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Abstract

Respiration process is integral part of speech production. Al-
ternation in respiratory system and speech production system
results in changes in speech. Therefore, speech signal, which
can be acquired in a non-invasive manner, could be used to
predict breathing patterns. There is a growing interest in that
direction, which has gained further momentum with COVID-
19 situation. In this paper, we investigate respiratory signal
estimation through (a) raw waveform modeling and (b) mod-
eling of short-term spectral features using deep learning tech-
niques. Our investigations on ComParE 2020 Breathing sub-
challenge showed that both the approaches perform well and
yield systems competitive to the best performing CNN+RNN-
LSTM baseline system. An analysis of the two investigated ap-
proaches revealed that raw waveform modeling-based approach
yields better Pearson’s correlation coefficient, but it is not able
to predict well the dynamic range of the signals, when compared
to spectral feature-based approach.

Index Terms: breathing patterns, convolutional neural net-
works, LSTM-RNN, speech technology

1. Introduction

The respiratory system, including diaphragm, chest cavity, and
lungs, plays a very important part in producing speech. It pro-
vides the energy necessary to produce sounds by pushing air
through vocal folds. It is therefore not surprising that the speech
and breathing are related.

Very few studies focused on the effect of speech on breath-
ing pattern. Hammarsten et al, investigated the inhalation du-
ration and speech onset delay in different settings and reported
that both of them are longer when speakers start to speak com-
pared to when they are in the middle of a conversation [1]. In
other works, the breathing pattern for read speech has been
compared to spontaneous speech. They reported that a high
percentage of the sentences in read speech is produced during
one breath while the inhalations were short and frequent dur-
ing spontaneous speech [2, 3, 4]. The latter could be due to the
cognitive load during spontaneous speech [5]. Wlodarczak et
al, proposed that the relationship between speech and breathing
is not one way and breathing can also shape the speech [6].

Breathing patterns can reveal information about the under-
lying health condition of a speaker and therefore being able to
estimate it from speech signal can have a wide range of appli-
cations. Some conditions such as heart diseases and Chronic
obstructive Pulmonary Diseases (COPD) can affect the breath-

ing pattern. Diagnosing such health conditions from speech can
be very helpful in tele-health applications and as a non intrusive
diagnosis method.

To the best of our knowledge there has not been many stud-
ies on breathing pattern estimation from speech. Nallanthighal
et al used Log Mel Spectogram of speech to train a Convolu-
tional Neural Network (CNN) and a Long short-term memory
Recurrent Neural Network (RNN-LSTM) to predict breathing
signal [7, 8]. They later used their method to detect mild dys-
pnea in speakers [9]. Schuller et al, used an End-to-End sys-
tem consisting of CNN combined with RNN-LSTM to predict
the breathing signal, as part of the Interspeech 2020 ComParE
challenge [10].

In this paper, as part of the Interspeech 2020 ComParE
Breathing sub-challenge, we investigate raw waveform model-
ing and short-term spectrum modeling methods for estimating
the breathing signal from speech waveform, in the framework
of deep learning. We study different loss functions to train
the neural networks, namely, mean square error and Pearson’s
correlation-based. Experimental studies show that our methods
yield systems competitive to the baseline CNN-RNN-LSTM ap-
proach.

The remainder of the paper is organized as follows. In Sec-
tion 2, we introduce our methods. In Section 3, we present the
experiment setup and results. In Section 4, we present an anal-
ysis of our systems. Finally we conclude in Section 5.

2. Methods investigated

This section presents the different neural networks-based meth-
ods modeling raw waveform and short-term spectral features for
breathing pattern estimation.

2.1. CNN-based raw speech waveform

We adopted the convolutional neural network (CNN) based
approach that was first proposed for speech recognition [11].
As illustrated in Fig. 1, the network architecture consists of a
number of convolution layers followed by a hidden layer, and
then finally an output layer. Our motivation behind adopting
this approach was two folds. First, this approach has been
studied on various speech processing tasks such as, speaker
recognition [12], gender recognition [13], and depression de-
tection [14]. Second, we have some good insight about how
the source and system related information in the speech signal
tends to get modeled in this approach [15, 12, 16].

Based on these prior insights, we borrowed a CNN architec-



Figure 1: An illustration of the end-to-end CNN model used
with raw speech signal as input.
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ture that was used in a recent work for depression detection [14].
More precisely, the network has four convolution layers, max
pooling layers and a fully connected layer (MLP) (see Fig. 1.
The number of filters in convolution layers are 128-256-512-
512 with kernel sizes of 30-10-4-3 and kernel strides of 10-5-
2-1. After each layer, there are max-pooling layers with strides
of 2-3-1-1 and rectified linear unit (ReLu) as activation func-
tion. The MLP has one hidden layer with 10 units with hyper-
bolic tangent (Tanh) as activation. Batch normalization is also
applied after each layer. The output layer consists of one unit
with linear activation. The input to the system is raw speech
waveform and the output is a sample-by-sample prediction of
the breathing signal. During test time, the output of the neural
network is post-processed by removing the mean and scaling
between -1 and +1.

We trained the CNN with standard Mean Squared Error
(MSE) loss and a custom correlation loss. We used Adam op-
timizer [17] with weight decay of 0.001.

The custom correlation loss is defined as following:

. 1
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where 7 (y, f(x)) is the Pearson’s correlation coefficient.

During training, the correlation loss is computed by pre-
dicting the output for a fixed window of consecutive time points
and then calculating the Pearson’s correlation coefficient, r(),
between the output signal and the target signal. The size of win-
dow is a hyper-parameter.

L(y, f(x)) ()

2.2. RNN and CNN trained on Short-term speech spectral
features

In this approach, log Mel spectrograms are used as spectral fea-
tures for speech [18]. Log Mel spectrogram of a speech signal
with a fixed time window of 4 seconds is mapped with respi-
ratory sensor value at the endpoint of the time window with
a stride of 10ms between windows to train the Convolutional
Neural Networks (CNN) and Long short-term memory Recur-
rent Neural Network (RNN-LSTM) models. These models will
be used to estimate the respiratory sensor values of a speech
signal.

In the CNN model [19], the data is fed into a network of
two convolution layers with single channel and kernel size of 5
for filtering operation to extract local feature maps. Max pool-
ing is deployed to reduce the dimensionality of feature maps
while retaining the important information and ReLu activation
function is applied to introduce non-linearity into the feature ex-
traction process for each convolution layer. Batch normalisation
is also applied on each convolution layer. This is followed by
3 fully connected layers with ReLU activation function. Adam
optimiser [17] with a weight decay of 0.001 is used as an opti-
mization algorithm.

In the RNN-LSTM model [20], the data is fed into a net-
work of two LSTM layers with 128 hidden units and a learning

rate of 0.001. Adam optimiser is used as an optimization algo-
rithm to update the network weights iteratively based on train-
ing data [17]. Mean Squared Error (MSE) loss and a custom
correlation loss as described in 2.1 are used as regression loss
functions for both networks. These hyper-parameters for the
network are best chosen for estimation after repeated experi-
mentation.

3. Experiments
3.1. Dataset and evaluation protocol

The systems have been trained on a subset of the UCL Speech
Breath Monitoring (UCL-SBM) database. This database has
been introduced in [10]. It includes recordings from 49 speakers
which are divided into three non-overlapping subsets; 17 speak-
ers in Train, 16 speakers in Dev, and 16 speakers in Test subset.
For each speaker a 4 minutes recording of speech with sampling
frequency of 16KHz is provided. For speakers in Train and Dev
set, the breathing signal with sampling frequency of 25 Hz is
provided which amounts to a sequence of 6000 values for each
speaker.

As done in the challenge paper [10], for the development
studies, we used the Train set for training our system, the first 15
speakers for training and the last 2 speakers for cross validation.
We then tested our system on the whole Dev set. For testing, the
training and development data are pooled together to train the
neural networks.

The performances of the systems are measured by concate-
nating the predicted breathing signals and the ground truth sig-
nals for all files to form one predicted signal and one ground
truth signal, respectively, and computing Pearson’s correlation
coefficient r.

For the sake of clarity, our systems are denoted in the fol-
lowing format: ANN type-input type-loss function.

3.2. Raw waveform modeling based systems

In the development studies, we fine tuned two hyper-
parameters:

1. duration of past speech signal input to the system at each
time frame. For this, we varied the input speech duration
from 2 seconds to 4 seconds in steps of one second.

2. correlation window size for computing the correlation
loss. We considered window sizes of 400, 512 and 1024
samples. These window sizes were chosen taking into
consideration that at least two breathing cycles at the out-
put are covered.

The frame rate at the input was the sample rate at the outputi.e.,
40 ms.

Table 1 shows the result for the different systems trained. It
can be seen that for both loss functions, the system performance
for the input of 2 seconds is better or comparable to the systems
with 3 seconds and 4 seconds input. There is no clear trend
in performance w.r.t the size of correlation window. Longer
correlation window size seems to be beneficial when modeling
4 seconds input.

3.3. Spectral feature based systems

The log Mel spectrogram, time window of 4 seconds and end-
point mapping are decided based on repeated experimentation
as described in our previous work on estimating breathing sig-
nal from speech [7]. Using this setup, we train both CNN and



Table 1: Pearson’s correlation coefficient r obtained for raw
waveform modeling systems on the Dey set.

Correlation Input window
Models window 2s 3s 4s
CNN-Raw-MSE — 0.519 0480 0.458
400 0496 0492 0473
gNN'lRfW' 512 0512 0475 0.502
orrefation 1024 0.501 0.497 0514

RNN-LSTM models as described in 2.2. For correlation loss,
we used correlation window size of 1024 samples.

Table 2 presents the performance of spectral feature-based
systems. It can be observed that CNN-based system performs
better. Performance with correlation loss is inferior to MSE
loss. When compared to raw waveform based systems, spectral
feature-based system yields lower correlation.

Table 2: Pearson’s correlation coefficient r obtained for spec-
tral feature based systems on the Dev set

Models r

CNN-Spec-MSE 0.472
CNN-Spec-Correlation 0.431
RNN-LSTM-Spec-MSE 0.441

RNN-LSTM-Spec-Correlation  0.420

3.4. Comparison to ComParE baseline systems

Table 3 compares the top two best performing raw waveform
based systems and the spectral-based systems. For brevity, we
only present the best performing baseline systems. (2s) refers to
2 seconds long input. (4s, 1024) refers to 4 seconds long input
with 1024 correlation window size. Fusion-Raw refers to the
system where the output of CNN-Raw-MSE and CNN-Raw-
Correlation are aligned through cross correlation and are aver-
aged. On the Dev set, our systems outperform low level descrip-
tor based systems and bag-of-audio-words based systems. Raw
waveform-based, CNN-Spec-MSE and Fusion-Raw yield per-
formance competitive to the baseline CNN+LSTM RNN sys-
tem.

Table 3: Pearson’s correlation coefficient r reported on the Dev
set and the Test set for baseline systems and proposed systems.

Dev Test
r r

ComParE 2020 Breathing sub-challenge Baselines

OPENSMILE: COMPARE functionals+SVM  0.244  0.442
OPENXBOW: COMPARE BoAW+SVM 0.226 0.366
End2End: CNN+LSTM RNN 0.507 0.731

Proposed Systems
CNN-Raw-MSE (25) 0.519 —

CNN-Raw-Correlation (4s, 1024) 0.514 —
CNN-Spec-MSE 0.472 —
RNN-LSTM-Spec-MSE 0.441 —
Fusion-Raw 0.552 0.656

It is worth mentioning that as per the challenge guideline
we have reported one test set result. Evaluation on test set is still
on-going for other systems. As only five attempts are allowed,
the test results for only a few of the systems will be updated after
the challenge deadline.

4. Analysis

This sections presents an analysis of our systems.

4.1. A note on evaluation measure

As noted earlier, the systems are evaluated by concatenating all
the predicted and ground truth recordings from different files
into a single file and comparing them. This may not com-
pletely reveal how the systems are performing on individual
files. There may be differences across recordings due to rea-
sons like sensor placement and body movements. Fig. 2 illus-
trates this aspect on recording “devel_00”, where CNN-Raw-
Correlation (4s, 1024) yields a r of -0.0013.
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Figure 2: (a) The speech waveform and breathing signal and
(b) the predicted and ground truth for breathing signal for
recording “devel 00" where CNN-Raw-Correlation (4s, 1024)
yields Pearson’s correlation coefficient of -0.0013. It can be
seen that the original breathing signal is very noisy which can
contribute to lower performance.

Furthermore, higher Pearson’s correlation coefficient does
not mean that all parts of the signal are predicted well. For
instance, as shown in Fig. 3, although CNN-Raw-MSE yields
better r than CNN-Spec-MSE, CNN-Spec-MSE is predicting
well the different regions in the signal. It seems that CNN-Raw-
MSE is predicting the peaks and cycles well.
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Figure 3: The breathing signal and predicted breathing pattern
for a file for (a) CNN-Raw-MSE model and (b) CNN-Spec-MSE
model. The Pearson’s correlation coefficient of the file for the
first model is 0.807 and for the second model is 0.761.

For better understanding, we compared the raw waveform
modeling-based system and short term spectral feature-based
system by computing,

1. r-average: Compute Pearson’s correlation coefficient

per recording and average it.



2. Compute MSE between the predicted signal and the
ground truth signal.

Table 4 presents the results based on r, r-average and MSE.
It can be seen that raw waveform modeling-based system and
spectral feature-based system performs comparably in terms of
r-average but MSE-wise spectral feature-based approach is per-
forming better. This may be because the raw waveform model-
ing method is not able to predict well the dynamic range of the
signals. To ascertain that, from each one of the files in the Dev
set, we obtained the minimum and maximum value and used
that to scale the CNN output as opposed to scaling between -
1 and +1. CNN-Raw-MSE,,,, and CNN-Raw-Correlationgy,
denotes the system after applying dynamic range scaling based
on original recording. It can be observed that MSE error re-
duces considerably and is comparable to spectral feature-based
system. It is worth noting that r-average does not changes but
there is considerable improvement in 7. These results indicate
that assessing the systems jointly in terms r, r-average and MSE
could be more meaningful.

Table 4: The r, r-average, and MSE for our systems with best
reported r on the Dev set.

Best Models r r-average MSE
CNN-Raw-MSE (2s) 0.519 0.547 0.149
CNN-Raw- 0.514 0.599 0.243

Correlation (4s, 1024)

RNN-LSTM-Spec-MSE 0.441 0.549 0.031
CNN-Spec-MSE 0.472 0.567 0.033

Fusion-Raw 0.552 0.603 0.176

CNN-Raw-MSEgy,, (2s) 0.589 0.547 0.039
CNN-Raw- 0.634 0.599 0.038
Correlationgy, (4s, 1024)

4.2. Role of phase difference

Another factor that can affect the prediction is the phase differ-
ence between speech recording and breathing signal recording.
Despite synchronization, this may arise simply due to sampling
frequency differences. So, we measured performance of our
systems by,

1. aligning the predicted signal and the ground truth signal
by computing cross correlation between them and shift-
ing one of the signals; and then

2. computing r and r-average.

Table 5 presents the results after aligning the predicted and
ground truth signals. When compared to results presented in
tables 3 and 4, there is improvement in terms of both r and r-
average. This indicates that the networks are not predicting the
output signal in-phase with the ground truth signal. The phase
difference may matter when relating time precise events in the
speech signal and the breathing signal.

5. Discussion and conclusions

This paper focused on estimating breathing pattern i.e. respi-
ratory signal from speech signal using neural networks. To-
ward that, on ComParE 2020 Breathing sub-challenge, we in-
vestigated raw waveform modeling-based approach and spec-
tral feature modeling-based approach. Our approaches, similar

Table 5: The r and r-average calculated on the Dev set for our
systems with output phase alignments

Best Models r r-average
CNN-Raw-MSE (2s) 0.565 0.614
CNN-Raw-Correlation (4s, 1024)  0.545 0.643
RNN-LSTM-Spec-MSE 0.491 0.621
CNN-Spec-MSE 0.524 0.628
Fusion-Raw 0.589 0.656

to the baseline CNN+RNN-LSTM approach, outperform low
level descriptors and bag-of-audio words based approach. On
the development set, our systems are comparable or better than
CNN+RNN-LSTM. An analysis of raw waveform modeling-
based approach and spectral feature modeling-based approach
in terms of performance metric r-average and MSE revealed
that both approaches yield systems that are not far in terms of
Pearson’s correlation coefficient, but spectral feature-based ap-
proach better models dynamic range of the respiratory signal.
Our analysis also revealed that the network predictions are not
necessarily in-phase with the ground truth respiratory signal.
Our future work will focus along the following directions:

1. improving raw waveform modeling approach in terms
of better prediction of dynamic range of the respiratory
signal. One possible direction is to consider different
loss functions such as, Berhu loss [21], which has been
studied with spectral feature-based approach [8]. Our
analysis indicates that raw waveform-based systems are
predicting the peaks and cycles well, as a consequence
yielding somewhat better Pearson’s correlation, when
compared to spectral-based approach. There may be
benefit in fusing the outputs of these two approaches. We
will investigate both directions.

2. analysing the raw waveform CNNs to understand what
kind of spectral information is being learned for respi-
ratory signal prediction. This can be done by analyzing
the first convolution layer [15, 12] and through gradient
propagation technique [16]. This would let us better un-
derstand the differences w.r.t spectral feature-based ap-
proach. Furthermore, it could provide insight to adapt
the CNN architecture, which in the present work has
been borrowed from speech processing task.
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