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ABSTRACT

There is no consensus yet on the question whether adaptive gradient methods
like Adam are easier to use than non-adaptive optimization methods like SGD.
In this work, we fill in the important, yet ambiguous concept of ‘ease-of-use’ by
defining an optimizer’s tunability: How easy is it to find good hyperparameter
configurations using automatic random hyperparameter search? We propose a
practical and universal quantitative measure for optimizer tunability that can form
the basis for a fair optimizer benchmark. Evaluating a variety of optimizers on
an extensive set of standard datasets and architectures, we find that Adam is
the most tunable for the majority of problems, especially with a low budget for
hyperparameter tuning.

1 INTRODUCTION

With the ubiquity of deep learning in various applications, a multitude of first-order stochastic
optimizers (Robbins & Monro, 1951) have been in vogue. They have varying algorithmic components
like momentum (Sutskever et al., 2013) and adaptive learning rates (Tieleman & Hinton, 2012;
Duchi et al., 2011; Kingma & Ba, 2015). With all these choices, picking the optimizer is among
the most important design decisions for machine learning practitioners. For this decision, the best
possible generalization performance is certainly an important characteristic to be taken into account.
However, we argue that in practice, an even more important characteristic is whether the best possible
performance can be reached with the available resources.

The performance of optimizers strongly depends on the choice of hyperparameter values such
as the learning rate. In the machine learning research community, the sensitivity of models to
hyperparameters has been of great debate recently, where in multiple cases, reported model advances
did not stand the test of time because they can be explained by better hyperparameter tuning (Lucic
et al., 2018; Melis et al., 2018; Henderson et al., 2018). This has led to calls for using automatic
hyperparameter optimization methods with a fixed budget for a fairer comparison of models (Sculley
et al., 2018; Feurer & Hutter, 2019; Eggensperger et al., 2019). For industrial applications, automated
machine learning (AutoML, Hutter et al., 2019), which has automatic hyperparameter optimization
as one of its key concepts, is becoming increasingly more important. In both cases, an optimization
algorithm that achieves good performances with relatively little tuning effort is arguably substantially
more useful than an optimization algorithm that achieves top performances, but reaches it only with a
lot of careful tuning effort. Hence, we advocate that the performance obtained by an optimizer is not
only the best performance obtained when using that optimizer, but also has to account for the cost of
tuning its hyperparameters to obtain that performance, thus being dichotomous. We term this concept
tunability in this paper.

Despite the importance of this concept, there is no standard way of measuring tunability. Works that
propose optimization techniques show their performance on various tasks as depicted in Table 1. It
is apparent that the experimental settings, as well as the network architectures tested, widely vary,
hindering a fair comparison. The introduction of benchmarking suites like DEEPOBS (Schneider
et al., 2019) have standardized the tested architectures, however, this does not fix the problem of
selecting the hyperparameters themselves, and the effort expended in doing so. Previous studies treat
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Table 1: Experimental settings shown in the original papers of popular optimizers. The large
differences in test problems and tuning methods make them difficult to compare. γ denotes learning
rate, µ denotes momentum, λ is the weight decay coefficient.

Method Datasets Network architecture Parameter tuning methods

SGD with momentum Artificial datasets Fully-connected µ = 0.9 for first 1000 updates
(Sutskever et al., 2013) MNIST LSTM then µ ∈ {0, 0.9, 0.98, 0.995}.

other schedules for µ are used
& log10(γ) ∈ {−3,−4,−5,−6}

Adagrad ImageNet ranking Single layer Perfomance on dev-set
(Duchi et al., 2011) Reuter RCV1 Handcrafted features

MNIST Histogram features
KDD Census

Adam IMDb Logistic regression β1 ∈ {0, 0.9}
(Kingma & Ba, 2015) MNIST Multi-layer perceptron β2 ∈ {0.99, 0.999, 0.9999}

CIFAR 10 Convolutional network log10(γ) ∈ {−5,−4,−3,−2,−1}

AdamW CIFAR 10 ResNet CNN log2(γ) ∈ {−11,−10 · · · − 1, 0}
(Loshchilov & Hutter, 2019) ImageNet 32×32 log2(λ) ∈ log2(10−3) + {−5,−4, . . . , 4}

tunability to be the best performance obtained on varying a hyperparameter (Schneider et al., 2019)
or by measuring the improvement in performance by tuning a hyperparameter (Probst et al., 2019),
but do not take any cognizance to the intermediate performance during the tuning process.

In this paper, we introduce a simple measure of tunability that allows to compare the performance
of optimizers under varying resource constraints. By evaluating on a wide range of 9 diverse tasks,
we aim to contribute to the debate of adaptive vs. non-adaptive optimizers (Wilson et al., 2017;
Shah et al., 2018; Chen & Gu, 2018) . To reach a fair comparison, we experiment with several SGD
variants that are often needed to reach good performance. Although a well-tuned SGD variant is
able to reach the top performance in some cases, our overall results clearly favor adaptive gradient
methods. We therefore conclude that there is substantial value in adaptive gradient methods.

2 MEASURING TUNABILITY

Given the dichotomy of the problem of tunability, we argue that it needs to take into account

1. how difficult it is to find a good hyperparameter configuration for the optimizer,
2. the absolute performance of the optimizer.

To see why both are needed, consider Figure 1.a, which shows the performance in terms of loss of
four different optimizers as a function of its only hyperparameter θ (by assumption). If we only
consider requirement #1, optimizer C would be considered the best, since every hyperparameter
value is the optimum. However, its absolute performance is poor, making it of low practical value.
Moreover, due to the same shape, optimizers A and B would be considered equally good, although
optimizer A clearly outperforms B. On the other hand, if we only consider requirement #2, optimizers
B and D would be considered equally good, although optimizer D’s optimum is harder to find.

As we show in Section 5, no existing definition of tunability takes both requirements into account. In
the following, we present a formulation that does so.

2.1 PRELIMINARIES: HYPERPARAMETER OPTIMIZATION

We define hyperparameter optimization (HPO) (Feurer & Hutter, 2019) as follows:
Definition. LetM be an optimization algorithm with N hyperparameters (θ1, . . . , θN ) ∈ Θ. Let a
specific instantiation ofM with θ ∈ Θ be denoted byMθ . Thus, given a datasetD = Dtrain

⋃
Dval,

the following objective is minimized
θ? = arg min

θ∈Θ
L(Mθ, Dval)

whereMθ is trained on Dtrain. In our work, we use L to be validation loss.

We use L(θ) to refer to L(Mθ, Dval) for brevity. In our experiments, we use the time-tested Random
Search (Bergstra & Bengio, 2012) algorithm for HPO for simplicity.
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2.2 DEFINING TUNABILITY

The ability to easily find good minima depends on the loss surface L itself. Thus, tunability is a
characterization of the HPO’s loss function L. Here we present a quantification of this idea, which
we illustrate with Figure 1.b.

Let us assume that there are two optimizers E & F, both with hyperparameter θ, both of them used
to minimize a function (e.g. train a neural network). Let the loss functions of HPO be LE and LF
respectively. As the figure shows, the minimum of LE is lower than that of LF (denoted by θ?E and
θ?F ) i.e. LE(θ?E) < LF (θ?F ). However, the minimum of LE is much sharper than that of LF , and
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1.a: Illustration. It is important to consider
both the absolute performance of optimizers
as well as the tuning effort to get to good
performances.
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1.b: Illustration. While optimizer E can
achieve the best performance after careful
tuning, optimizer F is likely to provide better
performance under a constrained HPO bud-
get.

in most regions of the parameter space F performs much better than E. This makes it easier to find
configurations that already perform well. This makes optimizer F an attractive option when we have
no prior knowledge of the good parameter settings.

The key-difference between the two interpretations is whether one prefers a ‘good enough’ perfor-
mance through fewer hyperparameter configuration searches (in the case of optimizer F), or whether
one is willing to spend computational time to get the best possible performance (θ?E in the case of
optimizer E). In this work, we search for the hyperparameter through an HPO like Random Search.
Thus, the difference of the two interpretations of tunability lies whether one values results from late
stages of the HPO process (i.e. optimizer E is preferable due to better optimum) more than results
from early stages of the HPO process (i.e. optimizer F is preferable).

Motivated by these observations, we propose the following metric for tunability.

ω-tunability’s Definition. Let (θt,L(θt)) be the incumbents (best performance attained till t) of
the HPO algorithm at iteration t and T be the hyperparameter tuning budget. For wt > 0 ∀ t and∑
t wt <∞, we define ω-tunability as

ω-tunability =

T∑
t=1

ωtLt

i.e, ω-tunability is a weighted sum of the incumbents L(θt). In our experiments we use
∑
t ωt = 1.

By appropriately choosing the weights {ωt}, we can interpolate between our two notions of tunability.
In the extreme case where we are only interested in the peak performance of the optimizer, we can
set ωT = 1 and set the other weights to zero. In the opposite extreme case where we are interested in
the "one-shot tunability" of the optimizer, we can set ω1 = 1. In general, we can answer the question
of "How well does the optimizer perform with a budget of K runs?" by setting ωi = 1i=K.

While the above weighting scheme is intuitive, merely computing the performance after expending
HPO budget of K does not consider the performance obtained after the previous K − 1 iterations
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i.e. we would like to differentiate the cases where a requisite performance is attained by tuning an
optimizer for K iterations and another for K1 iterations, where K1 � K. Therefore, we employ
three additional weighting schemes. By setting ωi ∝ (T − i), our first one puts more emphasis on
the earlier stages of the hyperparameter tuning process. We term this weighting scheme Cumulative
Performance-Early (CPE). In contrast, the second weighting scheme, Cumulative Performance-Late
(CPL) puts more emphasis on late stages of tuning, and thus on obtaining a better performance at
a higher tuning cost: ωi ∝ i. As a intermediate of the two, we also report a uniform weighting
Cumulative Performance-Uniform (CPU) : ωi = 1/T .

3 OPTIMIZERS AND THEIR HYPERPARAMETERS

3.1 PARAMETERS OF THE OPTIMIZERS

To compare the tunability of adaptive gradient methods to non-adaptive methods, we choose the most
commonly used optimizers from both the strata; SGD and SGD with momentum for non-adaptive
methods, and Adagrad and Adam for adaptive gradient methods. Since adaptive gradient methods are
said to work well with their default hyperparameter values already, we additionally employ a default
version of Adam where we only tune the initial learning rate and set the other hyperparameters to the
values recommended in the original paper (Kingma & Ba, 2015) (termed AdamLR). Such a scheme
has been used by Schneider et al. too. A similar argument can be made for SGD with momentum
(termed SGDM): thus we experiment with a fixed momentum value of 0.9 (termed SGDMC).

In addition to standard parameters in all optimizers, we consider weight decay with SGD too. SGD
with weight decay can be considered as an optimizer with two steps where the first step is to scale
current weights with the decay value, followed by a normal descent step (Loshchilov & Hutter, 2019).
Thus we devise two additional experiments for SGD with weight-decay where we tune weight-decay
along with momentum (termed SGDMW), and one where we fix it to 10−5 (termed SGDMCWC)
along with the momentum being fixed to 0.9, which is the value for weight decay we found to be
consistently better through HPO. The full list of optimizers we consider is provided in Table 4

Manually defining a specific number of epochs can be biased towards one optimizer, as one optimizer
may reach good performance in the early epochs of a single run, whereas another may reach higher
peaks more slowly. In order to alleviate this, it would be possible to add the number of training epochs
as an additional hyperparameter to be searched. Since this would incur even higher computational
cost, we instead use a validation set performance as stopping criterion. Thus we stop training when the
validation loss plateaus for more than 2 epochs or if the number of epochs exceeds the predetermined
maximum number as set in DEEPOBS.

3.2 CALIBRATION OF HYPERPARAMETER DISTRIBUTIONS

As mentioned previously, we use Random Search for optimizing the hyperparameters, which requires
distributions of random variables to sample from. Choosing poor distributions to sample from impacts
the performance, and may break requisite properties (e.g. learning rate is non-negative). For some of
the parameters listed in Table 2, obvious bounds exist due their mathematical properties, or have been
prescribed by the optimizer designers themselves. For example, Kingma & Ba (2015) bound β1, β2

to [0, 1) and specify that they are close to 1. In the absence of such prior knowledge, we devise a
simple method to determine the priors.

We train each task specified in the DEEPOBS with a large number of hyperparameter samplings
and retain the hyperparameters which resulted in performance within 20% of the best performance
obtained. For each of the hyperparameters in this set, we fit the distributions in the third column of
Table 2 using maximum likelihood estimation. In doing so, we make a simplifying assumption that all
the hyperparameters are independent of each other. We argue that these distributions are appropriate;
the only condition on learning rate is non-negativity that is inherent to the log-normal distribution,
momentum is non-negative with a usual upper bound of 1, βs in Adam have been prescribed to be
less than 1 but close to it, ε is used to avoid divide-by-zero error and thus is a small positive value
close to 0. We report the parameters of the distributions obtained after the fitting in Table 2.
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Table 2: Optimizers evaluated. For each hyperparameter, we calibrated a ‘sampling distribution’ to
give good results across tasks (Section 3.2). U [a, b] is the continuous uniform distribution on [a, b].
Log-uniform(a, b) is a distribution whose logarithm is U [a, b]. Log-normal(µ,σ) is a distribution
whose logarithm is normally distributed with mean µ and standard deviation σ.

Optimizer Tunable parameters Sampling distribution

Stochastic Gradient Descent Learning rate Log-normal(-2.09, 1.312)
Momentum U [0, 1]
Weight decay Log-uniform(-5, -1)

Adagrad Learning rate Log-normal(-2.004, 1.20)

Adam Learning rate Log-normal(-2.69, 1.42)
β1, β2 Log-uniform(-5, -1)
ε Log-uniform(-8, 0)

Table 3: Models and datasets used. We use the
DeepOBS benchmark set (Schneider et al., 2019).
Details are provided in Appendix A.

Architecture Datasets

Convolutional net FMNIST, CIFAR10/100
Variational autoencoder FMNIST, MNIST
Wide residual network SVHN
Character RNN Tolstoi’s War and Peace
Quadratic function Artificial datatset
LSTM IMDb

Table 4: Optimizers and tunable parameters.
γ is learning rate, µ is momentum, λ is the
weight decay coefficient.

Optimizer Tunable parameters

SGD γ (µ=0, λ=0)
SGDM γ, µ (λ=0)
SGDMC γ (µ=0.9, λ=0)
SGDMCWC γ (µ=0.9, λ=10−5)
SGDMW γ, µ, λ

Adagrad γ
AdamLR γ (β1=0.9, β2=0.999, ε=10−8)
Adam γ, β1, β2, ε

4 EXPERIMENTS AND RESULTS

To assess the tunability of optimizers’ hyperparameters for the training of deep neural networks, we
benchmark using the open-source suite DEEPOBS (Schneider et al., 2019). The architectures and
datasets we experiment are given in Table 3. We refer the reader to Schneider et al. (2019) for specific
details of the architectures. To obtain a better balance between vision and NLP applications, we
added an LSTM network with the task of sentiment classification in the IMDB dataset (Maas et al.,
2011), details for which are provided in Appendix A.

4.1 HYPERPARAMETERS AND IMPLEMENTATION

The performance of automatic hyperparameter search methods is dependent on its own hyperpa-
rameters, which play an important role in the outcome, e.g number of configurations to test. In our
experiments, we evaluate 100 configurations with each of the hyperparameter optimization methods.
As we use random search, we simulate multiple runs of these 100 configurations through shuffling.
This gives us the variance of performance at each step.

4.2 ANALYSIS OF TUNABILITY

We analyze the tunability for the various weighting schemes proposed. For the weighting scheme
ωi = 1i=K, for increasing values of K, we show the performance as well as its variance in Figure 3.
For readability, we show only results for Adam, AdamLR, Adagrad and SGDMW, and the rest are
given in Appendix C. It is quite apparent that in most of the tasks, a well tuned SGD with momentum
and weight decay is as good as Adam (for large K). However, the gap in the performance is quite
noticeable when AdamLR outperforms SGD in the VAE tasks and the IMDB task. In the case of
image classification problems, SGD variants fare the best, as it has been reported before (Keskar
& Socher, 2017). It is interesting to notice that for K=4, the decreasing order of variance is nearly
always SGDMW, Adam, Adagrad, AdamLR (10 out of 11 cases), even if AdamLR marginally
underperforms as it is in the case of Quadratic Deep. Given this formulation, we ask the following
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question: given an HPO budget of K, what is the best choice for optimizer? We answer this in
Appendix D.

For the other weighting schemes, tunability scores are reported in Table 5. We see that there is no one
optimizer that is best across three schemes, and tasks presented. A similar trend of SGD doing better
than the adaptive gradient methods on image classification tasks is evident. Considering CPE, we
observe that AdamLR performs the best in 6 out 9 tasks, where as the other three times SGDMCWC

performs the best. The trend is not very obvious for CPU and CPL. In the case of CPU, AdamLR
wins 5 out of 9 tasks, SGDMCWC wins twice, and SGDM wins once. For CPL, AdamLR wins 4
out of 9, and the SGDMCWC wins once, and SGDM and SGDMC win twice each. Summarizing,
if peak-performance or even evolving to better performance at a larger hyperparameter search cost,
SGD variants are better 5 out 9 times. However, if a good performance is expected in the earlier
iterations of hyperparameter search, AdamLR is very competitive. Also, the default parameters of
β1, β2, ε of Adam optimizer result in quite good performance, to the point that Adam is rarely the
better alternative over AdamLR. A known exception is training Inception networks (Abadi et al.,
2015), where ε is recommended to be set to 0.1.

For some of the cases, the tunablities reported are very similar for the AdamLR and SGD variants.
However, tuning Adam is very different from tuning SGD from a wall-clock time measurement. For
example, we find that for the case of CIFAR-10, AdamLR requires on average 39% fewer epochs
to complete training than SGDMC (the top perfomer); thus being that much faster than SGDMC in
wall-clock time.

4.3 SUMMARIZING ACROSS DATASETS
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Figure 2: Aggregated relative tunability
of each optimizer across datasets

To get a better understanding of an optimizer’s aggregate
tunability across datasets compared to the rest, we compute
summary statistics for an optimizer o’s performance after
k iterations in the following way:

S(o, k) =
1

|P|
∑
p∈P

o(k, p)

max
o′∈O

o′(k, p)
,

where o(k, p) denotes the performance of optimizer o ∈ O
on test problem p ∈ P after k iterations of the HPO pro-
cess (i.e. ω-tunability with ωi = 1i=k). In other words, we
compute the average relative performance of an optimizer
to the best performance of any optimizer over all tasks.

The results are in Figure 2 and show that AdamLR performs very close to the best optimizer
throughout the HPO process and is the best till about the 60th iteration. In early stages of HPO, the
SGD variants perform 10–20% worse than Adam, but improve as the HPO progresses.

5 RELATED WORK

There exist few works that have tried to define and investigate tunability formally. Assessing the
impact of hyperparameter tuning for decision tree models, Mantovani et al. (2018) count the number
of times the tuned hyperparameter values are (statistically significantly) better than the default values.
Probst et al. (2019) define tunability of an ML algorithm as the performance difference between a
reference configuration (e.g., the default hyperparameters of the algorithm) and the best possible
configuration on each dataset. This metric is comparable across ML algorithms, but it disregards
entirely the absolute performance of ML algorithms. Schneider et al. (2019) recently released a
benchmark for optimizers that evaluates their peak performance and speed. Tunability is assessed as
the sensitivity of the performance to changes of the learning rate. In all three aforementioned studies,
the definitions of tunability would fail to identify the superiority of optimizer A over optimizer B in
Figure 1.a.

The study by Wilson et al. (2017) finds SGD-based methods as easy to tune as adaptive gradient
methods. However, their study lacks a clear definition of tunability and tunes the algorithms on
manually selected, dataset dependent grid values. The study by Shah et al. (2018) applies a similar
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Table 5: Performance of various experiments.

Optimizer CPE CPU CPL

Adagrad 91.3 91.4 91.6
Adam 91.3 91.5 91.8
AdamLR 91.3 91.6 91.9
SGD 90.4 90.8 91.2
SGDM 90.5 90.9 91.3
SGDMC 90.7 90.9 91.1
SGDMCWC 90.7 90.9 91.1
SGDMW 90.4 90.8 91.3

5.a: FMNIST 2C2D. Higher is better

Optimizer CPE CPU CPL

Adagrad 76.4 77.1 77.9
Adam 77.2 78.4 79.5
AdamLR 78.8 79.4 80.0
SGD 77.0 77.8 78.6
SGDM 77.8 78.6 79.5
SGDMC 78.6 79.4 80.1
SGDMCWC 81.1 81.6 82.0
SGDMW 79.7 80.4 81.2

5.b: CIFAR 10. Higher is better

Optimizer CPE CPU CPL

Adagrad 30.4 31.8 33.1
Adam 39.4 42.2 45.1
AdamLR 42.2 43.0 43.8
SGD 31.8 34.2 36.6
SGDM 40.6 43.3 46.0
SGDMC 42.1 43.3 44.5
SGDMCWC 39.2 40.3 41.5
SGDMW 33.5 37.2 41.0

5.c: CIFAR 100. Higher the better

Optimizer CPE CPU CPL

Adagrad 84.3 84.8 85.3
Adam 83.6 84.5 85.5
AdamLR 85.8 86.0 86.3
SGD 68.1 69.3 70.5
SGDM 74.3 75.9 77.5
SGDMC 79.3 80.1 81.0
SGDMCWC 78.8 79.4 80.0
SGDMW 75.7 77.1 78.6

5.d: IMDB. Higher is better

Optimizer CPE CPU CPL

Adagrad 94.8 94.9 95.0
Adam 94.5 94.8 95.2
AdamLR 95.1 95.3 95.4
SGD 94.6 94.9 95.2
SGDM 94.8 95.2 95.6
SGDMC 94.9 95.1 95.3
SGDMCWC 95.2 95.4 95.5
SGDMW 95.0 95.2 95.3

5.e: WRN-16(4). Higher is better

Optimizer CPE CPU CPL

Adagrad 55.6 56.2 56.7
Adam 54.4 55.7 57.0
AdamLR 56.9 57.2 57.5
SGD 40.3 42.5 44.6
SGDM 51.4 54.0 56.5
SGDMC 55.6 57.0 58.3
SGDMCWC 54.2 55.6 57.0
SGDMW 45.1 48.2 51.2

5.f: Char-RNN. Higher is better

Optimizer CPE CPU CPL

Adagrad 25.5 24.7 24.0
Adam 26.0 24.8 23.7
AdamLR 24.6 24.0 23.5
SGD 26.2 25.5 24.8
SGDM 26.2 25.4 24.6
SGDMC 28.6 26.7 24.9
SGDMCWC 27.9 26.4 24.8
SGDMW 26.5 25.7 24.8

5.g: FMNIST-VAE. Lower is better.

Optimizer CPE CPU CPL

Adagrad 30.3 29.4 28.4
Adam 33.2 31.2 29.1
AdamLR 29.2 28.6 27.9
SGD 53.3 53.1 52.9
SGDM 36.0 32.9 29.9
SGDMC 54.1 53.5 53.0
SGDMCWC 54.0 53.5 53.0
SGDMW 34.6 32.2 29.8

5.h: MNIST-VAE. Lower is better

Optimizer CPE CPU CPL

Adagrad 91.5 89.6 87.6
Adam 94.8 92.1 89.4
AdamLR 91.2 89.5 87.7
SGD 90.5 89.6 88.7
SGDM 89.5 88.7 87.9
SGDMC 89.6 88.6 87.5
SGDMCWC 88.6 88.4 88.1
SGDMW 89.3 88.9 88.4

5.i: Quadratic deep. Lower is better

methodology and comes to similar conclusions regarding tunability. Since both studies only consider
the best parameter configuration, their approach would be unable to identify the better optimizer
among B and D in Figure 1.a. In contrast, the methodology in our study is able to distinguish all the
cases depicted in Figure 1.a.

In a concurrent study, Choi et al. (2019) show that SGDM is a special case of Adam as its ε
parameter approaches infinity, and thus Adam should never underperform SGDM with appropriate
hyperparameter search. Like in our study, they suggest that the performance comparison of optimizers
strongly depends on the hyperparameter tuning protocol. They also argue that the search space needs
to be chosen optimizer specific. However, their focus is on the best possible performance achievable
by an optimizer and does not take into account the tuning process. Moreover, while the authors
claim their search protocol to be relevant for practitioners, the search spaces are manually chosen per
dataset, constituting a significant difference to the AutoML scenario considered in our paper.

Tunability is related to measuring hyperparameter importance (Hutter et al., 2013), where van Rijn &
Hutter (2018) have recently shown that learning the priors for hyperparameter distributions can yield
to better HPO performance, akin to the calibration phase in our study.

6 CONCLUSION

Our work proposes a new notion of tunability for optimizers that takes into account the tuning efforts
of an HPO. The results of our experiments support the hypothesis that adaptive gradient methods are
easier to tune than non-adaptive methods: In a setting with low budget for hyperparameter tuning,
tuning only Adam optimizer’s learning rate is likely to be a very good choice; it doesn’t guarantee
the best possible performance, but it is evidently the easiest to find well-performing hyperparameter
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configurations for. While SGD yields the best performance in some cases, its best configuration
is tedious to find, and Adam often performs close to it. We, thus, state that the substantial value
of the adaptive gradient methods, specifically Adam, is its amenability to hyperparameter search.
This is in contrast to the findings of Wilson et al. (2017) who observe no advantage in tunabilty for
adaptive gradient methods, and thus deem them to be of ‘marginal value’. Unlike them, we base our
experiments on a standard hyperparameter optimization method that allows for an arguably fairer
comparison.
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3.b: CIFAR 100
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3.c: SVHN WRN-16-4
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3.d: IMDb LSTM
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3.e: FMNIST 2C2D CNN
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3.f: Tolstoi Char-RNN
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3.g: MNIST VAE
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3.h: F-MNIST VAE
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3.i: Quadratic Deep
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Figure 3: ω-tunability with ωi = 1i=K for various experiments. We plot the on the x-axis the number
of the hyperparameter configuration searches, on the y-axis the appropriate performance on a log
scale. Figures a-f: higher is better and g-i: lower is better.
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Our study is certainly not exhaustive: We do not study the effect of the inclusion of a learning rate
schedule, or using a different HPO algorithm on the results. However, their inclusion would result in
a large increase the number of experiments, and constitutes our future work.

We hope that this paper encourages other researchers to conduct future studies on the performance of
optimizers from a more holistic perspective, where the cost of the hyperparameter search is included.
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A ARCHITECTURES OF THE MODELS USED IN EXPERIMENTS

Along with the architectures examined by Schneider et al. (2019), we experiment with an additional
network and dataset. We included an additional network into our experimental setup, as DEEPOBS
does not contain an word level LSTM model. Our model uses a 32-dimensional word embedding
table and a single layer LSTM with memory cell size 128, the exact architecture is given in Table 6.
We experiment with the IMDB sentiment classification dataset (Maas et al., 2011). The dataset
contains 50, 000 movie reviews collected from movie rating website IMDB. The training set has
25, 000 reviews, each labeled as positive or negative. The rest 25, 000 form the test set. We split 20%
of the training set to use as the development set. We refer the readers to DEEPOBS (Schneider et al.,
2019) for the exact details of the other architectures used in this work.

Table 6: Architecture of the LSTM network used for IMDb experiments

Layer name Description

Emb

[ Embedding Layer
Vocabulary of 10000

Embedding dimension: 32

]

LSTM_1

[ LSTM
Input size: 32

Hidden dimension: 128

]

FC Layer Linear(128 −→ 2)

Classifier Softmax(2)

B α- TUNABILITY

We provide additional methods to analyze tunability here. Let p(t) denote the best performance
observed after using budget t of hyperparameter optimization algorithm. We call an optimizer
α-tunable (α ∈ [0, 1]) at t if p(t) ≥ α · p(T ). Thus α−tunability is the ratio of number of times
the neural network needs to be retrained with optimizer’s hyperparameters being provided by an
automatic method, to the total budget T (maximum number of configurations tested).

For each optimizer, we define its α-tunability ζ(α) = t
T for α ∈ {0.9, 0.95, 0.99}. This metric

provides an intuitive and simple quantification of how easy it is to tune an optimizer to reach requisite
performance. We extend α–tunability to indicate the sharpness of the minima by computing the
difference ∆ = ζ(α1)− ζ(α2) where α1 > α2 and term it Sharpness. In our experiments, we choose
α1 = 0.99 and α2 = 0.9. Sharpness(∆) is the relative time taken by the HPO to improve from α2 to
α1 and thus quantifies the flatness of the minima in the space of hyperparameters. If the minima is
sharper, then we expect random-search also takes a longer time to find it, thus the time required to go
from α1 and α2 is higher. We provide Sharpness for our optimizers in table:7.

MNIST VAE FMNIST 2C2D CIFAR 100 CIFAR 10 SVHN WRN IMDB LSTM FMNIST VAE Quadratic Deep Char RNN
Adagrad 92.0 99.0 63.0 95.0 10.0 97.0 91.0 66.0 95.0
Adam 80.0 98.0 40.0 91.0 71.0 93.0 90.0 75.0 87.0
Adam LR 83.0 96.0 71.0 94.0 98.0 70.0 95.0 93.0 97.0
SGD 98.0 95.0 35.0 93.0 98.0 81.0 94.0 6.0 47.0
SGDM 58.0 97.0 50.0 91.0 59.0 72.0 90.0 30.0 59.0
SGDMC 95.0 83.0 82.0 94.0 52.0 88.0 75.0 95.0 87.0
SGDMCWC 94.0 45.0 78.0 95.0 98.0 68.0 88.0 16.0 85.0
SGDMW 65.0 97.0 23.0 94.0 36.0 86.0 91.0 14.0 32.0

Table 7: Sharpness for various optimizers examined.

The above definition is not without faults. An optimizer’s α-tunability depends only on how fast
it can get close to its own best performance, a pitfall it shares with Probst et al. (2019). That is,
an optimizer that peaks at the performance of a random classifier may be considered well-tunable
because it reaches its peak performance in the first iteration. It is apparent from tables 7 and 4 that
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the top performance does not imply lower sharpness. Take the case of IMDB Bi-LSTM, the lowest
sharpness is for SGDMCWC, while the best performance is attained by AdamLR, implying that
SGDMCWC settled to a minima faster which isn’t necessarily better than the one AdamLR found. In
other terms, the flatness of the minima does not indicate how deep it is.

C PERFORMANCE ANALYSIS

We show the full performance plots of all variants of SGD experimented with, in figures 5, 6, 7.

D HOW LIKELY ARE WE TO FIND GOOD CONFIGURATIONS?

A natural question that arises is: given a budget K, what is the best optimizer one can pick? In other
words, for a given budget what is probability of each optimizer finding the best configuration? We
answer this with a simple procedure. We repeat the runs of HPO for a budget K, and collect the
optimizer that gave the best result in each of those runs. Using the classical definition of probability,
we compute the required quantity. We plot the computed probability in Figure 8. It is very evident for
nearly all budgets, AdamLR is always the best option for 4 of the problems. SGD variants emerge to
be better options for CIFAR-100 and Char-RNN at later stages of HPO. For some of the problems
like VAEs, LSTM, it is very obvious that AdamLR is nearly always the best choice. Thus further
strengthens our hypothesis that adaptive gradient methods are more tunable, especially in constrained
HPO budget scenarios.
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Figure 4: Performance analysis of various experiments. We plot the on the x-axis the number of the
hyperparameter configuration searches, on the y-axis the appropriate performance.
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4.a: CIFAR-10 evolution
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4.b: CIFAR-100 evolution
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4.c: WRN evolution

Figure 5: Performance analysis of various experiments. We plot the on the x-axis the number of the
hyperparameter configuration searches, on the y-axis the appropriate performance on a log scale
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6.a: Bi-LSTM evolution
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6.b: FMNIST CNN evolution
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6.c: Tolstoi Char-RNN evolution

Figure 6: Performance analysis of various experiments. We plot the on the x-axis the number of the
hyperparameter configuration searches, on the y-axis the appropriate performance on a log scale
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7.a: MNIST-VAE evolution
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7.b: MNIST-VAE evolution
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7.c: Quadratic deep evolution

Figure 7: Performance analysis of various experiments. We plot the on the x-axis the number of the
hyperparameter configuration searches, on the y-axis the appropriate performance on a log scale
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Figure 8: Which optimizer for which budget? Given a tuning budget K (x-axis), the stacked area
plots above show how likely each optimizer (colored bands) is to yield the best result after K steps
of hyperparameter optimization. For example, for the IMDB LSTM problem, for a small budget,
‘AdamLR’ is the best choice (with∼ 0.8 probability), whereas for a larger search budget > 50, tuning
the additional parameters of ‘Adam’ is likely to pay off.
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