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Abstract

Graph Neural Networks have demonstrated superior performance in learning
graph representations for several subsequent downstream inference tasks. How-
ever, learning over graph data types can raise privacy concerns when nodes
represent people or human-related variables that involve personal information
about individuals. Previous works have presented various techniques for privacy-
preserving deep learning over non-relational data, such as image, audio, video, and
text, but there is less work addressing the privacy issues involved in applying deep
learning algorithms on graphs. As a result and for the first time, in this paper, we
develop a privacy-preserving learning algorithm with formal privacy guarantees
for Graph Convolutional Networks (GCNs) based on Local Differential Privacy
(LDP) to tackle the problem of node-level privacy, where graph nodes have poten-
tially sensitive features that need to be kept private, but they could be beneficial
for learning rich node representations in a centralized learning setting. Specifi-
cally, we propose an LDP algorithm in which a central server can communicate
with graph nodes to privately collect their data and estimate the graph convolu-
tion layer of a GCN. We then analyze the theoretical characteristics of the method
and compare it with state-of-the-art mechanisms. Experimental results over real-
world graph datasets demonstrate the effectiveness of the proposed method for
both privacy-preserving node classification and link prediction tasks and verify
our theoretical findings.

1 Introduction

Following the advances of deep neural networks in various machine learning domains, such as com-
puter vision, natural language understanding, and speech processing, in the past few years, extending
deep learning models for graph-structured data has attracted growing interest, leading to the advent
of Graph Neural Networks (GNNs) [35]. These models have shown superior performance on a
wide range of applications in social sciences [15], biology [31], molecular chemistry [7], and so on,
achieving state-of-the-art results in various graph-based tasks, such as node classification [48], link
prediction [47], and community detection [3]. However, most real-world graphs associated with
people or human-related activities, such as social and economic networks, are often sensitive and
contain personal information about individuals. For example in a social network, a user’s friend list,
profile information, likes and comments, etc., could potentially be private with different levels of pri-
vacy protection. To satisfy users’ privacy expectations in accordance with the recent data protection
policies, such as General Data Protection Regulations (GDPR), it is of great importance to develop
privacy-preserving GNN models for applications that rely on graphs accessing users’ personal data.

Problem and motivation. In light of these privacy considerations and (to our knowledge) for the
first time, in this paper, we define the problem of node-level privacy, where graph nodes have po-
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tentially sensitive attributes that are kept private, but the rest of the graph is observable from the
viewpoint of a central server, who wishes to benefit from private node attributes to learn a GNN over
the graph. The ability to learn graph representation from private node features can be very useful in
many concrete applications in social network analysis and mobile computing. For example, social
smartphone apps, such as social networks, messaging platforms, and dating apps, could potentially
benefit from users’ personal information, such as their phone’s sensor data or list of installed apps, to
learn better node representations which can eventually empower their recommendation algorithms
and improve their user experience. However, without any means of user data protection, this im-
plies that the application server needs to get access to and collect personal raw data, which can raise
concerns with regards to privacy as the collected data can be used for other, unauthorized purposes.

Challenges. Training a GNN under node-level privacy setting is a challenging issue due to the
relational characteristics of graphs. Unlike other deep learning models wherein the training data are
independent, in the case of GNNs, the samples – nodes of the graph – are connected to each other via
links and exchange information through a message-passing framework during the training of a GNN
[16]. This fact makes employing conventional privacy-preserving machine learning paradigms, such
as federated and split learning [27, 40], infeasible due to the excessive communication overhead that
they impose because of the relationships between graph nodes.

Contributions. In this paper, we propose a novel privacy-preserving GNN learning framework that
combines the power of Graph Convolutional Networks (GCNs) [24] and Local Differential Privacy
(LDP) [21] to protect sensitive node attributes from being exposed to an honest-but-curious server
[30], who requires these features for training its own GNN (Section 3). By extending LDP mecha-
nisms, the server can efficiently communicate with the graph nodes to privately collect their features
and estimate the first-layer graph convolution of the GNN (Section 4). Our solution is optimized for
more communication efficiency, and we show that it works best when the distribution of features is
skewed. We derive the theoretical properties of the proposed algorithm, such as its formal privacy
guarantee and error bound (Section 4). Finally, we conduct comprehensive experiments over several
real-world graph datasets to verify our theoretical findings and demonstrate the effectiveness of our
framework in privacy-preserving node classification and link prediction tasks (Section 5). To the
best of our knowledge, this paper defines the problem of GNN training with node-level privacy for
the first time, studying the integration of differential privacy with graph neural networks.

2 Related Work

Graph Neural Networks. Recent years have seen a surge in applying GNNs for representation
learning over graphs. A GNN consists of multiple layers, wherein each layer, the representation
of a node is obtained by aggregating the previous-layer embeddings of the node and its neighbors
(the neighborhood aggregation or message passing step [16]), followed by a neural network trans-
formation. Based on this idea, numerous GNN models have been proposed, including Graph Con-
volutional Networks (GCN) [24], Graph Attention Networks (GAT) [39], GraphSAGE [15], Graph
Isomorphism Networks (GIN) [44], Gated Graph Neural Networks [28], and so forth. We refer
the reader to the available surveys on GNNs [43, 49] for other models and their internal architec-
ture. While there is a growing number of GNN models designed to solve different tasks in various
domains, we are not aware of prior work on training GNNs in the private setting.

Privacy-Preserving Machine Learning. Numerous techniques based on Homomorphic Encryption
[34], Secure Multi-Party Computation (SMC) [12], Federated Learning [27], Split Learning [40],
and Differential Privacy (DP) [8] have been proposed to address the privacy issue when the data
is sensitive and cannot be released to untrusted third-parties for model training. Homomorphic
encryption allows the training and inference of a model to be performed directly on encrypted data,
and has been successfully applied to deep learning models [17, 18]. SMC enables two or more
parties, who do not trust each other, to jointly train a model without exposing their input data to each
other. It has been used for linear regression, logistic regression, and neural networks [29, 32, 1].
Federated and split learning algorithms allow users to keep their private data and communicate with
the service provider in order to train a model, collaboratively [25, 2]. Finally, differential privacy
provides a mathematical framework for computing statistical queries over private databases, and
has been successfully adapted in deep learning systems to preserve training data privacy [37, 42].
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However, these methodologies are mostly designed for non-relational data, such as images and text.
We are not aware of any prior work extending any of these techniques for GNNs.

3 Preliminaries

Problem definition. We now formally define the problem of learning GNNs under the node-level
privacy setting. Assume that a server has access to a graph G = (V , E), whose nodes and links are
visible by the server, but the feature matrix X ∈ R

|V|×m, comprising m-dimensional feature vectors
xv for each v ∈ V , is private to the nodes and thus not directly accessible by the server. The question
is, how can the server collaborate with the nodes to use private features and learn a GNN over G?

As our solution is based on graph convolutional networks and local differential privacy, in the fol-
lowing we present the required fundamental background about these two concepts.

Graph Convolutional Networks. Given a graph G = (V , E) and a feature matrix X ∈ R
|V|×m, a

K-layer Graph Convolutional Network (GCN) [24] consists of K graph convolution layers , where
the embedding of a node v ∈ V at layer k is generated by aggregating the embeddings of the node’s
neighbors from the previous layer using the GCN graph convolution function, defined by:

GCk(v) =
∑

u∈N (v)

hk−1
u√∣∣N (u)
∣∣ ∣∣N (v)

∣∣
(1)

where N (v) is the set of neighbors of node v including itself, and hk−1
u is the embedding of node u

at layer k − 1. Also, h0
v = xv, i.e. the initial representation of node v is equal to its original feature

vector xv . The k-th layer embedding of v is then generated by hk
v = σ(Wk · GCk(v)) where Wk

is the trainable weight matrix for layer k.

The advantage of the GCN model, from a privacy-preserving perspective, is that the only point
where the node features are touched is inside the graph convolution function of the very first layer.
Therefore, unlike other GNN models, such as GraphSAGE or GAT, where individual node features
are also used along with the aggregation of the neighboring features, GCN only requires aggregated
node features – the output of the graph convolution function (1) in the first layer. This allows to
privately calculate this aggregation using local differential privacy.

Local Differential Privacy. Local differential privacy (LDP) [21] is an increasingly used approach
for collecting private data and computing statistical queries, such as mean, count, and histogram, and
is already deployed by Google [11], Apple [38], and Microsoft [5], for private data analytics at scale.
The key idea behind LDP is that data holders do not need to share their private data with a data
aggregator, but instead send a perturbed version of their data, which is meaningless individually,
but can approximate the target query when aggregated. It basically includes two steps: (i) data
collection, in which each data holder perturbs its data using a special randomized function F and
sends the output to the aggregator; and (ii) estimation, in which, the aggregator combines all the
received perturbed values and estimates the target query. To prevent the aggregator from inferring
the original private value from the perturbed one, the functionF must satisfy the following definition
[21]:
Definition 1. Given ǫ > 0, a randomized function F satisfies ǫ-local differential privacy if for all
possible pairs of user’s private data x and x′, and for all possible outputs y ∈ Range(F), we have:

Pr[F(x) = y] ≤ eǫ Pr[F(x′) = y] (2)

The parameter ǫ in the above definition is called the “privacy budget” and is used to tune the utility-
privacy trade-off: a smaller ǫ leads to stronger privacy guarantees, but lower utility (and vice versa).
Based on the above definition, the function F should assign similar probabilities (controlled by ǫ) to
the outputs of different input values x and x′, so that by looking at the outputs, an adversary could
not infer the input value with high probability, regardless of any side knowledge he might have.

4 Proposed Method

Now, we describe our proposed framework for training a GNN using private node features. The
key idea of our method is to approximate the first-layer graph convolution for any node v ∈ V , as
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an aggregated statistic over the private features of v itself and its neighbors, using local differential
privacy (LDP). To this end, our approach requires the first layer of the GNN used by the server (as
the point of contact with the features) to be the GCN convolution layer defined by (1), but there is no
restriction on the choice of subsequent layers (they can be GAT, GraphSAGE, etc). As a result, our
framework includes two steps: (i) collecting the node features by the server through a differentially
private approach, and (ii) approximating the graph convolution in the first layer using the collected
features and proceeding with the training of the GNN.

There are several LDP mechanisms in the literature that are used for calculating mean value over
private numeric data that can be adapted for our problem. The most well-known algorithms include
Laplace Mechanism [9], Duchi et al.’s Mechanism [6], and Piecewise Mechanism [41]. Here, we
extend the method of Duchi for the aim of estimating the graph convolution function, which is
a more complex statistic compared to the simple mean. Therefore, we call our LDP mechanism
Private Graph Convolution (PGC). Inspired by the work of Ding et al. [5], our mechanism is tuned
for reduced communication cost between the server and the graph nodes. We derive the theoretical
properties of our PGC method and discuss its differences with other mechanisms. Additional details
about Laplace and Piecewise mechanisms are provided in Appendix A.

Collection of node features. Assume that each node v owns a private m-dimensional feature vector
xv = [x

(1)
v ,x

(1)
v , . . . ,x

(m)
v ]T where x(i)

v ∈ [α(i), β(i)]. When the feature vector of node v is needed,
the server sends the parameter ǫ to v. After, the node sends to the server a m-dimensional perturbed
vector yv where each element y(i)v is drawn independently from the following Bernoulli distribution:

Pr[y(i)v | x(i)
v ] =

(
1

eǫ + 1
+

x
(i)
v − α(i)

∆(i)
· e

ǫ − 1

eǫ + 1

)y(i)
v
(

eǫ

eǫ + 1
+

x
(i)
v − α(i)

∆(i)
· 1− eǫ

eǫ + 1

)1−y(i)
v

(3)
where ∆(i) = β(i) − α(i), and ǫ is the privacy budget parameter provided by the server. The value
of y(i)v is recorded by the node to be returned in subsequent calls so that the server cannot guess the
node’s private feature by issuing repeated queries.

Approximation of graph convolution. Upon collecting the perturbed data, the server can estimate
the first-layer graph convolution of any node v by:

ĜC(v) =
∑

u∈N (v)

y∗
v√

dudv
(4)

where dv = |N (v)| is the degree of node v and y∗
v is the unbiased form of yv , defined as:

y∗
v =

(eǫ + 1)yv − 1

eǫ − 1
·∆+α (5)

Here, α = [αi]i=1:m, ∆ = [∆i]i=1:m, and all vector multiplications and divisions are performed
element-wise, thus the dot notation is abused for element-wise multiplication. Note that we can also
calculate y∗

v at the node-side and send it to the server instead of yv . However, the advantage of
performing this operation at the server-side is that yv in this case will be binary-valued, which is
much more efficient to send in terms of communication cost than the real-valued vector y∗

v. This
is also the advantage of PGC compared to the Laplace or Piecewise mechanisms, as the output of
these two methods is continuous, which imposes more communication overhead compared to ours.

After this step, the server can proceed with the rest of the GNN layers to complete the training. The
pseudo-code of the forward propagation of the proposed framework as an adaptation of the general
GNN forward propagation [16] is presented in Algorithm 1.

4.1 Theoretical Analysis

In this section, we discuss theoretical properties of our method. The proof of all the lemmas pre-
sented here can be found in Appendix C.

Lemma 1. Algorithm 1 satisfies ǫ-local differential privacy for individual node features.

Lemma 2. The graph convolution estimator ĜC(v) defined by (4) is an unbiased estimator for the
GCN graph convolution defined by (1).
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Algorithm 1: Forward propagation for a K-Layer GNN as an adaptation of [16]

Input : Graph G = (V, E); depth K; weight matrices {Wk,∀k ∈ [1, K]}; non-linearity σ; differentiable
aggregator functions {AGGREGATEk, ∀k ∈ [2, K]}

Output : Vector representations zv for all v ∈ V

Server sends ǫ,α,∆ to every node v ∈ V .
Each node v ∈ V sends back yv obtained using (3) to the server.

Server-side computation:
for k = 1 to K do

for v ∈ V do
if k == 1 then

GCv =
∑

u∈N (v)
1√

dudv

[

(eǫ+1)yu−1
eǫ−1

·∆+α

]

h1
v = σ

(

W1 ·GCv

)

else

hk

N (v) ← AGGREGATEk({h
k−1
u ,∀u ∈ N (v)})

hk

v ← σ

(

Wk · COMBINE(hk−1
v ,hk

N (v))
)

end

end

end

zv ← hK

v

Lemma 3. With probability at least 1−δ, for every node v and any arbitrary feature xv ∈ [α, α+∆],
we have:

∣∣∣ĜC(v)−GC(v)
∣∣∣ ≤ ∆ · e

ǫ + 1

eǫ − 1

√
1

2
log(

2

δ
) (6)

Lemma 4. For any node v and any arbitrary input feature xv ∈ [α, β] with ∆ = β−α, the variance
of the unbiased PGC mechanism, y∗v , is calculated by:

V ar[y∗v ] = ∆2 eǫ

(eǫ − 1)2
+ (xv − α)(β − xv) (7)

1 2 3 4 5

0.00

0.25

0.50

0.75

1.00

ǫ

σ
2

LM

PGC

PM

Figure 1: Variance of different
LDP mechanisms with α = 0, β =
1.

The variance of an LDP mechanism is the key factor affect-
ing the accuracy of the estimator, as a lower variance will
usually lead to a more accurate estimation. The variance of
y∗v as shown by (7) depends on the original feature xv . It
can be easily shown that the variance will reaches its mini-
mum as xv → α or xv → β, and gets maximized when
xv → α+β

2 . Therefore, the expected variance of y∗v is mini-
mum when E[xv] is close to either α or β, and this happens
when the distribution of the features is skewed toward either
the beginning or the end of their domain [α, β] (e.g. Exponen-
tial distribution).

Figure 1 compares the minimum and maximum variance of
PGC with those of Laplace mechanism (LM) and Piecewise mechanism (PM) for an arbitrary feature
x with α = 0, β = 1, and ǫ ∈ [1, 5]. The dotted orange area represents the region where the variance
of PGC changes between its minimum and maximum, and the green hatched area corresponds to
PM. LM is shown by a single blue line, as its variance does not depend on x. According to the figure,
while the worst-case variance of PM is always lower than PGC and LM, this is not necessarily true
in the expected case (as we will see in our experiments), especially when the feature distribution is
skewed. This is because as opposed to PGC, the variance of PM is maximized at the two sides of the
feature range and minimized in the middle [41], thus it works better if the the feature distribution
is symmetric on [α, β] (e.g. Gaussian). A more detailed comparison (with LM and PM variance
formulas) is available in Appendix B.
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Table 1: Descriptive statistics of the real-world datasets
DATASET #CLASSES #NODES #EDGES # NODE FEATURES AVG. DEGREE TRAIN/VAL/TEST*

CITESEER 6 3,327 4,552 3,703 2.74 4/15/30%†

CORA 7 2,708 5,278 1,433 3.90 5/17/37%†

ELLIPTIC 2 203,769 234,355 166 2.30 11.4/5.7/5.7%†

FLICKER 7 89,250 449,878 500 10.08 50/25/25%
TWITCH 2 7,126 35,324 2,545 9.91 50/25/25%

* Corresponds to node classification. For link prediction, all datasets use 85/5/10% splits.
† The splits do not sum to 100% as not all the nodes are labeled.

5 Experiments

We conduct extensive experiments to assess the privacy-utility trade-off of the proposed framework
and evaluate its performance in two classical tasks: node classification and link prediction.

Datasets and baselines. In order to test the performance of the proposed method and other base-
lines, we use five real-world datasets with different characteristics, whose description is summarized
in Table 1. Additional details about the datasets are provided in Appendix D. Alongside our PGC
method, we also use the Laplace mechanism (LM) and the Piecewise mechanism (PM) in the pro-
posed framework for error analysis and predictive performance comparison. Additionally, to see
how the performance of different LDP methods compares to the optimal case, we use standard GCN
with original features without any privacy protection, denoted as RAW, whose result can be consid-
ered as an upper-bound on the privacy-preserving methods.

Experiment setup. For the node classification task, we use standard training/validation/test splits
for the citation networks as well as Flickr [45, 46]. In other datasets, we randomly split labeled
nodes with 50/25/25% ratios for training, validation, and test sets, respectively. For link prediction,
all the datasets are randomly split with 85/5/10% ratios. We normalize the node features of all the
datasets between zero and one, so in all cases, we have α = 0 and ∆ = 1. We use the two-layer
GCN as in [24] for the node classification task. For link prediction, we use Variational Graph Auto-
Encoder [23] with a two-layer GCN as the encoder, with batch-normalization applied after the first
convolutional layer. In all cases, we use ReLU activation function for all layers and fix the hidden
and output dimensions of the two-layer GCN model (both for node classification and as the encoder
of the VGAE model for link prediction) to 32 and 16, respectively. We optimize hyper-parameters
for RAW method on the validation set over initial learning rate, weight decay, and dropout rate, and
use the same values for all the other methods. All models are trained using Adam optimizer [22] over
a maximum of 500 epochs. For node classification, we train the models for a minimum of 10 epochs
and stop the training if the validation loss does not decrease over 20 consecutive epochs. In the
case of link prediction, we set the minimum number of epochs to 100, and check the validation loss
every 10 epochs. We stop the training if the validation loss does not decrease over 10 consecutive
checks. Finally, we measure the performance on the test set over 10 runs and report the average
and standard deviation of the results. Implementation is done using PyTorch Geometric [14] and
PyTorch Lightning [13]1.

5.1 Results

Analysis of estimation error. In the first set of experiments, we set to empirically measure the
mean absolute error (MAE) in the estimation of the graph convolution for our PGC mechanism and
compare it with the one generated by LM and PM. We calculate the MAE for any node v as:

MAE(v) =
1

m

m∑

i=1

∣∣∣GC(v)(i) − ĜC(v)(i)
∣∣∣ (8)

First, we look at how different LDP mechanisms perform in terms of the estimation error with
respect to different values of the privacy budget ǫ. We vary the value of ǫ within {1, 3, . . . , 9}, and
average the MAE over all the nodes of the graph. The results for different datasets are illustrated in

1The code to reproduce our experimental results is publicly available at https://github.com/sisaman/dpgnn
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Figure 2: Effect of the privacy budget ǫ on the mean absolute error of the graph convolution estima-
tion.
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Figure 3: Mean absolute error of the graph convolution estimation w.r.t node degree with ǫ = 1.

Figure 2. As expected, by increasing the value of ǫ, the MAE of all methods decreases exponentially
and converges toward zero. We can see that the error of the PGC mechanism is consistently lower
than other mechanisms across three out of five datasets, namely Cora, CiteSeer, and Twitch. But
in the other two, Elliptic and Flickr, it falls behind PM for higher values of ǫ. This is because the
features in the first three mentioned datasets are rather sparse, so the feature distribution is skewed
toward zero. But in the other two datasets, the average feature value is closer to 0.5, resulting in
lower error for PM. However, even in this case, when ǫ is small, PGC still results in a more accurate
estimation than PM.

Next, we assess how the estimation error varies on average as a function of node degree. To this end,
we set ǫ = 1, and average the MAE over all the nodes v with the same degree dv and plot the result
for dv ∈ [1, dmax], where dmax is the 99% quantile of the degree distribution that we choose as a
cut-off. The result is depicted in Figure 3. According to the figure, the estimation error drops first
as the node degree increases but quickly converges to a constant value. This result is consistent with
Lemma 3, verifying that the error is not asymptotically dependent on the node degree.

Analysis of predictive performance. Finally, we evaluate how our proposed framework performs in
learning rich node representations for node classification and link prediction tasks under the privacy
requirements. For this experiment, we selected the value of ǫ from {1, 5, 9}. The performance
of different methods is measured in terms of micro averaged F1 score for node classification and
the area under ROC curve (AUC) for link prediction. Table 2 presents the experimental results of
different methods in both node classification and link prediction tasks. For illustrative purposes,
for each value of ǫ, The closest number to the result of the RAW method (the optimal result) is
bold-faced. Similar to Figure 2, we see that the performance of different methods (except RAW
obviously) rise as we increase ǫ. The table shows that our proposed PGC method is superior to PM
and LM most of the times in both node classification and link prediction across all datasets and for
different values of ǫ. Analogous to the error estimation result in Figure 2, the exceptions here are the
Elliptic and Flickr datasets, for which the PM method outperforms PGC. As mentioned previously,
this is because the average feature value in these two datasets is higher than the other ones, which
eventually results in lower variance, lower estimation error, and finally higher accuracy for PM.
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Table 2: Performance of different methods in link prediction and node classification tasks.
NODE CLASSIFICATION (MICRO-F1 %) LINK PREDICTION (AUC %)

DATASET METHOD ǫ = 1 ǫ = 5 ǫ = 9 ǫ = 1 ǫ = 5 ǫ = 9

CITESEER LM 37.0 ± 1.6 57.6 ± 0.9 68.5 ± 1.1 77.2 ± 0.8 81.6 ± 0.7 84.3 ± 0.9
PM 36.8 ± 1.4 67.5 ± 1.2 71.0 ± 0.9 78.8 ± 1.1 84.2 ± 1.0 88.1 ± 0.6
PGC 37.3 ± 1.3 70.7 ± 0.6 70.2 ± 0.7 79.0 ± 1.1 87.2 ± 0.5 90.0 ± 0.5

RAW 69.6 ± 0.9 69.6 ± 0.9 69.6 ± 0.9 89.6 ± 0.8 89.6 ± 0.8 89.6 ± 0.8

CORA LM 54.4 ± 0.9 73.9 ± 0.8 78.8 ± 0.7 84.9 ± 0.5 87.9 ± 0.8 89.3 ± 0.8
PM 56.6 ± 1.9 77.8 ± 1.0 80.9 ± 0.6 85.1 ± 0.9 88.6 ± 1.0 91.0 ± 0.6
PGC 57.0 ± 1.9 80.2 ± 0.6 81.2 ± 0.4 85.4 ± 0.9 90.6 ± 0.6 92.1 ± 0.5

RAW 81.4 ± 0.3 81.4 ± 0.3 81.4 ± 0.3 91.9 ± 0.6 91.9 ± 0.6 91.9 ± 0.6

ELLIPTIC LM 90.5 ± 0.2 91.5 ± 0.5 92.6 ± 0.4 54.6 ± 0.3 74.5 ± 1.8 81.2 ± 0.8
PM 90.5 ± 0.1 92.7 ± 0.4 94.1 ± 0.5 56.8 ± 0.7 82.1 ± 2.0 86.6 ± 1.1

PGC 90.5 ± 0.1 91.8 ± 0.2 92.2 ± 0.3 57.2 ± 0.6 72.1 ± 1.6 73.5 ± 1.9

RAW 95.5 ± 0.4 95.5 ± 0.4 95.5 ± 0.4 88.1 ± 0.7 88.1 ± 0.7 88.1 ± 0.7

FLICKR LM 44.4 ± 0.4 50.2 ± 0.4 51.2 ± 0.4 67.7 ± 0.7 72.6 ± 1.1 74.5 ± 1.6
PM 45.2 ± 0.4 51.3 ± 0.3 52.0 ± 0.3 67.4 ± 0.5 75.9 ± 1.5 77.4 ± 1.9

PGC 45.0 ± 0.5 50.9 ± 0.3 51.1 ± 0.3 67.7 ± 0.9 74.4 ± 1.6 75.7 ± 1.6

RAW 52.3 ± 0.2 52.3 ± 0.2 52.3 ± 0.2 76.3 ± 2.5 76.3 ± 2.5 76.3 ± 2.5

TWITCH LM 58.7 ± 0.8 59.8 ± 0.7 60.1 ± 0.5 81.1 ± 0.3 82.2 ± 0.4 82.7 ± 0.5
PM 59.0 ± 0.8 60.2 ± 0.8 61.3 ± 0.5 81.1 ± 0.3 82.5 ± 0.3 83.7 ± 0.8
PGC 59.0 ± 0.7 61.2 ± 0.8 62.5 ± 0.2 81.1 ± 0.4 83.2 ± 0.6 84.6 ± 0.8

RAW 62.8 ± 0.2 62.8 ± 0.2 62.8 ± 0.2 84.9 ± 1.0 84.9 ± 1.0 84.9 ± 1.0

5.2 Discussion on choosing α, ∆, and ǫ

In addition to the GNN model, our framework has also its own hyper-parametersα, ∆, and ǫ, which
are sent to the graph nodes by the server. The proposed framework requires that the server knows the
range of private features, indicated by α and ∆, which is a common assumption in the literature [6].
Technically, the server could either guess the range of the features (e.g. between 00:00 and 23:59
if the feature represents time) or could use other privacy-preserving methods, such as secure multi-
party computation [36], as a pre-processing step to determine range parameters. It is important to
note that if, for any node of the graph, its requested feature lies outside the bounds provided by the
server (e.g. due to inaccurate guessing), the node can simply clip its feature within the given bound.

Probably the most important parameter of the method is the privacy budget ǫ, which controls the
trade-off between the accuracy of the GNN and the strength of the privacy guarantee. While there are
some efforts trying to systematically determining ǫ in differentially private applications [26, 20], still
there is no general guideline for choosing the best value for ǫ, since the privacy guarantees enforced
by differential privacy are very different based on the data domain and the target query. Therefore,
previous works [11, 5, 38] usually evaluate their systems by trying different values of ǫ, and then pick
the smallest one resulting in an acceptable performance for the deployment. For instance, Microsoft
uses ǫ = 1 to collect telemetry data from Windows users [5], while Apple’s choice of ǫ in iOS and
macOS ranges between 2 and 8 for different tasks [4]. Regarding our experiments, and according to
the Table 2, while an ǫ of 1 results in an acceptable performance in some settings (e.g. link prediction
on Flickr), it seems that setting ǫ to 5 leads to near-optimal results in almost all cases.

6 Conclusion

In this paper, we presented a privacy-preserving framework for graph representation learning based
on graph convolutional networks and local differential privacy to address the node-level privacy,
when graph nodes have sensitive attributes that are kept private, but they could be advantageous to
a GNN for learning rich node representations by a central server. To this end, we proposed Private
Graph Convolution, which is a ǫ-locally differentially private mechanism, for graph nodes to perturb
their private features before sending them to the server, and presented an unbiased estimator for the
server by which it can estimate the first-layer graph convolution of the GNN using the perturbed
features. Experimental experiments over real-work network datasets on node classification and link
prediction tasks demonstrated that the proposed framework can manage the privacy-utility trade-off
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in learning representation for graph nodes, performs better than the classic Laplace mechanism con-
sistently, and outperforms the Piecewise mechanism when ǫ is small or when the feature distribution
is skewed.

Several potential future directions and improvements are imaginable for this work. One of the limi-
tations of the current method is that for any node in the graph, a separate privacy budget is allocated
for each individual feature. Therefore, the total privacy budget of a single node scales linearly with
the number of features. While this is a common practice to assign separate privacy budgets to dif-
ferent features (for instance, Apple uses different dedicated privacy budgets for emoji suggestions,
lookup hints, QuickType suggestions, etc [38]), it can be problematic when the server request high-
dimensional features which are highly correlated. Therefore, as future work, we plan to work on
a multi-dimensional LDP mechanism to address this issue. As another future step, we would like
to work on a hybrid mechanism that is optimal in terms of expected noise-variance. Finally, it
might be interesting to address the problem of node-level privacy using other privacy-preserving ma-
chine learning paradigms, such as secure multi-party computation. Overall, the concept of privacy-
preserving graph representation learning is a novel and unexplored field of research with many
potential future directions that can go beyond node-level privacy.
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[39] Petar Veličković, Guillem Cucurull, Arantxa Casanova, Adriana Romero, Pietro Lio, and Yoshua Bengio.
Graph attention networks. arXiv preprint arXiv:1710.10903, 2017.

[40] Praneeth Vepakomma, Tristan Swedish, Ramesh Raskar, Otkrist Gupta, and Abhimanyu Dubey. No peek:
A survey of private distributed deep learning. arXiv preprint arXiv:1812.03288, 2018.

[41] Ning Wang, Xiaokui Xiao, Yin Yang, Jun Zhao, Siu Cheung Hui, Hyejin Shin, Junbum Shin, and Ge Yu.
Collecting and analyzing multidimensional data with local differential privacy. In 2019 IEEE 35th Inter-
national Conference on Data Engineering (ICDE), pages 638–649. IEEE, 2019.

[42] Xi Wu, Fengan Li, Arun Kumar, Kamalika Chaudhuri, Somesh Jha, and Jeffrey Naughton. Bolt-on
differential privacy for scalable stochastic gradient descent-based analytics. In Proceedings of the 2017
ACM International Conference on Management of Data, pages 1307–1322, 2017.

[43] Zonghan Wu, Shirui Pan, Fengwen Chen, Guodong Long, Chengqi Zhang, and S Yu Philip. A compre-
hensive survey on graph neural networks. IEEE Transactions on Neural Networks and Learning Systems,
2020.

[44] Keyulu Xu, Weihua Hu, Jure Leskovec, and Stefanie Jegelka. How powerful are graph neural networks?
arXiv preprint arXiv:1810.00826, 2018.

[45] Zhilin Yang, William W Cohen, and Ruslan Salakhutdinov. Revisiting semi-supervised learning with
graph embeddings. arXiv preprint arXiv:1603.08861, 2016.

[46] Hanqing Zeng, Hongkuan Zhou, Ajitesh Srivastava, Rajgopal Kannan, and Viktor Prasanna. Graphsaint:
Graph sampling based inductive learning method. arXiv preprint arXiv:1907.04931, 2019.

[47] Muhan Zhang and Yixin Chen. Link prediction based on graph neural networks. In Advances in Neural
Information Processing Systems, pages 5165–5175, 2018.

[48] Yingxue Zhang, Soumyasundar Pal, Mark Coates, and Deniz Ustebay. Bayesian graph convolutional
neural networks for semi-supervised classification. In Proceedings of the AAAI Conference on Artificial
Intelligence, volume 33, pages 5829–5836, 2019.

[49] Jie Zhou, Ganqu Cui, Zhengyan Zhang, Cheng Yang, Zhiyuan Liu, Lifeng Wang, Changcheng Li,
and Maosong Sun. Graph neural networks: A review of methods and applications. arXiv preprint
arXiv:1812.08434, 2018.

A Related LDP Mechanisms

A.1 Laplace Mechanism

Laplace mechanism (LM) [9] is a classic differentially private algorithm that can be used in both the
global and the local differential privacy setting. In the local approach, each data subject basically
adds a random noise to its data, which is drawn from Lap(y | ∆

ǫ ), where:

Lap(y | λ) = 1

2λ
exp

(
−|y|

λ

)

is the zero-mean Laplace distribution with scale parameter λ. In our experiments, we independently
add Laplace noise to each individual feature xv for every node v. Formally, we set:

y∗v = xv + yv (9)

where yv is a random noise drawn from Lap(yv | ∆
ǫ ). As the mean of this distribution is zero,

the Laplace mechanism is unbiased, i.e. E[y∗v ] = xv . Furthermore, the variance of the Laplace
mechanism is by definition equal to:

V ar[y∗v ] = 2(
∆

ǫ
)2 (10)

A.2 Duchi’s Mechanism

Another LDP mechanism for numeric data collection and mean estimation, from which our PGC
method is derived, is proposed by Duchi et al. [6] (denoted as DM). This mechanism accepts an
input value t ∈ [−1, 1] and outputs a perturbed value t∗ ∈ { eǫ+1

eǫ−1 ,− eǫ+1
eǫ−1} according to the following

probability distribution:

Pr[t∗|t] =





1
2 + eǫ−1

2eǫ+2 · t, if t∗ = eǫ+1
eǫ−1

1
2 − eǫ−1

2eǫ+2 · t, if t∗ = − eǫ+1
eǫ−1

(11)
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Duchi et al. show that the above mechanism satisfies ǫ-LDP, and that t∗ is an unbiased estimator of
the input t. Also, the variance of the mechanism is calculated as:

V ar[t∗] =

(
eǫ + 1

eǫ − 1

)2

− t2 (12)

A.2.1 Derivation of PGC from Duchi’s mechanism

Here we describe how the PGC method is derived from DM. First, we modify DM to accept inputs
withing the range [α, β] for any individual feature xv of any node v:

α ≤ xv ≤ β =⇒ 0 ≤ xv − α ≤ ∆

=⇒ 0 ≤ xv − α

∆
≤ 1

=⇒ 0 ≤ 2(xv − α)

∆
≤ 2

=⇒ −1 ≤ 2(xv − α)

∆
− 1 ≤ 1 (13)

Based on the above, let tv be defined as:

tv =
2(xv − α)

∆
− 1 (14)

which is in the range [−1, 1] and thus can be used as the input of DM. From (11), we have:

Pr

[
t∗v =

eǫ + 1

eǫ − 1
| tv
]
=

1

2
+

eǫ − 1

2eǫ + 2
· tv

Substituting (14) in the above, we get:

Pr

[
t∗v =

eǫ + 1

eǫ − 1
| xv

]
=

1

2
+

eǫ − 1

2eǫ + 2
·
(
2(xv − α)

∆
− 1

)

=
1

2
+

xv − α

∆
· e

ǫ − 1

eǫ + 1
− 1

2
· e

ǫ − 1

eǫ + 1

=
1

2

(
1− eǫ − 1

eǫ + 1

)
+

xv − α

∆
· e

ǫ − 1

eǫ + 1

=
1

2
· 2

eǫ + 1
+

xv − α

∆
· e

ǫ − 1

eǫ + 1

=
1

eǫ + 1
+

xv − α

∆
· e

ǫ − 1

eǫ + 1
(15)

Similar to the above, we will have:

Pr

[
t∗v = −eǫ + 1

eǫ − 1
| xv

]
=

eǫ

eǫ + 1
− xv − α

∆
· e

ǫ − 1

eǫ + 1
(16)

Analogous to [5] and to achieve communication efficiency, for each node v, we define yv ∈ {0, 1}
to be the output of the data collection step, such that:

yv =





1, if t∗v = eǫ+1
eǫ−1

0, if t∗v = − eǫ+1
eǫ−1

(17)

Combining (15), (16), and (17), we get:

Pr[yv|xv] =





1
eǫ+1 + xv−α

∆ · eǫ−1
eǫ+1 , if yv = 1

eǫ

eǫ+1 − xv−α
∆ · eǫ−1

eǫ+1 , if yv = 0
(18)
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which is equal to PGC data collection mechanism defined in (3). From the above, we have:

E[yv] =
1

eǫ + 1
+

xv − α

∆
· e

ǫ − 1

eǫ + 1
(19)

which is clearly biased as the expectation is not equal to xv. To get an unbiased estimator, let y∗v be
a random variable, such that E[y∗v ] = xv . Therefore, Combining with the above equation, we have:

1

eǫ + 1
+

E[y∗v ]− α

∆
· e

ǫ − 1

eǫ + 1
= E[yv]

1 +
E[y∗v ]− α

∆
· (eǫ − 1) = (eǫ + 1)E[yv]

E[y∗v ]− α

∆
=

(eǫ + 1)E[yv]− 1

eǫ − 1

E[y∗v ] =
(eǫ + 1)E[yv]− 1

eǫ − 1
∆+ α

Finally, removing the expectations from both sides, we end up with:

y∗v =
(eǫ + 1)yv − 1

eǫ − 1
∆+ α (20)

which is the scalar form of the unbiased estimator defined by (5).

A.3 Piecewise Mechanism

A recently proposed LDP algorithm for numeric mean estimation is the Piecewise mechanism (PM)
by Wang et al. [41]. This mechanism assumes that the input t is again in the range [−1, 1] and
returns a perturbed value t∗ ∈ [−C,C], where:

C =
exp(ǫ/2) + 1

exp(ǫ/2)− 1
(21)

Then, the output t∗ is drawn randomly from the following piecewise constant distribution:

Pr(t∗ | t) =




p, if t∗ ∈

[
ℓ(t), r(t)

]
,

p
exp(ǫ) , if t∗ ∈

[
−C, ℓ(t)

)
∪
(
r(t), C

]
.

(22)

where

p =
exp(ǫ)− exp(ǫ/2)

2 exp(ǫ/2) + 2
,

ℓ(t) =
C + 1

2
· t− C − 1

2
, and

r(t) = ℓ(t) + C − 1.

Wang et al. prove that their mechanism is unbiased (E[t∗] = t), and the variance is calculated as:

V ar[t∗] =
t2

eǫ/2 − 1
+

eǫ/2 + 3

3(eǫ/2 − 1)2
(23)

A.3.1 Integration of PM into the proposed framework

In order to make the variance of PM comparable to PGC’s defined in (7), we extend the mechanism
to accept inputs withing the range [α, β] for any individual feature xv of any node v. Based on (13),
we set:

tv =
2(xv − α)

∆
− 1

=
2(xv − α)− (β − α)

∆

=
2

∆
(xv −

α+ β

2
) (24)
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Figure 4: Variance of different LDP mechanisms for xv = α (or xv = β). The values of α and β
was set to 0 and 1, respectively.

Combining (23) and (24), the variance becomes:

V ar[t∗v] =
tv

2

eǫ/2 − 1
+

eǫ/2 + 3

3(eǫ/2 − 1)2

=

(
2
∆ (xv − α+β

2 )
)2

eǫ/2 − 1
+

eǫ/2 + 3

3(eǫ/2 − 1)2

=
4

∆2

(
xv − α+β

2

)2

eǫ/2 − 1
+

eǫ/2 + 3

3(eǫ/2 − 1)2
(25)

Let y∗v be a random variable such that E[y∗v ] = xv . Since E[t∗v] = tv, using (24) we have:

E[t∗v] =
2

∆
(E[y∗v]−

α+ β

2
)

= E

[
2

∆
(y∗v − α+ β

2
)

]

removing the expectations from both sides and rearranging, we get:

y∗v =
∆

2
(t∗v + 1) + α (26)

The variance of y∗v is then derived as:

V ar[y∗v ] = V ar

[
∆

2
(t∗v + 1) + α

]
=

∆2

4
V ar[t∗v ]

Finally, combining with (25), we have:

V ar[y∗v ] =

(
xv − α+β

2

)2

eǫ/2 − 1
+

eǫ/2 + 3

3(eǫ/2 − 1)2
· ∆

2

4
(27)

B Variance Comparison of LDP Mechanisms

Equation (27) clearly shows that the minimum variance of PM is achieved when xv = α+β
2 , while

its variance is maximized when xv = α or xv = β. In other words, as opposed to the PGC
mechanism, whose variance decreases to its minimum as xv approaches α or β, the variance of PM
gets elevated toward its maximum. This is illustrated further in Figure 4, where the variance of the
three LDP mechanisms, LM, PM, and PGC, is depicted for the case when xv = α or xv = β. It can
be observed that in this case, PGC generates less variance than both LM and PM, regardless of the
value of ǫ. Therefore, considering that the feature xv is generated from some prior distribution p(x)
defined on [α, β], PGC is expected to be a better choice if p(x) is skewed toward either α or β, e.g.
when p(x) is a truncated exponential distribution defined over the range [α, β], so that E[x] is close
to α or β. If α is zero, this implies that PGC works best if most of the features are sparse. On the
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Table 3: Average feature value x̄ in different datasets

DATASET CITESEER CORA ELLIPTIC FLICKR TWITCH

x̄ 0.009 0.013 0.219 0.037 0.008

1 2 3 4 5

0.00

0.25

0.50

0.75

1.00

ǫ

σ
2

(a) CiteSeer

1 2 3 4 5

0.00

0.25

0.50

0.75

1.00

ǫ

σ
2

(b) Cora

1 2 3 4 5

0.00

0.25

0.50

0.75

1.00

ǫ

σ
2

LM PM PGC

(c) Elliptic

1 2 3 4 5

0.00

0.25

0.50

0.75

1.00

ǫ

σ
2

(d) Flickr

1 2 3 4 5

0.00

0.25

0.50

0.75

1.00

ǫ

σ
2

(e) Twitch

Figure 5: Variance of LDP mechanisms based on different values of the privacy budget ǫ obtained
using empirical average of features across different datasets.

contrary, if E[x] is close to the middle of the range [α, β], e.g. when p(x) is a Gaussian or uniform
distribution over [α, β], then PM is preferred over PGC (as an extension of DM) when ǫ is greater
than around 0.61 [41].

Figure 5 exhibits the empirical variance of the three LDP methods for ǫ ∈ [1, 5] across different
datasets. For each dataset, the value of xv in the PM and PGC’s variance formulas (equations (27)
and (7)) is replaced by the average of all the features over all the nodes, denoted as x̄:

x̄ =
1

m · |V|
∑

v∈V

m∑

i=1

x(i)
v (28)

Here, we normalized the features between 0 and 1, so that they have the same scale. The value of
x̄ for different datasets is shown in Table 3. According to Figure 5 and Table 3, it can be observed
that for all the datasets except Elliptic, the empirical variance of PGC is lower than PM and LM, as
in these datasets the average feature value tends to be very close to 0. However, in case of Elliptic,
for which x̄ is far greater than the rest of the datasets, the variance of PGC exceeds PM, and for
higher values of ǫ it also passes LM. This result is completely in line with error estimation, node
classification, and link prediction results presented in Section 5.

C Proof of Lemmas

C.1 Proof of Lemma 1

Proof. According to (3), for a single output yv corresponding to an arbitrary private input feature xv ,
the probability that yv = 1 ranges from 1

eǫ+1 to eǫ

eǫ+1 depending on xv . Analogously, the probability

that yv = 0 also varies from 1
eǫ+1 to eǫ

eǫ+1 . Therefore, for every node pairs v and u and every
output {0,1}, the ratio of the respected probabilities can be at most eǫ. As each nodes contributes
with its feature to the server only once, due to the robustness of differentially private algorithms to
post-processing [10], Algorithm 1 will be ǫ-LDP for individual node features.

C.2 Proof of Lemma 2

Proof. We need to show that E[ĜC(v)] = GC(v).

E[ĜC(v)] =
∑

u∈N (v)

y∗
v√

dudv

=
∑

u∈N (v)

1√
dudv

[
(eǫ + 1)E[yu]− 1

eǫ − 1
·∆+α

]
(29)
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As yu is drawn from a Bernoulli distribution, for any node u we have:

E[yu] =
1

eǫ + 1
+

xu −α

∆
· e

ǫ − 1

eǫ + 1
(30)

Combining (29) and (30) we get

E[ĜC(v)] =
∑

u∈N (v)

1√
dudv

[
(eǫ + 1)( 1

eǫ+1 + xu−α

∆
· eǫ−1
eǫ+1 )− 1

eǫ − 1
·∆+α

]

=
∑

u∈N (v)

1√
dudv

[
1 + xu−α

∆
(eǫ − 1)− 1

eǫ − 1
·∆+α

]

=
∑

u∈N (v)

1√
dudv

[
xu −α

∆
·∆+α

]

=
∑

u∈N (v)

xu√
dudv

= GC(v)

C.3 Proof of Lemma 3

Proof. Let zv = yv√
dv

∈ [0, 1]. Then using Hoeffding’s inequality [19], for all t > 0 we have:

Pr




∣∣∣∣∣∣
∑

u∈N (v)

zu − E


 ∑

u∈N (v)

zu



∣∣∣∣∣∣
≥ t


 ≤ 2 exp{−2t2

dv
}
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Substituting zu with yu√
du

and combining with (30) we get

Pr




∣∣∣∣∣∣
∑

u∈N (v)

zu − E


 ∑

u∈N (v)

zu



∣∣∣∣∣∣
≥ t




= Pr




∣∣∣∣∣∣
∑

u∈N (v)

yu√
du

−
∑

u∈N (v)

E (yu)√
du

∣∣∣∣∣∣
≥ t




= Pr




∣∣∣∣∣∣
∑

u∈N (v)

yu√
du

−
∑

u∈N (v)

1
eǫ+1 + xu−α

∆ · eǫ−1
eǫ+1√

du

∣∣∣∣∣∣
≥ t




= Pr




∣∣∣∣∣∣
∑

u∈N (v)

1√
du

(
yu − 1

eǫ + 1
− xu − α

∆
· e

ǫ − 1

eǫ + 1

)∣∣∣∣∣∣
≥ t




= Pr




∣∣∣∣∣∣
∑

u∈N (v)

[
1√
du

(
(eǫ + 1)yu − 1

eǫ − 1
·∆+ α

)
− xu√

du

]∣∣∣∣∣∣
≥ eǫ + 1

eǫ − 1
∆ · t




= Pr




∣∣∣∣∣∣
√
dv

∑

u∈N (v)

[
1√
dudv

(
(eǫ + 1)yu − 1

eǫ − 1
·∆+ α

)
− xu√

dudv

]∣∣∣∣∣∣
≥ eǫ + 1

eǫ − 1
∆ · t




= Pr

[∣∣∣∣
√
dv

(
ĜC(v) −GC(v)

)∣∣∣∣ ≥
eǫ + 1

eǫ − 1
∆ · t

]

= Pr

[∣∣∣ĜC(v)−GC(v)
∣∣∣ ≥ eǫ + 1

eǫ − 1

t√
dv

·∆
]
≤ 2 exp{−2t2

dv
} (31)

Setting 2 exp{− 2t2

dv

} = δ, we get t =
√

dv

2 log 2
δ . Then by combining with (31), we have

Pr

[∣∣∣ĜC(v)−GC(v)
∣∣∣ ≥ ∆ · e

ǫ + 1

eǫ − 1

√
1

2
log(

2

δ
)

]
≤ δ

and therefore

Pr

[∣∣∣ĜC(v)−GC(v)
∣∣∣ ≤ ∆ · e

ǫ + 1

eǫ − 1

√
1

2
log(

2

δ
)

]
≥ 1− δ (32)

which concludes the proof.

C.4 Proof of Lemma 4

Proof. We first calculate the variance of yv as in (3). Since yv is Bernoulli, its variance can be
obtained as:

V ar[yv] = E[yv](1− E[yv]) (33)
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Combining with (30), we get:

V ar[yv] =

(
1

eǫ + 1
+

xv − α

∆
· e

ǫ − 1

eǫ + 1

)(
1−

[
1

eǫ + 1
+

xv − α

∆
· e

ǫ − 1

eǫ + 1

])

=

(
1

eǫ + 1
+

xv − α

∆
· e

ǫ − 1

eǫ + 1

)(
eǫ

eǫ + 1
− xv − α

∆
· e

ǫ − 1

eǫ + 1

)

=
eǫ

(eǫ + 1)2
− xv − α

∆
· eǫ − 1

(eǫ + 1)2
+

xv − α

∆
· e

ǫ(eǫ − 1)

(eǫ + 1)2
−
(
xv − α

∆
· e

ǫ − 1

eǫ + 1

)2

=
eǫ

(eǫ + 1)2
+

(
xv − α

∆
· eǫ − 1

(eǫ + 1)2

)
(eǫ − 1)−

(
xv − α

∆
· e

ǫ − 1

eǫ + 1

)2

=
eǫ

(eǫ + 1)2
+

xv − α

∆
·
(
eǫ − 1

eǫ + 1

)2

−
(
xv − α

∆
· e

ǫ − 1

eǫ + 1

)2

=
eǫ

(eǫ + 1)2
+

(
eǫ − 1

eǫ + 1

)2
[
xv − α

∆
−
(
xv − α

∆

)2
]

=
eǫ

(eǫ + 1)2
+

(
eǫ − 1

eǫ + 1

)2 (
xv − α

∆

)(
1− xv − α

∆

)

=
eǫ

(eǫ + 1)2
+

(
eǫ − 1

eǫ + 1

)2 (
xv − α

∆

)(
β − xv

∆

)
(34)

Finally, using the above equation and according to (5), we have:

V ar[y∗v ] = V ar

[
(eǫ + 1)yv − 1

eǫ − 1
·∆+ α

]

= ∆2 ·
(
eǫ + 1

eǫ − 1

)2

V ar[yv]

= ∆2 eǫ

(eǫ − 1)2
+ (xv − α)(β − xv) (35)

D Additional Dataset Details

Citation networks. We use three well-known benchmark datasets, namely Cora and CiteSeer [45].
These datasets are citation networks, where documents are represented as nodes, and edges represent
citation links. Additionally, each node has a bag-of-words feature vector and a label indicating its
category.

Elliptic. This dataset is the network of Bitcoin transactions released by Elliptic2. Each node in this
dataset represents a transaction, and edges represent the flow of Bitcoin between two transactions.
Around 23% of the nodes in the dataset have been labeled as being created by a “licit” or “illicit”
entity. Vertex features comprise local and aggregated information about the transactions.

Flickr. We also use the Flickr dataset from [46], in which nodes represent images uploaded to
Flickr, and edges indicate that images share some common attributes, such as location, gallery, or
comments by the same user. The dataset also contains bag-of-words feature vectors for each node,
and the nodes are labeled according to their tags.

Twitch. The last dataset is collected from Twitch, which is a social networking platform for gamers.
Nodes in the dataset correspond to Twitch users, and edges represent mutual friendships between
them. Node features are extracted based on location, games played and liked, and streaming habits.
The label of each node determines if the user uses explicit language. Here, we use the UK version
of this dataset from [33].

2https://www.kaggle.com/ellipticco/elliptic-data-set
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Table 4: Best hyper-parameter configurations based on validation set performance.
GCN FOR NODE CLASSIFICATION VGAE FOR LINK PREDICTION

DATASET LEARNING RATE WEIGHT DECAY DROPOUT LEARNING RATE WEIGHT DECAY DROPOUT

CITESEER 0.01 0.1 0.5 0.01 0.01 0
CORA 0.01 0.01 0.5 0.01 0.01 0
ELLIPTIC 0.01 0 0 0.01 0.0001 0
FLICKR 0.01 0 0 0.01 0.001 0
TWITCH 0.001 0.0001 0 0.01 0.001 0

E Hyper-Parameter Configuration

We performed grid search in order to find the best choices for initial learning rate, weight decay,
and dropout rate based on the performance of each model, GCN for node classification and VGAE
for link prediction, across different datasets. Table 4 displays the best performing hyper-parameters
used for our experiments.
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