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ABSTRACT

In this paper, we introduce a novel approach for Language
Identification (LID). Two commonly used state-of-the-art
methods based on UBM/GMM I-vector technique, com-
bined with a back-end classifier, are first evaluated. The
differential factor between these two methods is the de-
ployment of input features to train the UBM/GMM models:
conventional MFCCs, or deep Bottleneck Features (BNF)
extracted from a neural network. Analogous to successful
algorithms developed for speaker recognition tasks, this pa-
per proposes to train the BNF classifier directly on language
targets rather than using conventional phone targets (i.e. in-
ternational phone alphabet). We show that the proposed
approach reduces the number of targets by 96% when tested
on 4 languages of SpeechDat databases, which leads to 94%
reduction in training time (i.e. to train BNF classifier). We
achieve in average, relative improvement of approximately
35% in terms of cost average Cavg , as well as language error
rates (LER), across all test duration conditions.

Index Terms— BNF, LID, Language targets, Deep neural
network

1. INTRODUCTION

Language Identification (LID) is the task of automatically
recognizing the language that is being spoken. This task
can be carried out using different levels of language rep-
resentations, whether it can be phones, words, or universal
speech features. In the early 1990s, phonotactic models had
been proposed, exploiting phone-based acoustic likelihood
ratios [1] to identify the language. In the recent years, many
acoustic approaches have been proposed, or borrowed espe-
cially from Speaker Recognition (SR), often based on Uni-
versal Background Model (UBM)/Gaussian Mixture Model
(GMM) framework [2]. One of the best performing LID,
established today as one of a baseline systems, is based on
UBM/GMM I-vector approach [3, 4, 5]. Nonetheless, the
growth in available computational power has shifted the fo-
cus, in language identification domain as well, towards neural
networks based approaches.

In automatic speech recognition, neural networks have
become a widely used technique rapidly expanding to other
fields of speech processing. Proposed bottleneck features (i.e.
BNF vectors) [6] extracted from a narrow layer of neural net-
work have shown to convey information about phonetic con-
tent in a non-linearly compressed form, which can be directly
used as features for GMM modelling. In LID, this approach
has shown a remarkable improvement over UBM/GMM I-
vector, proposing a linear bottleneck (i.e. phone embedding)
layer produced by Deep Neural Networks (DNNs) [7, 8, 9].
DNNs were trained on phone targets using a small hidden
layer representing a phone-embedding (i.e. BNFs). In [9], au-
thors have shown that BNFs when employed as an input to a
UBM/GMM i-vector based system, significantly outperform
conventional MFCCs on NIST LRE 2007 task [10]. Long
Short Term Memory (LSTM) networks were also proposed
to take better advantage of the temporal information incorpo-
rated in a speech segment [11]. In SR, the aforementioned ap-
proach was later adapted by inserting a temporal pooling layer
into the network to handle variable-length segments [12].

Inspired by previous work in the LID and SR domains,
this paper proposes to extract embedding vectors from a DNN
directly trained on language-targets. More specifically we in-
vestigate building an embeddings space which can incorpo-
rate more information for each language. We hypothesize that
extracting BNFs by using phone-embeddings is a sub-optimal
approach in language identification. Instead, we presume that
the extracted language-embeddings will be more representa-
tive for LID task. In practice, when building a DNN to extract
bottleneck features, phone targets are replaced by language
targets. Additionally. replacing the phone-targets at the out-
put of DNN by language-targets brings a significant reduction
in training time.

The remaining of this paper is organized as follows: Sec-
tion 2 presents related work in language identification, to-
gether with the baseline LID systems considered in this pa-
per. Section 3 presents the proposed work, while Section 4
describes our experimental setup. The results are discussed in
Section 5 and conclusions are given in Section 6.
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Fig. 1. UBM/GMML-IV-LR system for language identification. UBM, I-vector extractor and back-end classifier (e.g. logistic
regression) are data-driven blocks.

2. RELATED WORK

The traditional architecture applied in the LID task is shown
in Figure 1. First, statistics from the input speech features are
extracted at a frame-level. A DNN is then trained to extract
phoneme-embeddings [7], [8], [9]. The embedding vectors
estimated at the frame-level are then projected on an acoustic
space to train a UBM/GMM model. An I-vector extractor is
then trained to extract the relevant information from speech
(i.e. projecting a variable-length speech to a fixed low dimen-
sional vector). The low dimensional I-vectors are finally fed
to a back-end classifier to detect the language.

2.1. BNF extraction

Bottleneck features (BNF) trained in the following discrim-
inative framework are used to represent the acoustic space
of speech. A DNN model is used, employing seven hid-
den layers, trained using conventional MFCC features. The
DNN is trained to discriminate the phone targets as this is the
case in acoustic modelling in Automatic Speech Recognition
(ASR) tasks. The weights of the compressed hidden layer
of the DNN are considered as phone embedding representa-
tions, which are estimated at a frame-level and further applied
to train a UBM/GMM model. The architecture of the DNN is
shown in Figure 2.

2.2. UBM/GMM

A UBM is built using the input features to represent the acous-
tic space of the speech [2]. The UBM is represented by a
large number of Gaussian mixtures. It is expected to cover
the acoustic space across all languages, if sufficient amount
of training data is used.

2.3. I-vector extractor

The I-vector or total variability space approach is a technique
borrowed from the speaker recognition field [5]. It consists
of a mapping of a sequence of frames of speech into a low-
dimensional vector space, i.e., the total variability space. The
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Fig. 2. DNN architecture to extract embedding (BNF) vec-
tors. The neural net is trained on phone targets, thus extract-
ing low dimensional phone embeddings.
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Fig. 3. Proposed DNN architecture used to extract embed-
ding (BNF) vectors. Here, the network is trained on language
targets to output a language embedding allowing the network
to discriminate among languages directly.



Fig. 4. Languages’ manifolds in the phone space.

Language hours utterances

German 30.11 108’422
French 25.45 91’612
Italian 17.25 62’127
English 22.64 81’534
Total 93 343’695

Table 1. Language dataset sizes.

motivation for the use of I-vectors in speech is to convey
speech information of variable length into a fixed-length fea-
ture vector. Unlike joint factor analysis [13], the I-vector ap-
proach models all important variability (language, speaker,
channel, etc.) in the same fixed dimensional space.

2.4. Language identification

Most of the related work in LID has focused on extracting
features representative of the language fed to a back-end
LID classifier to predict the spoken language. Since LID is
a closed-set classification task (i.e. with limited number of
classes), there is no need to apply Probabilistic Linear Dis-
criminant Analysis (PLDA) [3], often implemented in SR for
its inter-class distribution modeling. In [3], Martinez et al.
experimented with Support Vector Machines (SVMs) and Lo-
gistic Regression (LR) as back-end language classifiers. The
results of their experiments led to an optimal performance
using LR. LR is deployed in this work as well.

We will consider two different baseline front-ends in this
work:

• UBM/GMM-IV-LR - UBM/GMM I-vector model de-
veloped using MFCC features, followed by the logistic
regression back-end.

• UBM/GMMP -IV-LR - hybrid UBM/GMM I-vector
model considering embedding (BNF) vectors extracted
using phone-based DNN, followed by the logistic re-
gression back-end.
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Fig. 5. Utterance duration distribution per language.

3. PROPOSED DNN EMBEDDINGS

In this paper, we hypothesize that DNN embeddings can be
more relevant for language discrimination if they are trained
on language targets rather than trained on phone targets. This
paper therefore proposes an architecture to train the LID
front-end while reducing the number of target classes (i.e.
equal to the number of considered languages). We denote this
technique as UBM/GMML-IV-LR, replacing phone targets
of the DNN by language targets, as shown in Figure 3. Fol-
lowing the second baseline principle of BNFs, our method
proposes a critical reduction in the number of training targets.
Keeping training costs in mind, we built our method in such a
way that 21 stacked MFCC frames will lead to 1 BNF (i.e. by
segmenting speech and zero padding if necessary). Assuming
13 dimensional MFCCs and 80 dimensional embedding lay-
ers, the DNN front-end can be seen as a function Y = F (X),
where Y is an output matrix of size (N/21, 80) and an input
matrix X of the size (N, 13). N is the number of frames of
the speech segment. This frame sub-sampling leads to a faster
training of the UBM. Not only should the embeddings hold
more language information but the neural network training
itself is significantly faster.

4. EXPERIMENTS

During the development, we used two GPU GTX 1080 TI
with 12 Intel cores I7 Xseries. The implementation of the
models was done using Kaldi1 toolkit. For training and test-
ing, we used respectively 50 K and 10 K utterances from
each language which resulted in a training set of 200 K and
a testing set of 40 K utterances. Input speech was character-
ized by 13 dimensional MFCCs with a frame rate of 10 ms,
applying 25 ms hamming windows. Voice Activity Detec-
tion (VAD) was applied after MFCC feature extraction to
remove non-speech frames. Both MFCC and VAD mod-
ules were borrowed from Kaldi [14]. UBM/GMM-IV-LR,

1http://kaldi-asr.org/doc/



Model Cavg LER in %
utterance-length avg < 3 s [3, 10] s > 10 s avg < 3 s [3, 10] s > 10 s

UBM/GMM-IV-LR 2.40 4.33 1.43 1.29 3.60 8.45 1.84 0.87
UBM/GMMP -IV-LR 1.38 1.72 1.34 1.55 2.09 2.80 1.82 1.46
UBM/GMML-IV-LR 0.90 1.30 0.72 0.71 1.36 2.47 0.96 0.72

Table 2. LID performance for 3 different utterance-length conditions, and the average performance overall data.

UBM/GMMP -IV-LR and UBM/GMML-IV-LR were built
with a 1’024 UBM/GMM and 400 dimensional I-vectors.
I-vector extractors were trained with 5 iterations using the
Kaldi routine from “lre07” example. DNNs were trained
with a learning rate of 10−4, patches of size 64 were used.
DNNs were trained with cross-entropy loss and the Adam
Optimizer.

The “Speechdat” datasets [15] are telephone recordings
from both fixed and mobile networks. Each dataset holds
the same amount of male and female speakers. The datasets
have a vast coverage of speaking styles (e.g., short commands,
carefully pronounced speech, spontaneous speech). The au-
dio files are recorded in A-law, 16 bit, 8 kHz format.

The languages used in this work are German, Swiss-
French, Italian and British-English. Table 1 presents the
amount of data points (utterances) we have used for each lan-
guage as well as the total hours of speech. In order to build the
UBM-GMMP -IV-LR baseline, an ASR system was initially
developed to obtain a phone alignment, further used to train
the phone-DNN front-end. For each language dataset, minor
modifications were made to the universal Speech Assessment
Method Phonetic Alphabet (SAMPA2) dictionary. A diagram
shown in Figure 4 presents the language manifolds in the
phone space resulting in 102 classes. The figure reveals that
phone classes are not the most language discriminative units
to identify the language.

Figure 5 shows the utterance duration distribution of each
language set. Class distributions are unbalanced within the
3 speech duration groups, used to evaluate LID systems (i.e.
inferior to 3 s, between 3 s and 10 s, superior to 10 s). Keep-
ing the goal to detect the spoken language in real-time, the
SpeechDat appears to be an appropriate corpus, as recordings
are mostly represented by short utterances.

We apply several performance metrics in this paper. First,
Language Error Rate (LER) is computed for each language
(i.e. specifically for all 3 speech duration groups, as well as
the overall LER). Then we apply the Cost average (Cavg),
suggested by the NIST evaluation plan [10]. Finally, we also
present the training time for each model.

2https://www.phon.ucl.ac.uk/home/sampa/

Model Total in hours Total
TotalBaseline

UBM/GMM-IV-LR 63.75 100%
UBM/GMMP -IV-LR 183.75 288%
UBM/GMML-IV-LR 70.35 110%

Table 3. Systems’ training time comparison.

5. RESULTS

Overall, the proposed model UBM/GMML-IV-LR outper-
forms the UBM/GMM-IV-LR and UBM/GMMP -IV-LR
baselines in terms of LER and Cavg and UBM/GMMP -IV-
LR in terms of the computational load. Table 2 shows the
detailed performance of the evaluated models in terms of
Cavg and LER. As can be seen, significantly better scores are
achieved in terms of Cavg and LER for all 3 utterance-length
conditions.

5.1. Computational costs

Table 3 shows the computational costs required to train the
LID front-ends (i.e. in hours). Obviously, UBM/GMM-IV-
LR is the most efficient model since no bottleneck features
are extracted on top of MFCCs. Nevertheless, UBM/GMML-
IV-LR requires only 10% more time while LER is reduced by
half. UBM/GMML-IV-LR is lighter than UBM/GMMP -IV-
LR because the DNN is trained solely on four targets rather
than 102 phone targets. The 96% reduction of the number
of DNN targets in UBM/GMML-IV-LR led to a reduction
in training time by 94%, compared to UBM/GMMP -IV-LR
baseline.

6. CONCLUSION

This paper investigates fully adapted embeddings spaces
for language identification. We hypothesised that extract-
ing BNFs by using phone-embeddings was a sub-optimal
approach. Instead, we presumed the extracted language-
embeddings would be more representative for the LID.
The results of our experiment validated our hypothesis, as
language-DNN front-end significantly increases the LID per-
formance as well as is less computationally expensive. In
average, 35% relative reduction in both Cavg and LER is
achieved across all 3 utterance-length conditions.
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