)
fails, but successfully authenticate the subject in NIR. As
a consequence, using the near-infrared spectrum on dark
images reaches performance on par with clean conditions.
However, images acquired outdoor with natural lighting
remain a challenge, both in the visual spectrum and using
NIR information. Figure 11 presents examples where the
fine-tuned LightCNN model fails at recognizing people in
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outdoor condition. The difference between the first row
(enrollment image) and the second row (probe) is certainly
noticeable, but not so severe - for instance, a human may
not be fooled by such variations. It should also be noted that
face detection has an influence on the overall performance.
Indeed, our face detector returns the best face candidate in
each image, and hence may contain approximative detec-
tions. Note finally that the captured depth maps are not of
sufficient quality to be reliably used for face verification.
This is most likely because subjects were not constrained to
remain still at an optimal distance. However, it may provide
valuable information when used in conjunction with other
modalities.

(a) (b)

Fig. 10. Examples where RGB fails (a), but NIR succeeds (b).

Fig. 11. Example of enroliment images (first row) and probes leading to
a false non match (second row).

Score fusion, whether between algorithms or modalities,
can help to some extent, and improves performance in all
investigated scenarios. But the gap considering the MC
protocol as a reference is still substantial. Nevertheless,
score fusion has not been thoroughly addressed in this
study and further investigation may reveal significant
improvement. Also, using different sources of information,
for frontalizing faces or for fusing different features are
directions worth exploring, see [46] and [47] for examples.

Regarding face recognition across pose, conducted
experiments showed that all investigated algorithms still
have trouble to reach low error rates. Figure 12 shows
examples of False Non Match declared by the fine-tuned
LightCNN: it should be noted that these images show
faces with little pose distortion, where all facial features are
visible. This shows that even moderate variations can be
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source of confusion.

[

Fig. 12. Examples of probe images leading to a False Non Match.

Finally, experiments performed in the context of het-
erogeneous face verification obtained the best results on
the difficult outdoor conditions. This is certainly due to
the usage of a state-of-the-art deep neural networks with
a particularly well-suited training mechanism (i.e. Inception
ResNet v2 with Siamese training). Indeed, when applying
this architecture directly to NIR images without adaptation,
performance on the UO protocol is already on par with
LCNN(ft) in the same settings. Further, Domain Specific
Units adaptation leads to even better results, with an FNMR
of 8.5%.

As a consequence, and to fully assess this promising
model, further experiments have been conducted using the
Inception ResNet v2 with images in the visual spectrum, on
the different scenarios defined in Sections 2.1.1 and 2.1.2. In
this case, the fine-tuning was done using the Siamese net-
work approach and the training set of the FARGO database,
containing clean and frontal RGB face images only (i.e.
the model was not adapted for other modalities as done
in Section 4.4). Obtained results for face verification under
difficult illumination conditions and for varying poses are
presented in Table 9 and Table 10: they should be compared
to Table 3 and Table 6 respectively.

TABLE 9
FMR and FMNR [%] for face verification under difficult illumination,
using the Inception ResNet v2 model.

MC UD Uo
FMR FNMR FMR FNMR FMR FNMR
ResNet v2 1.6 0.0 2.9 17.3 14 6.5
TABLE 10

FMR and FMNR [%] for pose-varying face verification, using the
Inception ResNet v2 model.

Yaw Pitch
FMR FNMR FMR FNMR
ResNet v2 1.6 4.2 1.5 2.7

This state-of-the-art model obtain substantially lower
error rates, as compared to the baseline algorithms used
earlier. Indeed, for comparable FMR, the FNMR is reduced
from 57.7 % to 17.3% for the UD protocol, and from 45.7%
to 6.5% for the UO protocol. An even better improvement
is observed for pose-varying face verification, going from
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an FNMR of 47.0% to 4.2% and from 39.6% to 2.7% for
variations in yaw and pitch respectively.

5 CONCLUSION

This contribution introduced a new face database,
consisting in video sequences captured using latest
imaging devices and comprising several modalities: RGB,
NIR and depth maps. Data have been acquired in various,
difficult illumination conditions and with varying pose
as well, allowing to address current challenges in face
recognition. Several experimental protocols have been
proposed, and baselines results using publicly available
algorithms have been presented. Our experiments show
that strong illumination mismatch and pose variation
are still challenging issues for existing face recognition
approaches, including fine-tuned deep neural networks. As
expected, dark illumination conditions can be mitigated by
using data captured in the Near-Infrared spectrum. Also,
score fusion, whether across different modalities or across
different face recognition approaches, has been shown to
improve performance. Finally, the task of heterogeneous
face verification has been addressed using a state-of-the-art
model based on the Inception ResNet v2 and significant
improvements have been attained. This is especially true
for the task of RGB to NIR. On the contrary, this model
was not able to perform well in the RGB to depth settings.
Considering the good performance obtained by this model,
it has also been applied to the aforementioned tasks (face
verification under difficult illumination and with pose
variation) and significantly surpassed all the baselines.

It is our hope that this new dataset will help the research
community to address the identified challenges in face
recognition, but also enable various research endeavours in
face recognition and related tasks. Indeed, in complement to
face recognition, the proposed dataset allows to explore the
combination of several modalities in a wide variety of tasks
such as facial feature localization and tracking, facial ani-
mation, or head pose estimation for instance. Furthermore,
the recent introduction of advanced imaging capabilities in
latest consumer-grade devices (i.e. the iPhone X) makes this
dataset particularly interesting for research purposes. Note
finally that the data and the code to reproduce presented
experiments has been made freely available, and could be
easily extended.
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