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Abstract: Although current trends in speech      
processing consider deep learning through     
data-driven technologies, many potential    
applications exhibit lack of training or development       
data. Therefore, considerably light signal     
processing techniques are still of interest. This       
paper describes an efficient technique for      
decomposing the AM and FM components of the        
speech signal, which is not based on frame-by-frame        
short-time analysis of the signal. Instead, we       
estimate all-pole models of frequency-localized     
Hilbert envelopes of large segments of speech signal        
at different frequencies. The technique on      
decomposition of speech signal into AM and FM        
components appears to be of interest in voice        
studies benefiting from alleviation of the      
message-bearing components of speech (e.g.     
security oriented applications such as speaker      
recognition, or speech diagnosis often relying on       
spectra averaging to discard the content of the        
speech). Similarly, discarding speaker information     
while preserving the message in the speech is of         
interest for privacy-oriented applications.    
Experimental results on automatic speech and      
speaker recognition tasks clearly show that the AM        
component preserves the content (message) of the       
speech, while the FM component carries the       
information related to the speaker.  
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I. INTRODUCTION 

Dominant view of speech signal processing is still        
based on the linear model of speech production, where         
short segments of the signal (short enough so that the          
vocal tract does not significantly change within the        
segment) can be represented by short-time spectrum       
computed from these segments. The short-time      
spectrum consists of its spectral envelope (representing       
a linear filter emulating vocal tract transfer function at         
a given time instant) and its fine spectral structure. It is           

widely accepted that the spectral envelope mainly       
represents the phonetic value of the speech segment        
(i.e. message) and the fine structure represents the        
spectrum of the excitation source. Many      
speech-oriented applications would benefit from being      
able to reliably separate contributions of the signal        
excitation and of the filtering.  
Typical conventional techniques, such as linear      
prediction (LP) [7], are based on the linear modeling         
and apply frame-by-frame inverse filtering of speech       
using estimates of spectral envelopes of short speech        
segments. In this paper, we abandon the notion of the          
short-time spectrum of speech. Instead, we (along with        
work of Dudley 1940 [5]) see the speech as an audible           
signal generated by voice source (frequency modulated       
component FM), which is modulated by inaudible and        
mostly invisible movements of the vocal tract       
(amplitude modulated component AM). The     
movements of the vocal tract carry a bulk of the          
message in speech, while the voice source makes these         
tract movements audible, allowing for the message to        
be perceived by a listener. 
The paper describes an efficient technique for       
decomposing the AM and FM speech components, not        
based on frame-by-frame short-time analysis. Instead,      
we estimate all-pole models of frequency-localized      
Hilbert envelopes of large speech segments at different        
frequencies. This is done by applying the LP technique         
to short segments of a cosine transformed speech        
signal. Since each segment of the cosine transformed        
signal represents the individual frequency component      
of the original signal, the resulting all-pole models        
yield the frequency-localized Hilbert envelopes of the       
signal. Inverse cosine transforms of their LP residuals        
then yield frequency-localized FM components of the       
voice source signal. Summing all frequency-local FM       
estimates yields the FM voice signal with its message         
alleviated. When the audible AM component of the        
speech signal is desired, the frequency-localized      
all-pole models of Hilbert envelopes are used to        
compute frequency-localized modulated noise    



components, which are summed to yield the AM signal         
component carrying the speech message. 

II. AM-FM DECOMPOSITION 
The concept of AM-FM decomposition is presented       
through frequency domain linear prediction (FDLP) -       
an efficient technique for autoregressive modelling of       
temporal envelopes of the signal [8]. FDLP proposes to         
model the speech in critical bands as a modulated         
signal with the AM component obtained using Hilbert        
envelope estimate and the FM component obtained       
from the Hilbert carrier. The sub-band temporal       
envelopes can then be estimated using FDLP. Unlike        
traditional temporal domain LP representing the      
envelope of the power spectrum of the signal [7],         
FDLP particularly exploits the prediction power of       
slowly varying long-term AM envelopes of speech       
signals in critical sub-bands. The final FDLP model        
provides smoothed, minimum phase representation of      
temporal rather than spectral envelopes. 
The duality between time and frequency domains       
suggests that the power of autoregressive models can        
be applied equally well to discrete spectral       
representations of the signal instead of time-domain       
signal samples. Interestingly for FDLP, it has been        
analytically shown that the squared magnitude      
response of the all-pole filter approximates the Hilbert        
envelope of the signal. At the same time it is known           
that the quadrature version of a real input signal and its           
Hilbert transform are identical for many modulated       
signals, known in practice. We can therefore presume        
that the Hilbert envelope approximates squared AM       
envelope of the signal. Thus, FDLP estimates the AM         
envelope of the signal and the FDLP residual contains         
the FM component of the signal. Acoustic signals in         
sub-bands are modulated signals and hence, FDLP can        
be used for AM-FM decomposition of sub-band       
signals. 

 
III. DETAILED ANALYSIS 

Source-filter linear model of speech production: Our       
current view of speech is dominated by the concept of          
the linear model of speech production (Chiba and        
Kajiyama 1942) [6], where the stationary source signal        
is filtered by the stationary filter. It assumes no         
interaction between the two components of this model        
(hence “linear”). This model is the basis for the LP          
speech analysis. 
Carrier nature of speech: Before Chiba and       
Kajiyama, Homer Dudley (Dudley 1940) [4] published       
his concept of speech, where he suggested that for the          
human communication by speech, nature evolved a       
technique which is conceptually identical to the (then        

Fig. 1: Dudley’s concept of speech [5] as a modulated          
carrier signal and the linear model of speech        
production. 
 
dominant) AM radio communication. In his concept,       
messages are carried in signal changes, reflected in        
slow movements of vocal tract. The movements are        
made audible by using them for modulating the audible         
voice carrier. The current paper follows this concept in         
the form of the FDLP. 
Estimating components of models of speech: In       
deriving the speech messages, we are primarily       
interested in the vocal tract movements, i.e., in the         
modulation function. On the other hand, in many        
applications of voice technologies such as a speaker        
recognition, or voice pathologies, it is the carrier,        
which is of interest. 
Conventional method of the carrier extraction is       
inverse filtering, where estimated spectral envelopes of       
short speech segments are used for design filters,        
which are then used for whitening the respective short         
segments of speech signals. A typical example of this         
technique is the LPC inverse filtering [7]. This in         
effect yields the modulating function, which is sampled        
at the frame-rate of the short-time analysis. Since the         
assumptions of stationarity and linearity are easily       
violated, an accurate estimation of the individual       
components of this model can be difficult [9]. 
We are following the original Dudley’s concept, where        
estimated temporal envelopes of spectral trajectories of       
speech signals at different frequencies are used for        
alleviating message components in respective     
frequency bands. Estimating the modulating function      
was originally done by analog low-pass filtering of        
spectral energies in different frequency bands [4].       
Here, we show that the concept of the all-pole         
modeling employed in the LP analysis can be        
successfully adopted for the estimation of spectral       
energy trajectories in different frequency bands.  

 



IV. FDLP 
The concept of the FDLP for modeling short segments         
of Hilbert envelopes was investigated in [11] and        
extended by modeling of Hilbert envelopes in narrow        
frequency bands in [12,8]. 
In FDLP, the LP prediction is applied to the cosine          
transform of the speech signal s(t), . One way      ∈〈0, 〉  t T    
to compute the cosine transform q(t), of a      ∈〈0, 〉  t T   
signal s(t) is through the Fourier transform of the signal          

, which is the even symmetrizedt∈〈0, T 〉  Ssym (t) ,  2       
s(t), i.e., . The q( ) is a function of  [S ]q (ω) = F sym (t)   ω      
frequency and is real and even symmetric. 
Being after the cosine transform in frequency domain        
allows for a selection of the frequency range to be          
further processed. The signal 
 where windowqw (ω) = q (ω) w (ω) ,  

 w (ω )0 = w    ω − ω ≤ω  ≤ Δω 0, otherwise.{ ω = Δ 0   
indicates the center of the frequency band to beω0           

processed. The Fourier transform of , which is     qw (ω)    
still real and causal, obeys the Krammers-Kroening       
relation . F q[ w (ω)] = s [s ]{ ω0

(t) + H ω0
(t) }  

The signal in a given frequency band, centered at 
now stands in place of the real part of the, sω0  ω0

(t) ,           
Fourier transform and its Hilbert transform takes place        
of its imaginary part. The instantaneous energy in the         
signal in a given frequency band (Hilbert envelope)        

is an equivalent of theHω0
(t) = s (t)ω0

2 + H[s ]ω0
(t) 2      

power spectrum  in the time-domain LP.P (ω)  
The autoregressive model computed from the cosine       
transform of the signal obeys the equationq (ω)   

dt,Eω0
= 1

2T ∫
T

−T H (t)ω0
ˆ

H (t)ω0  

where is the all pole autoregressive model of Hω0
(t)ˆ        

the Hilbert envelope and is the error of the   Hω0
(t)  Eω0

     
model fit in the frequency band centered at over         ω0  
the time interval T. The form of the error equation          
implies a good fit of the spectrum of the autoregressive          
model to the peaks of the Hilbert envelope Hω0

(t)ˆ        
. Center of the frequency window isHω0

(t)       w (ω )0   
typically gradually moved through the whole frequency       
range of the signal to be processed. 
Re-synthesis from the FDLP: The FDLP model can        
be used to construct inverse filter for whitening the         
segment of the cosine transform. Whitened segment is        
inverse cosine filtered to represent the whitened signal        
in the respective band. Adding whitened signals from        
all frequency bands yields the carrier signal.       
Modulating white noise in the frequency bands by the         
estimated FDLP Hilbert envelopes yields     
whispered-like  
speech with the original speech message.  

 

Fig. 2: The upper part of the picture shows the          
conventional LP as used in estimation of short-time        
spectral envelopes of short segments of speech       
centered at different times t0. The lower part shows the          
process of estimation of Hilbert envelopes in different        
frequency bands of speech signal centered at f0. 
 

V. APPLICATIONS 
The technique on decomposition of speech signal into        
AM and FM components appears to be of interest in          
voice studies, which would benefit from alleviation of        
the message-bearing components of speech (e.g.      
security oriented applications such as speaker      
recognition, or speech diagnosis often relying on       
spectra averaging to discard the content of the speech). 
In this paper, we empirically show that AM and FM          
components of the speech signal carry different types        
of information, AM related to the content and FM         
related to the speaker information, respectively. 

 
V. EXPERIMENTS 

We apply the AM-FM decomposition proposed in [10].        
FDLP approach described in Section IV uses a simple         
window on top of cosine transformed (1000 ms long)         
speech segment to select a particular frequency band.        
Unlike previous, the following experiments apply      
slightly different FDLP version, available freely at       
Github . First, the input speech is decomposed into 32         1

critically-sampled frequency sub-bands by using a      
conventional quadrature mirror filter (QMF) bank.      
FDLP is then applied on each sub-band to model the          
sub-band temporal envelopes (AM components). The      
LP residual represents the FM in the sub-band signal.         
These steps are reversed at the synthesis side, to         
reconstruct the signal back from QMF sub-band       
components.  
Two sets of experiments are performed: automatic       
speech recognition (ASR), and speaker verification      
(SV) deployed on (i) original (fullband) speech, (ii),        
the speech reconstructed only from the AM sub-band        
components (i.e. envelope extracted using FDLP), and  

1 github.com/iiscleap/SignalAnalysisUsingAm-FM 



Tab. 1: ASR and SV results measured in terms of word           
error rate (EER) and equal error rate (EER),        
respectively, on Librespeech corpus. 

 ASR system SV system 

 WER [%] EER [%] 

Original speech 10.1 14.7 

AM-only 14.9 26.5 

FM-only 53.9 25 

 
(iii) the speech reconstructed only from the FM        
sub-band components (i.e. carrier part alone).      
Subjective listening tests clearly show that the       
AM-only reconstructed signal sounds whispered. With      
the carrier part alone, the synthesized signal sounds        
message less.  
Dataset and tool: For ASR and SV experiments, we         
use Librispeech corpus [3] which consists of read        
speech from audio books. We employ 100 hours for         
training (train-clean-100) and 5.4 hours for testing       
(test-clean). Kaldi toolkit [2] is used for building both         
ASR and SV.  
ASR: the system is built around a conventional        
HMM-GMM framework. We use standard Kaldi (tri4)       
recipe comprising MFCC features projected by      
LDA+MLLT [1]. Roughly ~3.5K triphones and ~40k       
Gaussians are used to build HMM-GMM. 
SV: Gaussian Mixture Models (GMMs) with 32       
components are trained for each speaker in test set.         
Each GMM is built with the expectation-maximization       
algorithm to maximize the likelihood of the data [13].         
Only 10s of speech data were used for both GMM          
development and testing. Cross-pair trials for SV       
experiments were generated and trials comparing the       
same audio are excluded. T-norm is applied on the test          
scores.  
 

VI. DISCUSSIONS AND CONCLUSIONS 
The paper discusses employment of AM-FM      
decomposition to efficiently alleviate message bearing      
components from the speech. The technology is       
demonstrated on ASR and SV tasks. As can be seen          
from Tab. 1, the speech signal reconstructed from AM         
components yields WER~14.9%, close to the      
performance of the original signal (WER~10.1%) on       
the standard ASR task. On the other side, the speech          
reconstructed from FM-only components largely     
increases WER (~53.9%). In the case of SV task, the          
obtained results are less obvious. Original speech still        

provides the best performance (EER~14.7%) as the SV        
engine also exploits the content to model the speaker.         
Nevertheless, the speech signal reconstructed from      
FM-only components still outperform AM-only speech      
(EER~25%) which clearly indicates that the speaker       
related information is preserved by the Hilbert carrier. 
FDLP technique described in this paper, allowing to        
decompose the speech into AM and FM components,        
operates on large segments of signal at different        
frequencies. Empirically obtained results on automatic      
speech and speaker recognition tasks confirm our       
assumptions (determined by subjective listening) that      
the AM-FM decomposition can reliably separate the       
content and speaker related information from speech,       
which can be applied in various speech-oriented tasks.  
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