
TROPER
NOITA CI

N
U

M
MOC

P AID I

AUTOMATIC SPEECH RECOGNITION
ENGINES ADAPTED FOR EMBEDDED

PLATFORMS

Amrutha Prasad

Idiap-Com-01-2020

AUGUST 2020

Centre du Parc, Rue Marconi 19, P.O. Box 592, CH - 1920 Martigny
T +41 27 721 77 11  F +41 27 721 77 12  info@idiap.ch  www.idiap.ch





Automatic Speech Recognition Engines
Adapted for Embedded Platforms

Master AI THESIS

Author : Amrutha Prasad
Student n° : 18-696-500

Project supervisor : Petr Motlicek
Company supervisor : Alexandre Nanchen

Copyright (c) 2020 Idiap Research Institute, Martigny - Switzerland, https://www.idiap.ch





Abstract

Conventional hybrid automatic speech recognition (ASR) engines exploit state-of-

the-art Deep Neural Network (DNN) based acoustic model (AM) trained with Lattice

Free-Maximum Mutual Information (LF-MMI) criterion and n-gram Language Model

(LM). These systems usually have a large number of parameters and therefore require

significant parameter reduction to operate on embedded devices.

This thesis studies an impact of the parameter reduction on the overall speech recog-

nition performance. Following three approaches are presented: (i) AM trained in

the Kaldi framework with conventional factorized TDNN (TDNN-F) architecture. (ii)

the TDNN built in Kaldi is loaded into the Pytorch toolkit using a C++ wrapper. The

weights and activation parameters are then quantized and the inference is performed

in Pytorch. (iii) post quantization training for fine-tuning. Results obtained on stan-

dard Librispeech setup provide an interesting overview of recognition accuracy with

respect to applied quantization schemes.

Furthermore, this thesis revisits Keyword Spotting (KWS) approaches and demon-

strates that LF-MMI AM built to classify context-independent phones can operate

well when integrated within a light-weight decoder providing a likelihood ratio based

confidence score. The KWS was compared with the conventional lattice-based system

on several keyword detection datasets.
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1 Introduction

The goal of the Speech Hybrid Analytics Platform for Consumer and Enterprise Devices

(SHAPED) project1 is to develop a software architecture and related algorithms to

enable the most effective processing of speech between the embedded device and the

cloud, balance user experience and cost of the operation across the range of Logitech

voice-enabled interface devices.

With evolving technology, companies aim to provide its user effortless usability of their

devices. This can be achieved through implementing voice-control ability in their

devices, allowing the user to control the device using the most natural and obvious

means of communication (e.g. speech). The vision is to embed certain functionalities

including turning the device on/off, playing music requested by the user and perform

most of these operations on-device avoiding the use of cloud-processing.

For instance, devices from Logitech that currently use cloud-computing to perform

the operations are offered by the Alexa (i.e. Amazon cloud). The illustration of a Smart

device that uses cloud-computation is shown in Figure 1.1. This functionality raises

many issues that define the goals of the SHAPED project. Users that intend to use

speech to interact with devices are required to be registered with the cloud service.

In other words, Logitech products need to rely on third-party services. In addition,

cloud service providers require ownership of processed data, which implies that the

company cannot exploit the customer data for further analytics or processing to

improve their services. Finally, uploading the data to the cloud raises ethical questions

related to sensitivity of the processed data of the clients. Clients use the service with

the consent that their information will not be shared or stored.

The above mentioned concerns motivated the project consortium to implement the

Automatic Speech Recognition (ASR) and Keyword Spotting (KWS) functionalities on

1https://www.idiap.ch/en/scientific-research/projects/SHAPED
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Chapter 1. Introduction

Cloud Server

Smart SpeakerSpeech

ResponseRequest

Figure 1.1 – Illustration of cloud computation in Smart devices.

the embedded device thus minimizing the use of cloud-computation. To achieve this

we propose to reduce the model size for ASR through different approaches, allowing

to implement the full ASR/KWS systems on embedded devices.

Deep Neural Networks (DNN) help learn multiple levels of representation of data in or-

der to model complex relationships among them. Conventional Acoustic Model (AM)

applied in ASR framework is usually trained with neural network architectures such

as Convolutional Neural Networks (CNN) [1], Recurrent Neural Networks (RNNs) [2],

Time-delay Neural Networks (TDNN) [3] with the Kaldi [4] toolkit. The models with

such architecture can be complex and each layer usually has millions of parameters.

As the number of layers increases, the parameters of the model increase as well, which

has a direct impact on the AM footprint. Such models with millions of parameters

make them impractical to use with embedded devices such as Raspberry Pi. To embed

ASR/KWS systems on such devices, the footprint of the system needs to be significantly

reduced. One simple solution is to train a model with fewer parameters. However,

reducing the model size usually decreases the performance of the system.

Conventional KWS systems trained with Kaldi toolkit are based on word-recognition

lattices generated by the kaldi decoder using a large FST graph (i.e. usually of size of

hundreds of MB). As this approach is not practical for embedded devices, we started to

consider several alternative approaches to significantly reduce the CPU and memory

requirements.

One of the often considered approach is to quantize the model parameters from

floating point values to integers. In [5], quantization methods are studied for CNN

architectures for image classification and other computer vision problems. Results

show that quantizing such models reduces the model size significantly without any

impact on the performance. Another approach is to use teacher-student training

2



to first train a larger model that is optimized for performance and use its output to

train a smaller model. Alternatively, in models such as [6] parameter reduction is

integrated as a part of training. In this thesis, we study the effect of quantizing the

parameters of an AM used in ASR with a focus on deploying it on embedded devices

with low computational resources (especially, memory). We present the impact on the

performance of the ASR system when the AM is quantized from "float32" to int8 or

int16. The results of the quantization process are then compared to other techniques

used in parameter reduction for automatic speech recognition models. We believe

that results obtained from our study have not been presented in literature so far, and

can be of interest for researchers experimenting with interfacing Kaldi and Pytorch [7]

tools for ASR tasks.

Specifically for KWS engines, we also started to consider to significantly reduce the

CPU requirements (and also requirements for memory allocation during decoding)

by replacing a conventional LVCSR (lattice-based) keyword search by an acoustic

based KWS [8]. The acoustic KWS does not require a heavy FST-based decoder, but

can be replaced by a simple network (generated in an HTK style) to run a simple

token-passing decoder (i.e. SLratio available from STK toolkit [9])2. In order to reach

high detection accuracies, we learn from the previous work on flat-start LF-MMI

TDNN modeling that context-independent models can provide as good performance

as context-dependent (triphone) ones. This solution was therefore integrated into the

acoustic KWS, where TDNN model (trained to classify context-independent phones)

generates pseudo-likelihoods to be used as observation probabilities in the decoder

(i.e. graph is built from word-based HMM topology).

Part of this thesis is submitted as a paper [10] to Interspeech 2020. The rest of the

thesis is organized as follows. Chapter 2 provides an overview of the current state-of-

the-art ASR system, current KWS system and briefly describes the current techniques

used in parameter reduction of a model. This is followed by Chapter 3 that explains

the factorized TDNN used in training of AM for parameter reduction and Chapter 4

presents an overview of the quantization techniques and their application to AM

training with Kaldi toolkit. The experiments and the results are presented in Chapter 5.

Finally, the conclusion is provided in Chapter 6.

2https://speech.fit.vutbr.cz/en/software/hmm-toolkit-stk
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2 Related work

2.1 Overview of the state-of-the-art ASR

Automatic Speech Recognition (ASR) is a subfield of speech processing that involves

converting speech, typically in one language, to text. Hence, this is also termed as

speech-to-text. To convert a speech signal to text, a typical ASR system employs an

AM and a LM. The former is trained with a set of speech recordings with their corre-

sponding (ideally manually corrected) text, which are also referred to as transcripts.

AM represents the relationship between a speech signal and the phonemes, or other

linguistic units that make up the speech. The latter is trained on a large corpus of

text data. LM is usually represented by a probability distribution over sequences

of words. The LM provides context to distinguish between words and phrases that

sound similar. Using the knowledge of AM and LM, a decoding graph is usually built

as a finite state transducer (FST) [11; 12; 13], which generates text output given an

observation sequence as shown in Figure 2.1.

To build a robust speech recognition engine on smaller devices, the artificial intel-

ligence behind it has to be better at handling challenges such as different acoustic

conditions, background noise, model size, performance. Developments in natural

language processing and neural network technology have improved speech and voice

technology in the past. The state-of-the-art hybrid system for ASR uses deep neural

networks (DNN) based AMs trained with Lattice Free-Maximum Mutual Information

(LF-MMI) [14] criterion and n-gram models for LM. Then, RNN based LMs are often

used for rescoring the lattices generated with n-gram models. Although the lattice can

be generated in real-time, rescoring with RNN-LMs is slower than real-time. This may

not be suitable for applications where latency is critical.

5



Chapter 2. Related work

Figure 2.1 – A typical ASR system.

2.1.1 Acoustic Models

In hybrid1 DNN-Hidden Markov Model (HMM) based AM used in the ASR system

higher-level features and concepts are defined in terms of lower-level ones, and such

a hierarchy of features defines the deep architecture. Most of these models are based

on unsupervised learning of representations. Early works such as Feedforward Neural

Networks (FNN) only take current time steps as input. RNNs, especially Long Short-

Term Memory (LSTM) [15; 16] networks, have demonstrated better results in speech

recognition tasks due to their cyclic connections and utilization of sequential informa-

tion. However, the training of RNN relies on backpropagation, that arise issues related

to time consumption, gradient vanishing and exploding due to its complex compu-

tation. CNNs that apply local connectivity, weight sharing, and pooling techniques,

have outperformed previous models [17; 18].

The HMM is a generative model usually used with a Gaussian mixture model (GMM),

or a DNN to model acoustic data. A common approach for learning the HMM pa-

rameters is through maximum likelihood (ML) estimation with the objective function

defined as:

1In hybrid systems, DNNs are used to estimate probabilities for acoustic units (produced by cluster-
ing of the context) which corresponds to the HMM states. These probabilities are used to compute the
likelihood of acoustic data given word sequence in a hidden Markov model (HMM).
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2.1. Overview of the state-of-the-art ASR

FML(λ) =∑
u

log pλ(Xu |Wu), (2.1)

where λ is the parameters of the AM, Xu is the uth acoustic observation with tran-

scription Wu .

In information theory, the Mutual Information (MI) of two random variables is a

measure of the mutual dependence between the two variables. More specifically, it

quantifies the amount of information obtained about one random variable through

observing the other random variable. MI is linked to entropy, which quantifies the

expected amount of information held in a random variable. In ASR, MI is measured

between the distributions of observations and word sequences. Maximum Mutual

Information (MMI) estimation defined as:

FM M I E (λ) =∑
u

log
p(Xu ,Wu)

p(Xu)P (Wu)

=∑
u

(
log

p(Xu ,Wu)

p(Xu)
− logP (Wu)

)
=∑

u

(
log

pλ(Xu ,Wu)K P (Wu)∑
W pλ(Xu |W )K P (W )

− logP (Wu)

)
, (2.2)

aims to directly maximise the posterior probability that is also called as conditional

maximum likelihood which is defined as:

FC ML(λ) =∑
u

logP (Wu |Xu)

=∑
u

log
pλ(Xu |Wu)K P (Wu)∑
W pλ(Xu |W )K P (W )

. (2.3)

The notations are described in Table 2.1.

Maximum Likelihood Estimation (MLE) is a method of estimating the parameters of a

statistical model, given observations. The method obtains the parameter estimates

by finding the parameter values that maximizes the likelihood function. Minimizing

the cross entropy minimizes the expected frame error and maximizes the MI which

reduces the sentence error thus achieving state-of-the-art performance.

The denominator in equation 2.3 is called the denominator graph and is estimated

using a phone language model (LM) (instead of a word LM) as shown in [14]. The

7



Chapter 2. Related work

Table 2.1 – Notations for equations 2.2 and 2.3

Notation Definition

λ Parameters of the acoustic model
u Index over utterances
X Sequence of acoustic observations

Xu Observation for utterance u
W Sequence of words

Wu Transcription of uthut ter ance
K Scaling factor for correction of overestimation. = 1/12

phone LM for the denominator graph is a pruned n-gram LM trained using the phone

alignments of the training data.

To increase the performance of the ASR system with the increase in the availability of

resources, DNNs are trained to output pseudo likelihoods for the states in the HMM.

Traditional DNN-HMM hybrid AMs are trained with the Cross Entropy (CE) criterion.

Speech recognition can be considered as a sequence-to-sequence mapping problem

where a sequence of sounds is converted to a sequence of meaningful linguistic units

(e.g. phones, syllables, words, etc). In order to better distinguish different classes of

sounds, it is useful to train AM with positive and negative examples. Hence, sequential

discriminative criteria such as MMI and state-level Maximum Bayes Risk (sMBR) can

be applied. The former is now commonly known as Lattice-Free MMI (LF-MMI/Chain

model) [14]. This method could be used without any CE initialization leading to lesser

computation [18].

State-level sequence-discriminative training of DNNs starts from a set of alignments

and lattices that are generated by decoding the training data with a LM. For each

training condition, the alignments and lattices are generated using the corresponding

DNN trained using cross-entropy [18]. The cross-entropy trained models are also

used as the starting point for the sequence-discriminative training. In sMBR training

word-level LM is used, whereas in LF-MMI training phone-level LM is used. This

simplification enables LF-MMI training to use GPU clusters and is considered as the

state-of-the-art AM for ASR hybrid systems. However, sMBR training is 100 times

slower than real-time as it can be run only on the CPU.

2.1.2 Language Models

Typical LM used in an ASR system is a statistical n-gram model which is represented

by the probability distribution over a sequence of words with n being 1 (unigram),

8



2.1. Overview of the state-of-the-art ASR

2 (bi-gram), 3 (tri-gram), or higher. The n-gram models predict a word given the

previous n-1 words by calculating the conditional probability of a word given n-1

previous words. In an n-gram LM, the probability P (w1, ..., wN ) of observing the

sentence w1, ..., wN is approximated as:

P (w1, ..., wN ) =
N∏

i=1
P (wi |w1, ..wi−1)

≈
N∏

i=1
P (wi |wi−(n−1), ..wi−1), (2.4)

where n is the order of the model. Using the Markov property, in equation 2.4, the i th

word wi is estimated as the probability of observing its preceding n −1 words. In ASR

systems, a typical LM trained is a tri-gram (3-gram) model. For example, in 3-gram

model, the probability of the sentence "This is a sample sentence" is approximated as:

P (This, is, a, sample, sentence) = P (This|<s>, <s>)×P (is|this, <s>)

×P (a|is, this)×P (sample|a, is)P (sentence|sample, a)

×P (</s>|sentence, sample), (2.5)

where < s > is start-of-sentence marker and < /s > is end-of-sentence marker. To

improve the performance of these LMs, they have to be trained on large amounts of

data and 4-gram or 5-gram models should be used. As n increases, the size of the

model and training time increase as well. Moreover, with such large LMs it is not

feasible to build a decoding graph. With increase in quantity of data, the performance

of the n-gram models may also decrease [19].

Research in natural language processing [20] has shown that it is possible to train

neural LMs that perform better than n-gram models [21]. The possibility of training

LMs with neural networks has been investigated since many years. The first neural

network based LM was proposed by Bengio [21] in 2003. The statistical LMs were

replaced by neural network based LMs with the commencement of RNN based LM [22].

As RNNs use their internal state to process the sequence of inputs, the training of LMs

for quite large sequences of words can be achieved easily.

In contrast to the feedforward neural network, a RNN has recurrent or cyclic connec-

tions between its layers. There are connections between the input and the hidden

layers which can be parameterized by a weight matrix U , connections between hidden

layers can be parameterized by a weight matrix W and the connections between

the hidden layers and the output can be parameterized by a weight matrix V . Many

different architectures for RNNs exist. A notable difference between feedforward

9



Chapter 2. Related work

and recurrent networks is the way in which parameters are shared between different

parts of the model. Parameter sharing allows a model to be extended to examples of

different lengths and to generalize across examples [22] and is especially important

when the same piece of information occurs at several positions within an input se-

quence. When training a machine learning model to extract certain information, we

would like the model to recognize it independent of its position in the sentence. A

feedforward network that processes sentences of fixed length would have different

parameters for each input feature, causing it to learn separately the rules of the lan-

guage at each sentence. Different to a feedforward network, an RNN would share the

same weights across multiple time steps [22]. The sharing of parameters arises from

the way in which an RNN operates: when computing the output of a hidden unit,

each component of the output is produced by applying the same update rule to each

component of the previous output. Furthermore, the model contains an output layer

that uses information from the hidden state in order to make predictions. As the state

of a hidden neuron at time step t is a function of all inputs from previous time steps,

the recurrent connections can be viewed as creating a kind of "memory". A hidden

unit that preserves information across multiple time steps is called a memory cell.

Long Short-Term Memory (LSTM) is one of them which is designed to be better at

accumulating information and learning long term dependencies.

During the training of an RNN LM, the input sequence of words is mapped to its

embedding vector using the model’s embedding matrix which can be initiated ran-

domly and adapted during training or provided with a pre-trained word embeddings.

The sequence of word embeddings is then processed by one or more hidden layers

of the network. The final outputs are further processed by an output layer with a

softmax activation function. For each input word, the output layer produces a vector

with as many entries as words in the vocabulary, where each entry represents the

predicted probability that the corresponding word is the next word in the sequence.

The network is trained by minimizing CE loss between the predicted sequence and

the target sequence.

Due to their simplicity, statistical n-gram models were dominant for a long time.

However, RNN LMs have several advantages compared to n-gram models. RNN LMs

can handle longer histories of inputs than n-gram models and are able to incorporate

long-range dependencies in their predictions. This is especially important for NLP

because dependencies between words often span across several sentences. RNN LM

models require a lot less memory space compared to the statistical n-gram models.

While n-gram models count the occurrences of certain word combinations, RNNs

learn a distributed representation for each word context. This distribution can be

used to obtain a probability distribution over all words. To use a large size n-gram

10
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model in ASR they have to be pruned which is not required in RNN LMs.

The performance of a language model is measured in terms of perplexity. It is a mea-

surement of how well a model predicts a sample. As mentioned in [20], perplexity is

the inverse of the probability assigned to the test set by the language model, normal-

ized by the number of words in the test set. i.e., if a test set has W = {w1, ..wN } words,

then the perplexity is estimated as:

PP (W ) = N
√

1
PP (w1,w2,..wN ) . (2.6)

If a model can assign high probability to an unseen word, then its probability is good.

Using equation 2.4 in the equation 2.6, we get

PP (W ) = N

√
1∏N

i=1 PP (wi |wi−(n−1),..wi−1)
. (2.7)

2.2 Overview of the KWS system

In speech processing, acoustic keyword spotting is the task of identifying certain

keywords in speech utterances. A KWS system takes a speech utterance (while a

phoneme sequence of the keyword is also of interest to build a specific decoding graph)

and provides a prediction of the keyword in the speech utterance as a confidence score.

If the confidence is above a predefined threshold, the keyword is detected, otherwise

the keyword is not accepted. Unlike ASR, KWS is a limited vocabulary system and

does not recognize the whole utterance. This system is used in applications such as

information retrieval, wake-word detection in smart devices. An advantage of KWS

system is the possibility to spot out-of-vocabulary words, which usually cannot be

recognized by Large Vocabulary Continuous Speech Recognition (LVCSR) systems.

2 types of KWS are popular and often considered by researchers but also developers:

(i) a lattice based KWS [23] and (ii) an acoustic KWS [24; 8]. The lattice-based KWS

is built on top of the LVCSR recognition system. It uses word recognition lattices

generated by the decoder (i.e. in our experiments Kaldi based FST decoder is used to

detect a keyword.

More specifically, the Kaldi KWS baseline deploys the word-recognition lattices gen-

erated from all the speech utterances that are converted from individual weighted

finite state transducers (WFST) to a single generalized factor transducer structure in

which the lattice posterior probability of each word is stored. This factor transducer

11
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Filler modelFiller model

Background model

Keywords’models

Figure 2.2 – Overview of acoustic KWS.

is actually an inverted index of all word sequences seen in the lattices [23]. During

detection, given a keyword, a simple finite state machine is created that accepts the

keyword and composes it with the factor transducer to obtain all occurrences of the

keyword in the search collection, along with the lattice posterior probability of each

occurrence. All those occurrences are sorted according to their posterior probabilities

and then a decision is assigned to each instance as proposed in [25].

In acoustic KWS, during detection word models of searched keywords are built from

corresponding phone models (i.e., usually 3-state phone posterior estimates are

transformed into 3-state HMM with emission probabilities given by the DNN (for

instance trained with LF-MMI criterion)). In parallel, concatenated keyword models

are then accompanied by filler and background models (usually represented by simple

phone loops to allow any possible sequence of phonemes) to create a final decoding

network, as shown in Figure 2.2 . The filler model is used to represent other parts

of acoustic sequence appearing in verified hypotheses (i.e. keyword is present in

utterance) and the background model is used to represent the competing hypothesis

(i.e. keyword is not present in utterance). Likelihoods of the detected keywords are

taken from the last state of each keyword model (i.e. verified hypothesis) and from the

background model (competing hypothesis) and the likelihood ratio is assigned with

each keyword. The likelihoods are computed using Viterbi decoder). Confidence Score

(CS) of each detected keyword is therefore given as a log-likelihood ratio between these

two likelihoods [24]. As this type of KWS does not require generation of recognition

12
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Data Trained model

Reduced modelProcessing data Inference

Parameter reduction: Quantization

Figure 2.3 – Illustration of parameter reduction.

lattices, it offers a much lighter solution (i.e. requiring very small CPU load and

memory footprint).

2.3 Overview of parameter reduction

Parameter reduction is a process that removes certain layers of the neural network

avoiding the loss of useful information of the network required for its decision process.

This process can be applied to already trained neural networks or implemented during

the training. This process is illustrated in Figure 2.3. Several different approaches can

be considered:

• Teacher-student approach to reduce the number of layers in the student neural

network [26; 27].

• Reduce the size of the layers used in training the neural network through matrix

factorization [28].

• Reduce the hidden layer dimension (e.g. from 1024 to 512 in each layer of the

neural network).

• Reduce the number of hidden layers used in the network.

• Quantization of model parameters (e.g. from 32 bit floating precision to 16 bit

floating precision) [5; 29].

2.3.1 Teacher-student approach

A simple way to improve the performance of a machine learning algorithm is to train

ensemble models with the same data and then average their predictions or train a

single large model. Unfortunately, the ensemble models or a large model cannot be

employed on devices which have low resources. Caruana et al. in [30] showed that the

knowledge in an ensemble can be compressed into a single model. This approach was

13
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Figure 2.4 – Diagram of the teacher-student approach to reduce the model of the
student network.

developed further by Hinton and his collaborators [26] through a different approach.

In general, model compression in teacher-student approach is achieved by teaching

a smaller network to mimic a bigger trained model. This process of applying the

knowledge learnt from a larger (teacher) model to a small (student) model is known as

knowledge distillation. In the distillation process, knowledge is transferred from the

teacher model to the student by minimizing a loss function where the targets are the

soft targets predicted by the teacher model. This process is represented in Figure 2.4.

Most often, the output of the last layer of neural network architecture for a classifier

uses a softmax function. The output of this softmax function is a probability distribu-

tion that has a very high probability for the correct class, and a probability close to

zero for other classes. Given the inputs zi , the output of the softmax (σ)is estimated

as:

σ(zi ) = exp(zi )∑
j exp(z j )

. (2.8)

In [30], the soft targets were the inputs to the final softmax (logits) while in [26] the soft

targets were the output of the softmax function. The concept of "softmax temperature"

was introduced by Hinton where, the probability pi of class i is calculated from the
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logits z as

pi =
exp( zi

T )∑
j exp(

z j

T )
, (2.9)

where T is the temperature parameter. When T = 1 the standard softmax function

is obtained. As T increases, the probability distribution generated by the softmax

function becomes softer. This provides more information as to which classes the

teacher found more similar to the predicted class. Therefore in the distillation process,

this embedded knowledge in the teacher model, will be transferred to the student

model. The same higher value of T is used to compute the softmax on the student’s

logits during the training.

In addition to learning of the soft targets, learning to produce the correct labels based

on the ground truth is found beneficial while training the small model. Hence, the

"standard" loss between the student’s predicted class probabilities and the ground-

truth labels (also called "hard targets") is also calculated using the temperature of

T = 1.

2.3.2 Low rank matrix factorization

Single Value Decomposition (SVD) is one of the most popular methods which can be

applied to the trained models to factorize the learned weight matrix as a product of

two much smaller factors. SVD then discards the smaller singular values followed by

fine tuning of the network parameters to obtain a parameter-reduced model [31]. For

a given m ×n weight matrix W , SVD is applied as

Wm×n =Um×m
∑

m×n
V T

n×n , (2.10)

where
∑

is a diagonal matrix that contains the singular values of W , and U and V

contains the left and right singular values of W .
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3 Factorized TDNN

Speech can be viewed as a sequence-to-sequence mapping problem. Neural network

architectures such as CNN and RNN were used to incorporate long temporal contexts.

An important factor to be considered during the training of large neural networks

is the parallelization of training so that we can use GPUs. One of the architectures

effective for modeling temporal context dependencies is TDNN [32] architecture. [3]

showed that the TDNN architecture does not impose any relationship between the

length of the input context and the number of sequential steps used during training.

This allows to model training with long temporal contexts.

3.1 Overview of TDNN

In TDNN architecture the initial transform learns from a narrow context and the

higher layers learn from a wider temporal context. Hence, the deeper layers are able

to learn wider temporal relationships. Each layer in the TDNN architecture uses a

different temporal resolution. The resolution increases as the higher layers of the

network are reached. TDNN is also called as 1D CNN because the transforms in the

TDNN model are tied only across time steps. Due to this tying, the lower layers of

the network learn translation invariant feature transforms during back-propagation

as they are updated by a gradient accumulated over all the time steps of the input

temporal context [32].

At each layer, certain time steps defined by the input context are used to compute

the activations, i.e. the input contexts of each layer of the network are required to

compute output activation at one time step shown in Figure 3.1. The input layer

consists of t −10 to t +10 frames. The first layer has a context of [−1,1] with n = 256

where n is the dimension of each time frame. The context [−1,1] implies that the t th

frame of layer 1 is computed using {t−1, t , t+1} frames of the input layer. For instance,

17



Chapter 3. Factorized TDNN

Figure 3.1 – Block diagram of computation of the output activations for each layer
using the context in TDNN.

the first layer’s (t −9)th frame is calculated using the input layer’s (t −10)th frame to

(t −8)th frame. However, there would be large overlaps of the input contexts when

computing the activation of neighbouring time steps. Therefore using the assumption

that the neighbouring activations will be correlated, sub-sampling is performed on

the layers.

Sub-sampling allows gaps between frames, i.e instead of using {t −1, t , t +1} input

frames to compute the activation, it uses only {t −1, t +1} frames. This means that

selective time steps need to be evaluated. The subsampling is usually done for higher

layers with the difference between the offsets at the hidden layers being multiples

of 3 in order to ensure that only a small number of activations will be evaluated.

With this scheme, the necessary computation is reduced during the forward pass

and backpropagation. Computation reduction in forward pass and backpropagation

implies that the training time is reduced. The current state-of-the-art systems use

rectified linear unit (ReLU) activation followed by batchnorm layer after the TDNN

layer as it provides better performance.

3.2 Overview of TDNN-F

As described in Chapter 2, SVD is one of the most popular techniques that can be

applied to a model to reduce its parameters. Another approach to enforce parameter

reduction while training a neural network AM is by applying low-rank factorized
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layers [6]. In semi-orthogonal factorization, the parameter matrix M is factorized as

a product of two matrices A and B , i.e M = AB where B is a semi-orthogonal matrix

and A has a smaller “interior” (i.e. rank) than that of M . The term "semi-orthogonal"

refers to orthogonality of non-square matrices. i.e., a non square matrix M is semi-

orthogonal if M M T = I or M T M = I . This can be shown using SVD. Let the parameter

matrix M has fewer rows than columns. In order for M to be orthogonal, it should

satisfy M M T = I . Since, we try to enforce a non-square matrix M to be orthogonal,

M M T = P is defined and the error is represented as Q = P − I . In order to minimize

the error Q, a function f is defined as the sum of squared elements of Q which is

represented as:

f = tr (QQT ). (3.1)

Since Q is a matrix, the sum of squared elements is tr (QQT ). f can be minimized

by taking the derivative with respect to Q. Since f in equation 3.1 will be a scalar,

derivative of a scalar w.r.t. a matrix is not transposed w.r.t. that matrix (i.e. QQT will

be considered as Q2). Hence

∂ f

∂Q
= 2Q. (3.2)

Since Q is related to P , the derivative of f w.r.t. P is:

∂ f

∂P
= ∂Q

∂P

= ∂[(P − I )(P − I )T ]

∂P

= ∂[PP T −PI T − I P T + I I T ]

∂P
= 2P − I T − I

= 2(P − I )

= 2Q. (3.3)

Also, since we want to enforce M to be semi-orthogonal, the function f has to be

minimized w.r.t. to M . The derivative of f w.r.t. to M is the value that would be used
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to update the value of the parameter M during one iteration of stochastic gradient

descent (SGD). A detailed derivation is as below:

∂ f

∂M
= ∂Q

∂M

= ∂[(P − I )(P − I )T ]

∂M

= ∂[PP T −PI T − I P T + I I T ]

∂M

= ∂[(M M T )(M M T )T − (M M T )I T − I (M M T )T + I I T ]

∂M
= 2M(M M T )+ (M M T )2M −2M I T −2M I

= 4M(M M T − I )

= 4MQ. (3.4)

From the above derivation, we see that M is updated as M = M −4νQM , where ν is

the learning rate. For quadratic convergence, the learning rate ν is chosen to be 1/8.

By substituting the value of learning rate and simplifying we get

M ←− M −4(
1

8
)QM

M ←− M − 1

2
(M M T − I )M . (3.5)

If M is very far from being orthonormal, the above equation would not converge.

Hence, in practice Glorot (also known as Xavier) initialization [33] is used in this

architecture where the standard deviation of the random initial elements of M is the

inverse of square root of the number of columns.

In general, l2 regularization is used (i) to control how fast the parameters of various

layers change, and (ii) to reduce the scale of the parameters which helps the model to

learn faster. Since the ReLU is scale invariant, l2 regularization does not have an effect

on how fast the parameters change when applied to the hidden layers. In order to

have a consistent control of this, a scaling factor is added to equation 3.5. Substituting
1
α

M and simplifying equation 3.5, a scaled version of the semi-orthogonal matrix is
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Figure 3.2 – Block diagram of computation of the output activations for one layer
factorized TDNN (TDNN-F).

obtained which is

M ←− M − 1

2α2
(M M T −α2I )M . (3.6)

The formula for α that ensures that the change in M is orthogonal to itself is given as:

α=
√

tr (PP T )

tr (P )
. (3.7)

The above proposed method is applied to an existing topology such as TDNN and

factorizes its parameter matrices into products of two smaller matrices. For example,

if the TDNN model architecture has a hidden layer dimension of 625, then a typical

parameter matrix would have a dimension of 625×1875. Here the number of columns

(1875) corresponds to the three frame offsets of previous layers spliced together i.e., it

can be viewed as a CNN with a 3×1 kernel and 625 filters. So the idea of factorization

is to factorize this 625×1875 matrix M into two matrices as M = AB with a smaller

"interior" dimension (also called linear bottleneck dimension) of 160 for e.g. This

factorization will make A of size 625×160 and B of size 160×1875 with B constrained

to be semi-orthogonal. This is shown in Figure 3.2. The number of parameters

21



Chapter 3. Factorized TDNN

625∗1875 = 11.7M in TDNN model is reduced to 625∗160+160∗1875 = 4M in the

TDNN-F model.

Thus this technique enables training a smaller network from scratch instead of using

a pre-trained network for parameter reduction. The LF-MMI training also provides a

stable training procedure for semi-orthogonalized matrices.

While semi-orthogonal matrices have been studied with TDNN-F (a variant of TDNN

with residual connections), it has not been compared with other model reduction

techniques. In our experiments, we present

• Comparison of TDNN and TDNN-F with respect to varying the number of layers

for the ASR task.

• Comparison of using TDNN-F and different quantization techniques applied to

TDNN model in monophone and triphone based neural network outputs for

ASR task.

• Comparison of using monophone and triphone based neural network outputs

with TDNN-F architecture for KWS task.
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4 Quantization

A popular technique to reduce the size of the model is through quantization. This

approach is applied in computer vision problems and is supported by many deep

learning frameworks like Pytorch [7] and TensorFlow [34]. However, applying quanti-

zation to AM trained with LF-MMI criterion using Kaldi toolkit is not a straightforward

approach because Kaldi inference supports only floating point operations. The fol-

lowing subsections explain the standard quantization process for DNNs and how it is

applied to the AMs.

4.1 Overview of quantization process

Quantization is a process of mapping a set of real valued inputs to a discrete valued

output. Commonly used quantization types are "16 bit" and "8 bit" (signed/unsigned)

integers. Quantizing model parameters typically decreases the number of bits used to

represent the parameters. Prior to this process the model may have been trained with

IEEE "float32" or "float64". A model size can be reduced by a factor of 2 (with 16 bits

quantization) and by a factor of 4 (with 8 bits quantization) if the original model uses

"float32" representation.

In addition to the quantization types, there are different quantization modes such as

symmetric and asymmetric quantization. As mentioned earlier, a real valued variable

x in the range of (xmi n , xmax) is quantized to a range (qmi n, qmax). In symmetric

quantization, the range (qmi n, qmax) corresponds to (−Nlevel s
2 , Nlevel s

2 −1). In asym-

metric quantization the quantization range is (0, Nl evel s
2 −1). In the aforementioned

intervals, Nlevel s = 216 = 65536 for 16 bit quantization and Nlevel s = 28 = 256 for 8 bit

quantization.
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A real value r , can be expressed as an integer q given a scale S and zero-point Z [5]:

r = S ∗ (q −Z ). (4.1)

In the above equation, scale S specifies the step size required to map the floating point

to integer and an integer zero-point represents the floating point zero [5].

Given the minimum and maximum of a vector x and the range of the quantization

scheme, scale and zero-point is computed as below [29]:

S = xmax −xmi n

qmax −qmi n
(4.2)

and

Z = qmi n − xmi n

scale
. (4.3)

As mentioned in [5], for 8 bit integer quantization the values never reach -128 and

hence we use qmi n =−127 and qmax = 127.

4.2 Implementation

We implement the quantization algorithms in Pytorch as it provides better support

than Kaldi for int8, uint8 and int16 types. The aim of our work is to port models

trained in Kaldi to be functional in embedded systems. There already exist tools such

as Pykaldi [35] that help users to load Kaldi acoustic models for inference in Pytorch.

However, they do not allow access to the model parameters by default. To support this

work, we implemented a C++ wrapper that allows access to the model parameters and

input MFCC features as Pytorch tensors. These tensors are then quantized using the

above equations. The inference is then carried out in Pytorch or Kaldi, based on the

type of quantization. In order to carry out inference in Kaldi, the Pytorch tensors are

converted back to the format required by Kaldi. The wrapper allows us to write the

models and ark (archive) files back to Kaldi format.

Once the model is loaded as a tensor, there exist several options: we can quantize only

the weights of the models, or quantize both weights and activations.

4.3 Quantization of weights only

Weight-only quantization is an approach in which only the weights of the neural

network model are quantized. This approach is useful when only the model size
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Figure 4.1 – Block diagram of integer arithmetic inference with quantization of weights
and activations. Input activations and weights are represented as 8-bit integer accord-
ing to equation 1. The 1D convolution involves integer inputs and a 32-bit integer
accumulator. The output of the convolution is mapped back to floating point and
added with the bias.

needs to be reduced and the inference is carried out in floating-point precision. In

our experiments, the weights are quantized in Pytorch and the inference is carried out

in Kaldi. The quantized weights cannot directly be used in Kaldi as it supports only

floating-point precision. Therefore the model parameters are de-quantized (convert

integer values back to floating point precision) and saved as Kaldi nnet3 model. The

decoding is then performed as usual using the HCLG graph in Kaldi [4; 12].

4.4 Quantization of weights and activations

In order to reduce the model from 32 bit precision to 8 bit precision, both the weights

and activations must be quantized. Activations are quantized with the use of a calibra-

tion set to estimate the dynamic range of the activations. Our network architecture

consists of TDNN layer followed by ReLU and Batchnorm layers as mentioned in

Chapter 3. In our experiments, we quantize only the weights and input activations of

the TDNN layer as depicted in Figure 4.1 and the integer arithmetic is applied only to

the 1D convolution.

The translation of real-numbers computation into quantized-values computation is

required in order to perform the 1D convolution for quantized weights and activations.

Consider two N ×N matrices of real numbers r with the entries of these matrices

denoted as rα with (α= 1 or 2). Let the product of 2 real numbers r1 and r2 be denoted
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as r3 = r1r2. The matrix multiplication of the 2 matrices can be denoted as:

r (i ,k)
3 =

N∑
j=1

r (i , j )
1 r ( j ,k)

2 . for 1 ≤ i , j ,k ≤ N (4.4)

Using equation 4.1 for rα in equation 4.4, we get

S3(q (i ,k)
3 −Z3) =

N∑
j=1

S1(q (i , j )
1 −Z1)S2(q ( j ,k)

2 −Z2), (4.5)

which can be rewritten as,

q (i ,k)
3 = Z3 +M

N∑
j=1

(
q (i , j )

1 −Z1

)(
q ( j ,k)

2 −Z2

)
, (4.6)

where the multiplier M is defined as

M = S1S2

S3
. (4.7)

Simplifying equation 4.6, we get:

q (i ,k)
3 = Z3 +M

(
N Z1Z2 −Z1a(k)

2 −Z2a(i )
1 +

N∑
j=1

q (i , j )
1 q ( j ,k)

2

)
, (4.8)

where a(k)
2 =∑N

j=1 q ( j ,k)
2 and a(k)

1 =∑N
j=1 q (i , j )

1 .

Equation 4.8 is used to multiply the quantized weights and activations in 1D convolu-

tion. The computation of a(k)
2 and a(i )

1 collectively takes 2N 2 additions and the last

term in equation 4.8 takes 2N 3 operations.

As in our experiments we only perform integer arithmetic of weights and activations,

equation 4.8 becomes

r (i ,k)
3 = M

(
N Z1Z2 −Z1a(k)

2 −Z2a(i )
1 +

N∑
j=1

q (i , j )
1 q ( j ,k)

2

)
, (4.9)

with M = S1S2. The above equation gives the floating-point value which is then added

with the floating-point bias vector. The code relating to this operation is provided in
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Appendix A.

Floating point operations are used in ReLU and Batchnorm layers in order to simplify

the implementation, as the main focus of this paper is to only study the impact of

quantization on AM weights and activations. The conventional word-recognition

lattices are then generated by a Kaldi decoder (i.e. performance in Kaldi) with the use

of Pytorch generated likelihoods.

4.5 Post quantization fine-tuning

Quantization is a process that reduces the precision of the model. This implies that

noise is added when weights are quantized. In order to reduce the level of noise, a

process of fine tuning is carried out. In this experiment, the quantized weights are

first de-quantized and saved. This model is then loaded back to Kaldi and further

trained for 2 epochs with a low learning rate. The process of quantizing and fine

tuning is carried out in three iterations with an assumption that the final model when

quantized converges to the baseline TDNN model.
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5 Experiments

5.1 Experimental Setup

This section briefly describes the data used throughout all the experiments performed

in this thesis, the acoustic and language models used in KWS task and different

parameter reduction techniques applied for ASR task. This is followed by the overview

of the evaluation metric used in ASR and KWS task.

5.1.1 Data

Training Data

The research performed for all the parameter reduction techniques for ASR tasks

employs the Librispeech dataset [36]. Librispeech is a corpus of approximately 1000

hours of 16 kHz read English speech from the LibriVox project. The LibriVox project

is responsible for the creation of approximately 8000 public domain audio books,

the majority of which are in English. Most of the recordings are based on texts from

Project Gutenberg2, also in the public domain.

The results presented for the KWS task employs models trained with 2 datasets. They

are:

• Models trained with only Librispeech dataset consisting of 960 hours.

• Model trained with 150 hours of a combined dataset of AMI, Librispeech and

TEDLIUM (ILT).

The AMI [37] Meeting Corpus consists of 100 hours of meeting recordings. The record-

ings use a range of signals synchronized to a common timeline. These include close-
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Table 5.1 – The keywords present in the Logi-test set.

Keywords

Hey Alexa
Hey Blue Genie

Hey Logi
Hey Logitech

Hey Siri
Mute

OK Google
Pause
Play

Rewind Ten Seconds
Set Volume Five

Stop
Volume Down

Volume Up

talking and far-field microphones, individual and room-view video cameras, and

output from a slide projector and an electronic whiteboard. The meetings were

recorded in English using three different rooms with different acoustic properties, and

include mostly non-native speakers.

The TED-LIUM [38] corpus is English-language TED talks with transcriptions sampled

at 16kHz. It contains about 118 hours of speech.

Evaluation set

The speech recognition performance for all ASR related experiments is measured

on the Librispeech test-clean evaluation set. The KWS evaluations presented are

evaluated on two different test sets. The 2 test sets are (i) Librispeech test-clean

evaluation set, and (ii) a subset of proprietary Logitech voice control dataset (Logi

test set). The Librispeech test set consists of 40 speakers with 5.4h of data and the

Logi test set consists of 12 US English native speakers and 14 keywords [39] listed in

Table 5.1, an additional label for "Unknown Word" which is not part of the keywords

and a label "Silence" when no speech is detected [40]. Although the test set consists of

14 commands, the results presented are evaluated on 7 keywords (DOWN, FIVE, PLAY,

PAUSE, STOP, SECONDS, VOLUME), a subset of the 14 commands. These 7 keywords

are selected such that they occur in both the Logi and Libri test set.
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5.1.2 KWS Task

As mentioned in Chapter 1, the aim of this project is to study efficient ways to reduce

the parameters of KWS/ASR engines in order to allow them to operate on the em-

bedded devices. As hitherto mentioned, the traditional lattice based KWS exploits

LVCSR decoder which requires large (in case of Kaldi - a FST) graphs to be loaded to

the memory, while used during decoding. These graphs cannot be easily loaded on

the embedded device due to their large size (i.e. in case of LVCSR task considering

hundreds of thousands words in vocabulary, the composed HCLG graphs are of size

of several hundreds of MB, which is not practical due to memory constraints of em-

bedded devices). In addition, the lattice decoder is usually a CPU-heavy algorithm

which requires considerable experience in installation, processing and debugging.

Traditional KWS approach (often denoted as query term detection) built on LVCSR

decoder considers word-recognition lattices generated by the decoder and the pre-

defined keywords are searched in the lattices. Posterior probability can then be

assigned to each keyword detected in the lattice (i.e. a confidence score). This ap-

proach is considered as an offline solution since it requires generating ASR lattices

which are then indexed for KWS task. This approach was not used in the evaluation

experiments presented below.

A naive way to deal with the KWS detection problem is to build a G.fst graph (related

to LM) using a loop of words considered in keyword list, while adding an ad-hoc

penalty for recognizing a new word (e.g. a threshold between sil/sp states when

passing through word arcs). In this case the G.fst is relatively small (a set of unigram

probabilities) and is composed with the other H, C, L FST graphs 1. Unfortunately

the drawback of this approach is that there is not a clear definition of confidence of

detected keyword (as the composed FST graph is used to generate 1-best hypothesis

and alternative hypotheses (e.g. generated by a background model) are not considered.

The second drawback is the use of still heavy decoder (FST based).

Therefore, we considered the third approach relying on an acoustic KWS approach.

The idea behind this work is motivated by the fact that flat-start LF-MMI models

(considering a monophone states as the output of the network) trained in Kaldi

provide "almost" as good performance as the models trained in a standard (triphone)

setup. Hossein et al. in [41] showed that using a monophone model does not impact

the recognition performance of the system. As acoustic KWS approach usually works

on sequence of monophones (i.e. it has been shown that context-dependent graphs

do not necessarily improve the performance), we build the acoustic based KWS on

1http://kaldi-asr.org/doc/graph.html

31



Chapter 5. Experiments

Figure 5.1 – Example graph built by acoustic KWS approach when evaluated on logi-
test set with 7 keywords.

monophones as well (as explained in Section 5.1.3). In addition to monophone based

outputs, low-rank matrix factorization is used in training of AM.

Acoustic models

In acoustic KWS detection system, a light decoder can be used (Viterbi based on token

passing), considering a simple (HTK based) graph which consists of two hypotheses:

(1) considering a keyword(s) occurring in an input acoustic sequence, (2) alternative

hypothesis built using a universal background model, assuming the keyword does

not occur in the input speech sequence. Finally two likelihoods are estimated and a

likelihood ratio is computed which represents the confidence of the given word.

Figure 2.2 provides a high-level description of the acoustic KWS approach: filler mod-

els, background model, and model(s) related to keywords to be detected. Figure 5.1 is

an example of the graph being built for our logi-test evaluation dataset considering 7

keywords.

The approach also allows the introduction of word insertion penalty (WIP) which can

be used to tune the false-alarm rate of the acoustic-KWS system. Both acoustic KWS

and lattice based KWS employ TDNN LF-MMI acoustic model - meaning the pseudo

likelihoods estimated by TDNN model (softmax monophone outputs) are used as
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Table 5.2 – Overview of AMs used in the evaluation of the Librispeech test-clean set.
The number of layers in these models are 17 with the architecture same as in Table 5.5.
The stride of layers 7 to 17 are same as layer 6 of the model in Table 5.5. The number of
outputs of monophone models are 41 and 5984 for triphone model. All these models
are used in the lattice-based KWS approach.

Model Dataset Training data (hours) #Params (M)

monophone-libri Librispeech 960 7.2
triphone-libri Librispeech 960 20.8

monophone-ilt AMI+Librispeech+TED (ILT) 150 7.2

emission probabilities in the decoder.

The acoustic models used in acoustic KWS and lattice-based KWS are based on TDNN-

F architecture as shown in Table 5.5. The layers 7 to 17 are same as layer 6 of the TDNN-

F architecture in Table 5.5. The results presented on the libri test set are evaluated

only in lattice-based (naive) approach. An overview of the AMs used, training data

specifications are mentioned in Table 5.2. The The AMs are trained using conventional

high-resolution MFCC features with 40 coefficients with speed perturbation for data

augmentation.

The KWS performance on the logi-test set is obtained for both naive lattice based KWS

and acoustic KWS approaches and compared with a CNN model trained in Pytorch.

The model CNN_10K is a system trained with ResNet architecture [42] and considers

10’000 keyword classification task (i.e. the network is trained to classify the whole

words on training data). An overview of the AMs used for evaluating logi test set is

shown in Table 5.3.

Language model

For lattice-based KWS systems, a LM is trained with the keywords to be detected along

with "SIL" phone for all other keywords. Practically it considers uni-gram probabilities

only when the LM is built. The acoustic based KWS does not require a LM.

5.1.3 ASR task

Acoustic model

The AMs are trained with 960h of Librispeech [36] data. The trained AMs use con-

ventional high-resolution mef-frequency cepstral coefficients (MFCC) features i.e.,

40 MFCCs are computed as each time step. In this deep learning period where large
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Table 5.3 – Overview of AM models evaluated on logi-test set. In acoustic-based KWS,
SLratio decoder is deployed. Different word insertion penalties (WIP) are used to
penalize the detected keywords. In lattice-based KWS, Kaldi decoder is applied. The
AMs in lattice-based KWS are the same as the models in Table 5.2. The performance
of AMs used in both acoustic and lattice based setups is presented in Table 5.6. The
CNN_10K model is trained in Pytorch.

Model KWS Approach Train data Other specifics

htk Acoustic Librispeech (960h) 17 layers, WIP=0
htk7M+p-5 Acoustic Libri (960h) 17 layers, WIP=-5

htk_p-5 Acoustic Libri (960h) 10 layers, WIP=-5
monophone-libri Lattice Librispeech (960h) 17 layers

triphone-libri Lattice Librispeech (960h) 17 layers
monophone-ilt Lattice AMI+Libri+TED (150h) 17 layers

triphone-ilt Lattice AMI+Libri+TED (150h) 8 layers (dim=1024)
CNN_10K Pytorch Libri(960h) 10K outputs

networks are used to train models require large amounts of data. One way to increase

the quantity of the training data is through data augmentation. In our experiments,

audio speed perturbation [43] is applied to the acoustic data. Speed perturbation of

an audio signal produces warped time signal and changes the duration of the signal.

When the speed of the signal is reduced (less than 1x), the energy of the signal shifts

towards the lower frequencies. This results in very small energies in the higher Mel

bins of the MFCCs. I-vectors are not used in these experiments.

A detailed description of the TDNN architecture with 7 layers is presented in Table 5.4

and TDNN-F architecture with 7 layers is presented in Table 5.5. The hidden dimen-

sion for a TDNN/TDNN-F model is 625. Models with 10 layers and 17 layers have

the same respected TDNN/TDNN-F context/stride. A TDNN layer is followed by a

ReLU [14; 44] and a Batchnorm layer [45].

All the experiments conducted to reduce parameters of TDNN-based acoustic models

are trained with Kaldi toolkit (i.e. nnet3 architecture). AMs are trained with the LF-

MMI training framework, considered to produce state-of-the-art performance for

hybrid ASR systems. In the study, we do not only consider conventional triphone

systems but also a monophone based ASR system. In the former case, the output

layer consists of senones obtained from clustering of context-dependent phones. In

the latter case, the output layer consists of only monophone outputs, which can be

considered as yet another approach to reduce the computational complexity of ASR

systems. The triphone-based AM uses position-dependent phones which produces a

total of 346 phones including the silence and noise phones. The monophone-based
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Table 5.4 – TDNN architecture description with 7 layers. Xent: Cross entropy layer
used to avoid over-fitting. The output dimension of all the layers is 625 and the output
dimension of the "Output" layer is 41 for monophone based model and 5984 for
triphone based model.

Layer Layer context Subsampling factor

TDNN-1 [0] 1
TDNN-2 {-1,1} 1
TDNN-3 {-1,1} 3
TDNN-4 {-3,3} 1
TDNN-5 {-3,3} 1
TDNN-6 {-3,3} 1
TDNN-7 {-3,3} 1
Prefinal chain [0] 1
Prefinal-xent chain [0] 1
Output [0] 1

Table 5.5 – TDNN-F architecture description with 7 layers. Xent: Cross entropy layer
used to avoid over-fitting. The output dimension of all the layers is 625 and the output
dimension of the "Output" layer is 41 for monophone based model and 5984 for
triphone based model.

Layer Time stride

TDNN-1 0
TDNNF-2 1
TDNNF-3 1
TDNNF-4 1
TDNNF-5 0
TDNNF-6 3
TDNNF-7 3
Prefinal chain [0]
Prefinal-xent chain [0]
Output -
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AM uses position-independent phones which comprises 41 phones. The output of the

triphone-based AM produces 5984 states while the monophone-based AM produces

41 states.

The quantization experiments are performed in Pytorch. Quantization experiments

are carried out for 16 bit and 8 bit integers in symmetric mode. As discussed in Chapter

3, the model and the features from Kaldi are loaded as Pytorch tensors with the help

of the C++ wrapper.

Language Model

The LMs trained on Librispeech are available to be downloaded from Open Speech

and Language Resources (Open SLR)2. It is a website that hosts speech and language

resources like software and training data related to speech recognition. The LM trained

on Librispeech uses 14500 public domain books with a 200K unique words vocabulary.

The website provides 3-gram and 4-gram models to download. In addition to it, the

3-gram models are pruned at different thresholds such as 10−7 and 3×10−7. In the

monophone setup, the TDNN and TDNN-F models use the small (3×10−7) 3-gram

pruned model for decoding and the 4-gram model for lattice-rescoring while decoding

in Kaldi. The experiments performed to compare varying layers of TDNN and TDNN-F

AM employ a large LM. The quantization experiments performed in both monophone

and triphone setup employ the small LM.

5.1.4 Evaluation metric

The performance of an ASR system is presented as Word Error Rate (WER). It is based

on the Levenshtein distance at the word level. It can be viewed as a string matching

problem where two sequences of symbols are matched through dynamic program-

ming. The symbols in this case are the words of a language. WER finds the distance

between the word sequence recognized by the ASR and the reference word sequence

using dynamic string alignment i.e., it finds the number of edits (substitutions, dele-

tions, insertions) required to go from the recognized word sequence to the reference

word sequence. Given the recognized and reference sequences of words, WER is

computed as:

W ER = S +D + I

N
, (5.1)

2http://www.openslr.org/11/
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Table 5.6 – Comparison of TDNN-F model with varying number of layers in the
monophone setup when a large LM was used for rescoring.

Model No. of layers Params (M) WER %

TDNN 7 7.9 5.4
TDNN-F 7 3.14 7.3
TDNN-F 10 4.35 5.7
TDNN-F 17 7.1 5.2

where S is the number of words that are substituted, D is the number of deletions, I is

the number of insertions, N = S +D +C is the total number of words in the reference

and C is the number of correct words. A lower WER implies better accuracy for the

ASR system.

As mentioned earlier, KWS is a detection task and its performance is usually presented

in the form of Receiver Operating Characteristic (ROC) curve and Figure-of-Merit

(FOM) metric proposed by the National Institute of Standards and Technology (NIST)

and described in the HTK book [46]. A ROC curve is a plot of true positive (TP) rate

against false positive (FP) or also called as false alarm (FA) at various thresholds. A

TP means that the model correctly predicts the keyword and an FP implies that the

model fails (misses) to predict the true keyword. The ROC curve shows the average

(over keywords) performance (TP) for a given false-alarm rate. The number of true

detections above these thresholds is defined as the detection probability estimate.

The results show the TP over a range of 0 to 10 FA per hour. Hence for a given false

alarm rate, the system that has a higher TP value is better. This allows for a more stable

statistic of performance and will be used as a figure of merit for comparing different

systems.

In addition to the ROC curve, FOM for each keyword is also plotted. The FOM is an

upper-bound estimate on keyword spotting accuracy averaged over 1 to 10 false alarms

per hour. This plot helps to better understand the performance of each keyword for a

given model. While ROC shows the average performance of a model over all keywords

given a false alarm rate, the FOM shows the performance of a model for each keyword.

5.2 TDNN-F experiments

The experiments for comparison of the number of parameters and its impact on the

performance of the ASR while using TDNN and TDNN-F is presented in this section.
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Figure 5.2 – Comparison of # parameters in TDNN and TDNN-F with varying number
of layers in the monophone setup when a large LM was used for rescoring.

0 5 10 15 20
4.5

5

5.5

6

6.5

7

No. of layers

W
E

R
%

TDNN
TDNN-F

Figure 5.3 – Comparison of Word Error Rate (WER %) in TDNN and TDNN-F with
varying number of layers in the monophone setup when a large LM was used for
rescoring.
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Table 5.7 – Comparing parameter reduction techniques for monophone-based TDNN
acoustic model: Quantization (bits), Weight Quantization (WQ), Activation Quantiza-
tion (AQ), Number of parameters, model size and Word-Error Rate (WER) [in %] when
a small LM was used for decoding.

Model Quantization (bits) WQ AQ Params (M) Size WER %

Baseline TDNN - No No 7.9 1x 8.1
TDNN 16 Yes No 7.9 0.5x 10.7
TDNN 8 Yes No 7.9 0.25x 10.7
TDNN 8 Yes Yes 7.9 0.25x 17.3
TDNN - fine tuned 8 Yes Yes 7.9 0.25x 18.5
TDNN-F (7 layers) - No No 3.14 0.4x 9.8

In this study, TDNN and TDNN-F models were trained by increasing the number

of layers from 7 up to 17 layers in the monophone setup. Table 5.6 shows that by

using twice as many layers as TDNN in TDNN-F, the same number of parameters (

7M ) in baseline TDNN model is reached with an improved performance. The ASR

performance presented in this table is obtained from rescoring the ASR outputs with

a large LM trained on Librispeech. Figure 5.2 shows the comparison of the number

of parameters in TDNN and TDNN-F when the number of layers in the model are

increased up to 17. For TDNN models, doubling the number of layers increases the

total number of parameters three times, whereas in case of TDNN-F models, doubling

the number of layers doubles the number of parameters (while the performance is

still close to the baseline TDNN model). Figure 5.3 shows the comparison of the WER

for TDNN and TDNN-F models when the number of layers in the model are increased

up to 17. Using few layers in both TDNN and TDNN-F shows that the performance of

the TDNN-F is degraded by 1% (absolute in WER) but using more layers in TDNN and

TDNN-F shows that the performance of TDNN-F model is close to the TDNN model.

5.3 Parameter reduction experiments

We compare floating-point vs. integer arithmetic inference for the TDNN model

with different quantization types (16-bit and 8-bit integer) and different quantization

schemes, as discussed in Section 3.2. We also compare the quantization technique

with the low-rank matrix factorization technique used during the training of the

model.

Table 5.7 shows that weight-only quantization reduces the model size by 50% without

a significant impact on the performance of the monophone-based AM. Quantizing
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Table 5.8 – Comparing parameter reduction techniques for triphone-based TDNN
acoustic model: Quantization (bits), Weight Quantization (WQ), Activation Quantiza-
tion (AQ), Number of parameters, model size and Word Error Rate (WER) [in %] when
a small LM was used for decoding.

Model Quantization (bits) WQ AQ Params (M) Size WER %

Baseline TDNN - No No 15.4M 1x 6.3
TDNN 16 Yes No 15.4M 0.5x 10.0
TDNN 8 Yes No 15.4M 0.25x 11.4
TDNN 8 Yes Yes 15.4M 0.25x 11.2

TDNN - fine tuned 8 Yes Yes 15.4M 0.25x 11.3
TDNN-F - No No 6.2M 0.4x 6.9

Table 5.9 – Comparison of quantization error for the monophone and triphone-based
TDNN acoustic models presented in Table 5.7 and Table 5.8.

Quantization (bits) Monophone Triphone

16 12.9 2.5
8 13.5 22.7

both weights and activations reduces the model size with an increased WER com-

pared to weight only quantization. Table 5.8 shows that quantizing both weights

and activations outperforms the weight-only quantization in the triphone system. In

both monophone and triphone systems, post quantization fine-tuning does not show

any impact. The TDNN-F model reduces the model size by 40% with a drop in the

recognition performance of 2.7% (in absolute WER) compared to the baseline TDNN.

However, compared to the 8-bit and 16-bit quantized model, the WER degradation of

TDNN-F is negligible (10.7% WER for the quantized model vs 10.8% WER of TDNN-F).

5.4 Quantization error

The quantization error is measured as the norm between the original weights and its

de-quantized version

Quantization error =∑
i , j

(
wi j − w̃i j

)2 , (5.2)
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Figure 5.4 – ROC curve evaluated on Librispeech test-clean set with lattice-based KWS
with 7 keywords. The AMs used are described in Table 5.2.

which is the Frobenius norm between the original weight matrix and the reconstructed

weight matrix. The row and column indices are referred with the variables i and j .

The error measures the shift in parameters due to the quantization process.

Table 5.9 shows the error for monophone and triphone-based AMs with respect to int8

and int16 quantization. As expected, the 16-bit quantization provides a smaller error

rate compared to 8-bit quantization. However, the difference in the norms between

8-bit and 16-bit quantization is much higher for triphone systems. This high variation

of the error in the triphone system is due to its large number of outputs.

5.5 KWS experiments

As mentioned above, reduction techniques are also presented for KWS task. The

results presented below for different evaluation sets are evaluated with 7 keywords

(DOWN, FIVE, PLAY, PAUSE, STOP, SECONDS, VOLUME). The below plots are evalu-

ated on 2 test sets as described in Section 5.1.1. The AMs used in the evaluation of the

Librispeech test-clean set are described in Table 5.2. The AMs used in the evaluation

of the logi-test set are described in Table 5.3.

Figure 5.4 shows the ROC curve for three different models generated for 7 keywords

evaluated on the Librispeech test-clean dataset with lattice-based KWS. As the plot

indicates: using a model trained Librispeech offers a better performance as the test

data matches the train data (i.e. similar acoustic conditions). It also shows that in this

task, monophone setup yields better performance than triphone based setup.
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Figure 5.5 – FOM plot for 7 keywords evaluated on Librispeech test-clean set with
lattice-based KWS. The AMs used are described in Table 5.2.

Figure 5.6 – ROC curve evaluated on Logitech test set with 7 keywords. The models in
the curve are described in Section 5.1.2 Table 5.3.

Figure 5.5 shows the FOM plot for each of the seven keywords evaluated on the

Librispeech test-clean set on lattice-based KWS as mentioned in Section 5.1.2. As

mentioned in Section 5.1.4, the plot shows the average merit for each keyword. This

helps us understand how a model performs on a keyword. As shown in the plot, the

Librispeech model with monophone outputs has the highest merit for each keyword

with an overall merit of around 72 points and the performance of the Librispeech

model in triphone setup has performance similar to its monophone counterpart for

certain keywords. This could be due to the variation in the pronunciations in these

two setups. In this plot we see that some keywords such as VOLUME, PAUSE have a

very high merit (close to 100) for all the models which means that the keyword appears

many times in the test set and the model doesn’t fail to predict. There are also some

keywords such as FIVE, SECONDS that have a very low merit (close to 0) for model
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Figure 5.7 – FOM plot for 7 keywords evaluated on Logitech test set. The models in
the curve are described in Section 5.1.2 Table 5.3.

trained with the combined dataset. After an investigation, we see that those words

do not appear quite often in the test and the model has not seen many examples or

has failed to predict. Since the FOM plot shows for which keywords which model

performs better, the performance of the model for keywords that do not perform well

can be improved by adding more pronunciation variants into the dictionary.

Figure 5.6 shows the ROC curve for the aforementioned models (described in Sec-

tion 5.1.2 Table 5.3) evaluated on the Logitech test set. The curve shows models

evaluated in lattice-based, acoustic based KWS and the model trained in Pytorch.

As the plot shows, using a model trained with a combination of AMI, Librispeech

and TEDLIUM (ILT) has a slightly better performance of 2 points than using a model

trained only on the Librispeech dataset as the test data matches better the train data.

The plot also shows that although the acoustic KWS (htk7M+p-5 model) has a good

performance, the lattice-based KWS (monophone-ilt model) is the one with the best

performance. It also shows that the Librispeech model with triphone outputs is closer

to the ILT model since there are many outputs in the triphone outputs which implies

that there many variations of the pronunciations in this setup.

Figure 5.7 shows the FOM plot for each of the seven keywords evaluated on the Log-

itech test set. The description of the models in the plot are provided in Table 5.3.

Although the combined dataset (AMI+Libri+TED (ILT)) model with monophone out-

puts has an Overall merit of around 55, the Librispeech model with triphone outputs

has a high merit for majority of the keywords. This shows that using a triphone setup

gives a better performance and the performance of the ILT model can be improved by

using triphone outputs. The plot shows the performance of the acoustic KWS is close
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to the lattice KWS and can be improved by tuning the WIP.
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6 Conclusions

This study presented the effect of using different parameter reduction techniques of

acoustic models on ASR and KWS tasks. The ASR experimental results reveal that the

parameter-quantization can reduce the model size significantly while preserving a

reasonable word recognition performance. TDNN-F models provide a better perfor-

mance when the number of layers is higher than the TDNN models. The experiments

also reveal that the number of parameters of a TDNN-F model with twice as many

layers as TDNN remains the same. As DNN requires many layers to model complex

relationships, using TDNN-F does not have a huge impact on the footprint of the

model. While using monophone based outputs does not have a huge impact on the

recognition accuracy for ASR, KWS experiments reveal that using triphone based

outputs has a better FOM depending on the test case. The KWS experiments also show

that a model trained with a combination of multiple dataset has a relatively better

overall performance.

6.1 Future Work

Effect of quantization on KWS task has to be studied as a small footprint is required

on the embedded device. Quantization of the acoustic models can be further explored

through fusing the TDNN, ReLu and Batchnorm layers. Since fine-tuning did not

bring any significant improvements in our experiments, our future work will consider

an implementation of the quantization-aware training. The quantization experiments

are conducted in Pytorch, while the acoustic models are developed using the popular

Kaldi toolkit. Implemented C++ wrappers allowing to interface parameters of the

Kaldi-based DNN acoustic models in Pytorch will be offered to other researchers

through a Github project.
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A Psuedo code for Quantization

A.1 Calculation of scale and zero-point

The scale and zero-point of a tensor are calculated according to the formula in Section

3.1. The code to calculate the scale and zero-point for 8 bit quantization in asymmetric

mode is shown below. The below function requires the minimum value, maximum

value of the tensor (weight matrix or feature vector).

import torch
import numpy as np

def calcScaleZeroPointInt8(min_val, max_val):
# Calc Scale and zero point of next

qmin = -127
qmax = 127

scale_next = (max_val - min_val) / (qmax - qmin)

initial_zero_point = qmin - min_val / scale_next
zero_point_next = 0
if initial_zero_point < qmin:

zero_point_next = qmin
elif initial_zero_point > qmax:

zero_point_next = qmax
else:

zero_point_next = initial_zero_point

zero_point_next = int(zero_point_next)
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Appendix A. Psuedo code for Quantization

return scale_next, zero_point_next

A.2 Quantization of a tensor

Once the scale and zero-point are calculated, the tensor is quantized according to the

equation described in Section 3.1. The below code shows the quantization of a tensor

to 8-bit. The function takes the input tensor, its scale and zero-point and returns the

quantized tensor, scale and zero-point. Returning of the scale and zero-point will be

useful during de-quantization.

def quantize_tensor_int8(tensor, scale, zp):
t = tensor/scale + zp
t = t.round()
t = t.to(torch.int8)
return (t, scale, zp)

A.3 Forward pass for quantized tensors

Once the input and the weight matrix are quantized to 8 bits, the forward pass requires

the Integer-arithmetic-only matrix multiplication. The code for the forward pass is

given below.

def forward(input, input_scale=None, input_zpt=None):
scale, zero_point =

calcScaleZeroPointInt8(self.linear_params_.data.min(),
self.linear_params_.data.max())

qweight_int8 = quantize_tensor_int8(self.linear_params_, scale,
zero_point)

dequant_weight = dequantize_tensor(qweight_int8)
print("Norm of weights and dequantized weights:

{}".format(torch.norm(self.linear_params_.data - dequant_weight)))

padded_input_uint8 = quantize_tensor_int8(padded_input, input_scale,
input_zpt)
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A.4. Conversion of integer value to floating-point value

qweight_int32 = qweight_int8[0].to(torch.int32)
padded_input_int32 = padded_input_uint8[0].to(torch.int32)
x1 = padded_input_int32.matmul(qweight_int32.t())
x2 = input_zpt*qweight_int32.sum(1)
x3 = zero_point*padded_input_int32.sum(2)
N = self.linear_params_.shape[1]
x = (x1-x2).squeeze(0).t() - x3.reshape(-1)
x = x + N*zero_point*input_zpt
x = x.t().unsqueeze(0).float()*(input_scale*scale)
x = x+self.bias_.reshape(1, -1)

return x

A.4 Conversion of integer value to floating-point value

De-quantization is performed when weight only quantization is used so that the

inference is carried out in floating point precision. The code to convert the quantized

value back to floating value is given below.

def dequantize_tensor(quant_tensor):
q_tensor = quant_tensor[0]
scale = quant_tensor[1]
zero_point = quant_tensor[2]
dequant_tensor = (q_tensor.float() - zero_point) * scale

return dequant_tensor
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