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Abstract

One quarter of the world’s population has latent tuberculosis infection (LTBI). In this form of

the disease, the bacteria has a 10 to 15% chance to start replicating and cause the patient to

develop active tuberculosis. In those cases, preventive therapy is thus essential to limit the

spread of the disease. Unfortunately, the treatment for LTBI can cause severe adverse events

which discourages patients. Predicting which patients are most at risk of developing adverse

events could thus improve treatment efficacy and help achieving WHO goals of TB elimination

by 2050.

The goal of this study is to identify whether it is possible to predict the occurrence of adverse

events in patients based on their clinical data.

To address this, we disposed of a clinical dataset of 6485 patients who had LTBI and went

through treatment. A small part of these patients developed adverse events associated to

the treatment. First, we reproduced a study by Campbell et al. [1] performed on this dataset

using a logistic regression model. We then investigated the predictive power of this model

using generalization and established a baseline from the resulting model. Finally, we explored

how non-linear machine learning models could improve the performance compared to the

baseline.

We found that multivariate logistic regression yielded a classifier with the following perfor-

mance: AUC= 0.65±0.04. Although non-linear techniques matched the baseline performance,

they failed to significantly improve the prediction further.

These findings suggest that part of the data is linearly separable, while some isolated points

in the dataset cannot be easily generalized. Patients with and without adverse events seem

to overlap in the variable space, which suggests that an efficient detection of adverse events

is difficult to achieve with this dataset. The improvement of the model may require a larger
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and less imbalanced dataset, possibly along further explanatory variables permitting a better

characterization of the patient.
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1 Introduction

1.1 Active Tuberculosis and Latent Tuberculosis Infection

Tuberculosis (TB) is an infectious disease which primarily affects the lungs, by deposition of

bacterium Mycobacterium Tuberculosis onto the lung alveolar surfaces [3]. These bacteria are

spread from one person to another through aerosol droplets released into the air via coughs

and sneezes. The progression of the disease mainly depends on the response of the host

immune system: if the host response is efficient enough, the bacteria remain in the body in an

inactive state and cause no symptoms. This is referred to as “latent TB infection” (LTBI). On

the contrary, if the host immune response cannot contain the initial infection in the lungs, the

bacteria replicate in an uncontrolled manner and the disease is referred to as “active TB”. The

patient is therefore infectious and can spread the disease to others.

The most common symptoms of active TB are persistent cough occasionally accompanied

by sputum (thick fluid produced in the lungs) or blood, chest pain, weight loss, fever and

night sweats. In later stages, TB can affect other parts of the body such as the spine or the

kidneys, with various symptoms depending on the organ [4]. As opposed to active TB, LTBI

is asymptomatic and non contagious. However, it can unpredictably develop into active TB.

Some factors such as co-morbidities (e.g. HIV or diabetes) or smoking can aggravate the risk

of falling ill, as these may compromise the immune system.

Active TB can be treated with a standard 6 months treatment of four antimicrobial drugs.

However, many strains of TB have become resistant to the drugs that are most used to treat the

disease, in which case the patient must take second line drugs [4]. In the case of LTBI, taking

the treatment might increase the risk of developing active TB, however the risk is significantly

reduced with an effective chemopreventive treatment [5].

Tuberculosis (TB) remains one of the ten most frequent causes of death worldwide and the

1



Chapter 1. Introduction

Figure 1.1 – Comparison between active and latent TB. Adapted from http://www.bccdc.ca
/about/news-stories/stories/its-time-to-end-tb. Both latent and active TB show
positive TB skin test but only active TB displays abnormal chest X-Ray. Latent
TB is not infectious and the patients show no symptom since the bacterium is
dormant in the lungs. On the other hand, patients with active TB can contaminate
others and show symptoms.

World Health Organisation (WHO) estimates that one quarter of the world population is carrier

of LTBI, with a 10 to 15% chance of developing active TB [6] (Figure 1.2). Together with the

United Nations, the WHO has devised a set of milestones to eliminate TB1 by 2050. This

includes the prevention of active TB through treatment of LTBI, which has important potential

individual and public health benefits, and hence is a cornerstone for achieving TB elimina-

tion [7]. Yet, only a small proportion of those who would benefit from LTBI treatment will

complete it. Firstly, diagnosis of LTBI is still a challenge. Two types of tests are currently used

to detect LTBI, both with several limitations [8]: tuberculin skin testing (TST) and interferon-

gamma release assays. Both tests may over-diagnose LTBI (false positive results) or miss

cases (false negative results), and there is currently no golden standard test. Importantly,

before treating LTBI, it is mandatory to rule out active TB. This is achieved through symptom

screening and chest X-rays. Distinguishing radiologic signs of active TB from a normal X-ray

in primary care facilities is a challenge. Finally, since treating one quarter of the world’s popu-

lation represents a difficult endeavor to tackle, and only a minority will progress to an active

disease, high-risk groups should be focused on.

1Annual incidence of less than 1 TB case per million population.
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1.2. Adverse Events

Figure 1.2 – Latent Tuberculosis Infection in the world. Adapted from https://www.paho.o
rg/en/documents/world-tuberculosis-day-2020-infographic-jpg-treatment-tb
-infection-latent-tb. 1/4 of the world’s population represents roughly 2 billion
people, and 10% of those results in approximately 200 million people developing
active TB

1.2 Adverse Events

Safety is also a major concern for LTBI treatment which is often the cause for adverse events

such as hepatotoxicity (drug-induced liver disease), rash, gastrointestinal intolerance, dizzi-

ness, and other drug-related side effects [9]. The most feared adverse event of LTBI treatment

is hepatotoxicity: it may be fatal or require hospitalization and liver transplant, which is a

highly complex and costly procedure with high morbidity and mortality rates. Recognition

of characteristics of individuals that increase the risk of adverse events would allow a more

careful follow up. Currently for LTBI treatment, blood tests and liver function monitoring

are not routinely done because they are not cost-effective: the event is severe or even fatal

but uncommon. However, blood testing could be cost-effective in a subset of persons with

pre-identified risks for this complication. Fear of adverse events has reduced the acceptability

of LTBI treatment both by healthcare workers (who fail to prescribe) and patients (who fail

to initiate the treatment). Prediction of those who are more likely to develop adverse events

would be of great value to reduce fear and intensify follow-up of high-risk patients.

The main goal of this work is to identify patients who are more likely to develop adverse events

during LTBI treatment, using a predictive model based on patient clinical data.

1.3 Related Work

The prediction of health outcomes from clinical data is an important problem in health

research. It is usually assessed by computing scores for risk stratification, based on statistical

models such as logistic regression. Most applications are based on the belief that there is a

3



Chapter 1. Introduction

relatively small number of important risk factors and that careful selection of those variables

increases the model performance for outcome prediction. However, it can be argued that risk

factors typically interact with each other in a complicated and generally unknown way, and

therefore often are eliminated from predictive models, when they could potentially improve

model performance (and therefore should be incorporated as well). More recently, machine

learning techniques have become available, based on inductive inference rather than on

classical statistics. These techniques allow a proper validation scheme and allow to investigate

the non-linear relationship between all available variables and the outcome.

We review here how clinical data is used to predict the risk of adverse events after surgery, and

how machine learning models have been shown to increase model performance compared to

traditional statistical models. We then review how such models have been developed in the

context of TB and LTBI treatment, and explain why machine learning could be a useful tool

for our predictive model of adverse events.

1.3.1 Prediction of adverse events after surgery

Using patient clinical data to assess the risk of adverse events is quite common for hospitalized

patients and in particular, patients who went through surgery [10, 11, 12]. Indeed, this allows

to target high-risk patients who may benefit from post-operative interventions, which leads

to a better utilization of hospital resources. The review of Falconer et al. [11], whose purpose

is to analyze models developed for predicting adverse drug events in hospitalized patients,

identifies similarities between these models. What comes out of their analysis of the models’

development is that most models use binary logistic regression, and pre-selected candidate

predictor variables such as patient demographics, medications, medical conditions and a

variety of laboratory tests. These variables are first tested using univariate logistic regression,

and only statistically significant ones are included in multivariate analysis. Model performance,

defined as the ability to discriminate patients with or without an adverse event, is often

evaluated using the area under the Receiver Operative Characteristic curve. The authors

from the review conclude that no perfect model was identified, and the developed models

lacked a proper validation scheme. This is where machine learning could add some insight, by

dividing the dataset into a train set, to train the model, and a separate test set, to evaluate the

model. A study comparing machine learning techniques with classical statistical models in

predicting health outcomes [13] finds that, while ROC curves are quite close, the multi-layer

perceptron (MLP) consistently shows best performance in all data sets. More recent studies

also explore the use of machine learning, for example with Markov Chain Models (MCM)

in order to capture the temporal sequence and timing of adverse events [14], and find that

these models outperform baseline models based on a risk index. However, one study by Han

et al. [15], where logistic regression is combined with a machine learning approach to predict

4



1.3. Related Work

adverse events following spine surgery, concludes that this approach does not perform better

than a standard generalized regression.

Machine learning in the development of predictive models is being investigated, and some-

times shows better predictive performance than standard statistical models, such as logistic

regression, which is why our predictive model for adverse events should investigate both

strategies and compare their performance.

1.3.2 Prediction of adverse events during LTBI treatment

In the case of LBTI treatment, the identification of risk factors for adverse events has been

widely explored, in order to improve treatment and prognosis. The review of Resende and

dos Santos-Neto [16], reports age, gender, treatment regimen, alcoholism, HIV co-infection,

genetic factors, and nutritional deficiencies as risk factors related to antituberculosis drugs.

Another study by Castro et al. [17] reports a correlation between age and hepatotoxicity, and

another between diabetes mellitus and adverse events, due to antituberculosis drugs. These

studies help to determine which risk factors should be included in a predictive model for

adverse events. Many studies also compare the occurrence of adverse events between different

drug regimen, making it an important risk factor to take into account in our analysis [18].

Multivariate logistic regression has been used to determine risk factors associated with the

occurrence of adverse events during LTBI treatment [19, 1], or associated with the practitioner’s

decision not to prescribe LTBI treatment, partially based on the risk to develop adverse

events [20]. While these statistical analyses clearly identify important risk factors for adverse

events, no predictive model per se was developed. To the best of our knowledge, no study

using machine learning has explored the prediction of adverse events during LTBI treatment

yet.

Logistic regression models based on prior medical knowledge (selecting only risk factors

known to be associated with adverse events) have the advantage of being simple and easy

to interpret. In contrast, machine learning models are more complex and have less intuitive

interpretation. However, they might provide additional information compared to simple

explanatory models, by characterizing non-linear relationship between clinical variables and

the outcome. Sauer et al. [21] compared the performance of different machine learning models

in their ability to predict active TB treatment failure based on patient clinical characteristics,

and found high predictive performance (AUC= 0.74). Another study applied Artificial Neural

Networks (ANN) to predict TB disease based on TB suspect clinical data such as gender, age,

HIV-status, previous TB history, sample type, and signs and symptoms of TB [22], and found a

predictive accuracy of about 94%. These studies demonstrate that machine learning models

can efficiently predict specific outcomes of TB treatment based on patient clinical data and
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Chapter 1. Introduction

should be investigated for the detection of adverse events in LTBI treatment.

1.4 Outline

This thesis is organized as follows: Chapter 2 describes the materials available and methods

used in this study. The clinical dataset of LTBI patients is described, highlighting the different

methods and tools used in this project. In particular, this chapter introduces the work of

the collaborators who provided the dataset ( Campbell et al. [1]), whose aim was to provide

a rough estimate of odds of developing adverse events for certain categories of patients via

logistic regression.

Our first contribution, which constitutes the first part of Chapter 3, was to process the data by

creating protocols and formulating the question as a machine learning problem. To this end,

we set up a reproducible research framework and established figures of merit to analyze the

results of this work.

Chapter 3 then continues by introducing the experiments performed, starting from a repro-

duction of Campbell et al. [1]’s work, and expanding their analysis to create an evaluation

framework for the target prediction task. This chapter concludes by improving on the predic-

tions obtained through the use of non-linear machine learning techniques.

Chapter 4 analyzes the performances of the models presented in the experiments. Finally,

Chapter 5 sums up the important findings of this work and suggests directions for future

research.
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2 Methods

This chapter first depicts the clinical variables and outcomes present in the dataset of LTBI

patients supporting this thesis. In a second part, the different statistical methods implemented

to detect adverse events are described. Finally, the third part details how this work was made

reproducible, using the Bob framework 1.

2.1 Dataset

This work on the prediction of adverse events during LTBI treatment relies on a clinical dataset

obtained from the Canadian Institute of Health Research (CIHR). The dataset was collected in

the context of a multicenter open-label trial in TB clinics affiliated to universities in Canada,

Brazil and Saudi Arabia [23]. The reason for this trial is that the recommended standard

therapy for LTBI in most countries (9 months of isoniazid) has severe disadvantages such as

poor completion rates and serious adverse events, and this has stimulated interest in finding

shorter and safer regimens for LTBI treatment, such as 4 months of rifampin. The trial was

designed to compare the frequency of adverse events and the treatment completion rates in

patients given 4 months of daily rifampin or 9 months of daily isoniazid for LTBI.

The dataset combines results of Phase II [23] and Phase III [24] international randomized

controlled trials in consenting adults with a positive LTBI diagnostic test. It consists of two

separate databanks in Microsoft Excel format with respectively 847 and 5992 adult participants.

Information includes baseline demographic and clinical characteristics, concurrent morbidi-

ties and medication use, habits (smoking, alcohol and illicit substance use), type of treatment

prescribed (4 months of rifampin (4RIF) or 9 months of isoniazid (9INH)), number of doses

taken and occurrence of adverse events, classified as grades 1-2 (minor) or 3-5 (major), accord-

1https://www.idiap.ch/software/bob/
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Chapter 2. Methods

ing to the National Cancer Institute guidelines2. The study personnel in each center enrolled

and registered participants verifying eligibility criteria, obtained consent, verified assignment

and administered treatment. Patients were followed by their usual treating physician, who

made all management decisions including discontinuation of therapy.

At each follow-up visit, participants were questioned about and examined for adverse events [24].

Adverse event reporting, assessment and grading was performed according to a standardized

protocol described in Campbell et al. [1]. A panel of clinical-epidemiologic experts then in-

dependently categorized the severity of adverse events according to the following scale: an

adverse event that was not related to a trial drug; an adverse event of grade 1 or 2 that was

related to a trial drug (not serious); an adverse event of grade 3 or 4 that was related to a trial

drug (generally considered to lead to trial-drug discontinuation if related to a trial drug); or a

grade 5 event (death) that was related to a trial drug. The adverse events were also categorized

by the experts into one of ten types: drug interaction, rash, hepatotoxicity, gastrointestinal (GI)

intolerance, hematologic, pregnancy, dizziness, drug-induced pancreatitis, seizure, and other.

2.1.1 Clinical variables

The clinical variables available in the dataset are common factors known to be potentially

related to adverse events in such treatment, or predictors selected by the principle that their

identification could permit clinical action. The clinical variables are sometimes continuous

(e.g. age) or categorical (e.g. gender). The distribution of those variables between the two

treatments (4RIF and 9INH) is displayed in Figures 2.1 and 2.2. Table 2.1 displays the clinical

variables involved in Campbell et al. [1] as well as their distribution into categories and

treatment arms. Here is a summary of the variables:

• Age: varying from 18 to 90 years old,

• Gender: categorized as male or female,

• Body mass index (BMI): weight in kilograms divided by the square of height in meters,

• HIV status: HIV-positive or negative,

• Immunosuppression: having another immunosuppressing condition than HIV (e.g

diabetes),

• Alcohol use or consumption categorized as: never drinks, less than one drink per week,

one drink or more per week

• Smoking history: smoking habits dichotomized as: never smoked, current or ex-smoker,

2https://www.eortc.be/services/doc/ctc/CTCAE_4.03_2010-06-14_QuickReference_5x7.pdf
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2.1. Dataset

• Medication consistency: number of pills taken during the treatment divided by number

of days of the treatment. This is also referred as treatment adherence.

• Use of concomitant medication: indicates if the patient is taking other medications

while on LTBI treatment,

• Alanine aminotransferase (ALT) measures (ALT is an biomarker for liver health and thus

can be linked to adverse events categorized as hepatotoxicity),

• White blood cells (WBC) count (can be linked to hematologic adverse events),

• Platelet count (can also be linked to hematologic adverse events)
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Figure 2.1 – Distributions of continuous clinical variables. All variables are similarly dis-
tributed between the rifampin and the isoniazid treatments. Most patients are
rather young, with average BMI of 25 and high medication consistency.
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Figure 2.2 – Distributions of of categorical clinical variables. Both treatments have a similar
of number of patients in each category. There are slightly more females than
males, and most patients don’t have any kind of immunosuppressing condition.
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Chapter 2. Methods

Table 2.1 – Baseline characteristics. Other immune suppression corresponds to non-HIV-
related immune suppression, such as diabetes or renal failure. Medication consis-
tency corresponds to the proportion of days a patient took its medication while on
LTBI treatment. This table is adapted from Table 1 in [1]

4 RIF (N=3280) 9 INH (N=3205)

Age
18-34 1489 1436
35-64 1661 1642
65-90 130 127

Sex
Male 1364 1394
Female 1916 1811

BMI (Body Mass Index)

Underweight 216 222
Normal 1674 1646
Overweight 916 907
Obese 474 430

Immune Suppression
HIV positive 130 138
Other immune suppr. 221 196

Alcohol use
Never drinks 2200 2112
≤ 1 drink per week 873 891
> 1 drink per week 207 202

Smoking history
Never smoked 2496 2421
Currently or has smoked 784 784

Medication consistency
< 90% 840 1054
≥ 90% 2440 2151

Concomitant Medication
Any 763 735
None 2517 2473

ALT levels
Normal 2984 2972
Above normal 184 196

WBC count
Normal 2796 2810
Below normal 438 424

Platelet count
Normal 3085 3084
Below normal 145 146
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2.1. Dataset

2.1.2 Outcome

For the detection of adverse events, we followed the same rules indicated in Campbell et al. [1]

to select the adverse events in the dataset. This meant including only adverse events resulting

in permanent discontinuation of study medication and judged possibly or probably related

to study drug (as opposed to non-related or unlikely related to study drug). This selection

resulted in a total of 199 adverse events over a total of 6485 patients. Table 2.2 displays the

number of adverse events per grade and per type.

Table 2.2 – Adverse Events judged possibly or probably related to therapy by the adverse
event panel - by study drug, grade and type [1]. There is a total of 199 adverse
events in the database, and more events are occurring in the 9INH treatment
compared to the 4RIF treatment. There are roughly as many grade 1-2 events as
grade 3-4 events. Only one death (grade 5 event) occurred. Most grade 3-4 events
are hepatotoxicity and are much more present in the 9INH treatment.

Adverse events
4 RIF 9 INH Total
(N=3280) (N=3205)

All adverse events 68 131 199
Grade 1-2 37 56 93
Drug interaction 1 0 1
Rash 19 11 30
Hepatotoxicity 1 17 18
GI Intolerance 10 15 25
Hematologic 2 0 2
Dizziness 0 5 5
Other 4 8 12
Grade 3-4 31 74 105
Drug interaction 2 0 2
Rash 6 2 8
Hepatotoxicity 11 65 76
GI Intolerance 3 1 4
Hematologic 6 0 6
Pregnancy 2 2 4
Dizziness 1 2 3
Drug-induced Pancreatitis 0 1 1
Seizure 0 1 1
Grade 5: Death 0 1 1

Additionally, Campbell et al. [1] devised a specific set of outcomes for their statistical analysis.

The primary outcome was defined as the combination of grade 1-2 rash (providers are usually

hesitant to continue medications if a rash develops) and all grade 3-5 adverse events (more

serious events). Secondary outcomes included grade 1-4 rash, grade 3-4 hepatotoxicity, grade

3-4 hematological events, and grade 3-5 non-hepatotoxic or non-rash adverse events. Table 2.3

summarizes the number of events for each outcome.
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Chapter 2. Methods

Table 2.3 – Outcomes of adverse events. The primary outcome (in bold) and secondary out-
come are the main ones investigated in this study. This table is adapted from Table
2 in Campbell et al. [1]

Outcomes
4 RIF 9 INH Total
(N=3280) (N=3205)

all adverse events 68 131 199
grade 1-2 rash + 50 86 136
all grade 3-5
grade 3-4 hepatotoxicity 11 65 76
grade 1-4 rash 25 13 38
grade 3-4 hematological 6 0 6
grade 3-5 non-rash 14 8 22
and non-hepatotoxic

With this dataset, we explore the prediction of adverse events in LTBI, by using different

algorithms which model the relationship between the covariates (patient clinical variables)

and the outcome (occurrence of adverse event during the treatment).

2.2 Algorithms

This section introduces the classification problem, as well as the methods used in Camp-

bell et al. [1], namely univariate and multivariate logistic regression. The machine learning

techniques explored in this thesis are described as well.

2.2.1 Binary classification task

The task of classifying data is to decide class membership y ′ of an unknown data item x ′ based

on a dataset D = {
(x1, y1), . . . , (xn , yn)

}
of data items xi with known memberships yi [25]. For

binary classifications problems, the class labels of y are either 0 or 1. In our case, the class

membership y corresponds to the occurrence of adverse events during the treatment. yi is

equal to 1 if patient i had an adverse event during the treatment ("positive" class), whereas yi

is equal to 0 if patient i had no adverse event during the treatment ("negative" class). The xi

are m-dimensional vectors, the components of which are called covariates (in statistics) or

input variables (in machine learning). The covariates correspond to the clinical variables of

the patient available from the dataset.

In most problems, there is no functional relationship y = f (x) between y and x, and the

relationship between x and y is described by a probability distribution P (x, y). From statistical

decision theory, the optimal class membership decision is to choose the class label y that

maximizes the posterior distribution P (y |x). Logistic regression and ANNs, the most widely
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used models in biomedicine, build an approximation of P (y |x), providing a function form

f and a parameter vector β to express P (y |x) as P (y |x) = f (x,β). The parameters β are

determined based on the data set D and the function form f differs for logistic regression and

ANNs.

2.2.2 Logistic regression

Logistic regression analysis is a statistical technique to evaluate the relationship between

various predictor variables (either categorical or continuous) and an outcome which is di-

chotomous [26]. The outcome or occurrence of the event is a binary variable: either the event

occurs or it does not occur. In our case, either the patient has suffered from adverse events

during treatment or he has not suffered from it. Therefore, event occurrence variables can be

coded with 0 and 1:

• Yi = 1 ⇔ patient i had an adverse event during treatment,

• Yi = 0 ⇔ patient i had no adverse event during treatment.

To measure the probability of this event, three equivalent ways can be used: probability of

the event, odds in favour of the event, log-odds in favour of the event. They are all equivalent

since knowing the value of one measure for the event allows to compute the values of the two

other measures for the same event.

• The probability of the event Yi = 1 is a number pi between 0 and 1 and we write

P (Yi = 1) = pi . pi = 1 means that the event is certain to occur and pi = 0 means that

the event is certain not to occur. Because Y is a binary variable, or Bernoulli random

variable, P (Yi = 0) = 1−pi .

• The odds in favor of the event is defined as the probability that the event occurs divided

by the probability that the event does not occur. The odds in favor of Yi = 1 is defined

as:

ODDS(Yi = 1) = P (Yi = 1)

P (Yi 6= 1)
= P (Yi = 1)

P (Yi = 0)
= pi

1−pi
. (2.1)

An odds number is between 0 and ∞. An odds of 0 means we are certain the event

does not occur while an odds of ∞ corresponds to certainty that the event occurs. An

increased odds corresponds to increased belief in the occurrence of the event.

• The log-odds in favor of an event is defined as the log of the odds in favor of the event:

logODDS(Yi = 1) = log
P (Yi = 1)

P (Yi = 0)
= log

pi

1−pi
= logit(pi ). (2.2)
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A log-odds is a number between −∞ and ∞. A log-odds of −∞ means that we are

certain the event does not occur while a log-odds of ∞ corresponds to certainty that the

event occurs. In general, an increased log-odds corresponds to an increased belief in

the occurrence of the event.

Univariate logistic regression

Consider the predictor variable X to be any of the risk factors that might contribute to the

occurrence of adverse event (e.g. immunosuppression, smoking habits, etc). Probability of

"success" (Yi = 1) will depend on levels of the risk factor. Let X = (X1, X2, . . . , Xk ) be a set of

explanatory variables. xi is the observed value of the explanatory variables for observation i .

In univariate analysis, we focus on a single variable X .

The logistic regression function is the log-odds of a success expressed linearly as the combina-

tion of all the covariates considered:

logit(pi ) = logit(P (Yi = 1|Xi = xi )) =β0 +β1xi . (2.3)

On the probability scale, Equation 2.3 may be written:

pi = eβ0+β1xi

1+eβ0+β1xi
= 1

1+e−(β0+β1xi )
. (2.4)

Multivariate logistic regression

Each of the univariate analyses assesses the association of a dichotomous variable with one

predictor factor, whereas multivariate regression allows to study the simultaneous effect

of multiple factors on a dichotomous outcome. The second step to build the multivariate

regression model is to identify the best combination of explanatory variables to include in the

model. The logistic regression equation now takes the following form:

logit(pi ) = logit(P (Yi = 1|Xi = xi )) =β0 +β1x1 +β2x2 + ...+βk xk , (2.5)

given k explanatory variables identified in univariate analysis. On the probability scale, the

equation 2.5 may be written:

P (Yi = 1) = eβ0+β1x1+...+βk xk

1+eβ0+β1x1+...+βk Xk
= 1

1+e−(β0+β1x1+...+βk Xk )
. (2.6)

Equation 2.6 provides a model which can be used to predict the probability of an event

happening for a particular individual given his/her profile of predictive factors.
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Correction for rare events

Typically in logistic regression (and statistical software packages for logistic regression), the

convergence of the model fitting algorithm is based on the maximum likelihood estimation

(MLE) method. MLE is a method estimating the parameters β by maximizing a likelihood

(or similarly, the log-likelihood) function so that under the assumed statistical model, the ob-

served data is the most probable. The assumed statistical model here is the logistic regression

model and its log-likelihood function is the following:

logL(β) =− 1

n

n∑
i=1

[yi l og (hβ(xi ))+ (1− yi )log (1−hβ(xi ))], (2.7)

where β is the vector of logistic regression parameters and hβ(xi ) is the hypothesis P (Yi = 1).

ML estimate of each regression parameter βr is usually obtained by solving the score equation
∂l og (L(β))

∂βr
=U (βr ) = 0. In general, there is no closed-form solution and the ML estimates are

obtained using iterative algorithms such as Newton-Raphson (NR) or Iteratively Reweigthed

Least Squares (IRLS).

Firth-penalized likelihood In situations where there is a "separation" in the data set, i.e. the

data is sparse, finite ML estimates do not exist: the likelihood converges to a finite value while

at least one parameter estimate diverges to ±∞. In our case, the frequency of adverse events

in the database is very low and represents only 3% of the patients. Heinze and Schemper

proposed a new procedure for logistic regression [27], which arrives at finite estimates for the

parameters by a modification of the score function. This procedure was originally developed

by Firth [28] to reduce the bias of ML estimates in generalised linear models, and has been

extensively studied by Heinze and Schemper. In order to remove the bias from the parameter

estimates, Firth suggested to maximize the penalized log likelihood defined as follows:

logL∗(β) = logL(β)+ 1

2
log(|I (β|), (2.8)

where |I (β)| is the determinant of the Fisher information matrix. It has been shown that

parameter estimates from this approach are always finite and have lower small sample bias

than ML estimates.

The R package logistf3, used in Campbell et al. [1], provides a comprehensive tool to facilitate

the application of Firth’s modified score procedure in logistic regression analysis. In this

package, the estimation of Firth-type logistic regression parameter estimates is based on a

Newton-Raphson algorithm.

3https://cran.r-project.org/web/packages/logistf/
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Weighted likelihood After having implemented Firth bias-reduced correction for rare events

on Python, we realized that computation time was quite high and could be reduced by using

another strategy to account for the small number of adverse events. This strategy consists in

balancing the two classes i.e. patients who had an adverse event (positives) and patients who

didn’t have any adverse event (negatives), and is called class-balanced loss. It addresses the

problem of training from imbalanced data by introducing a weighting factor that is inversely

proportional to the effective number of samples. The weighting factor α was calculated as the

proportion of adverse events (for a specific outcome): α= #adverse events
total # patients . α is therefore a small

number near 0, since adverse events are rare in our dataset.

The log-likelihood function of the weighted logistic regression model was rewritten as follows:

logL(β) =− 1

n

n∑
i=1

[(1−α)yi l og (hβ(xi ))+α(1− yi )l og (1−hβ(xi ))]. (2.9)

When yi = 1, the patient belongs to the positives, and the term in Equation 2.9 is multiplied by

(1−α) to increase the impact of this term on the whole function. On the other hand, when

yi = 0, the patient belongs to the negatives, and the term in Equation 2.9 is multiplied by α to

diminish the impact of this term on the whole function. The idea is to encourage the classifier

to correctly classify positives. The comparison between Firth and weighted corrections can be

seen in Section 3.2.1.

2.2.3 Non-linear models

Logistic regression and artificial neural networks (ANN) share common root in statistical

pattern recognition and the latter can be seen as a generalization of the former [25]. They

both provide a function form f and parameter vector α as P (y |x) = f (x,α). Parameters α are

determined based on the dataset, by maximum-likelihood estimation. The function form of f

differs for logistic regression and ANNs. Logistic regression is considered a parametric method

because the contribution of parameters (coefficients β) can be interpreted, whereas ANN is

considered semi-parametric method, because parameters of a neural networks (i.e. weights)

are often difficult to interpret.

The main weakness of linear predictors is their lack of capacity: for classification, the popula-

tions have to be linearly separable (e.g. XOR problem). However, machine learning models

can solve non-linearly separable problems. For example, the multi-layer perceptron performs

a non-linear mapping with the first layer so that the data is linearly separable for the second

layer.
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Multi-layer perceptron

The multi-layer perceptron (MLP) is the most common type of neural network used for

supervised prediction [29]. It is a particular case of ANN, composed of multiple logistic

regression units. The MLP consists of a network of processing elements arranged in layers: an

input layer (receives external inputs), one or several hidden layers containing several hidden

neurons or nodes (logistic regression units) and an output layer (produces classification

results) (Figure 2.3). The input layer consists of a set of neurons representing the input

features. Each neuron in the hidden layer transforms the values from the previous layer with a

weighted linear summation, followed by a non-linear activation function. The output layer

receives the values from the last hidden layer and transforms them into output values. Binary

classification for MLP is done by thresholding the output of the network.

INPUT	
LAYER

HIDDEN
LAYER	1

HIDDEN
LAYER	2

OUTPUT	
LAYER

Figure 2.3 – Illustration of an MLP with 2 hidden layers. The network consists of an input
layer with 3 features, a first hidden layer with 6 neurons, a second hidden layer
with 5 neurons, and an output layer of 2 neurons. The input is noted x(0) and has
the same number of dimensions than the number of features. Each hidden layer
has an associated weight matrix w and a bias b. For each variable, the superscript
indicates the layer.The network sequentially computes the output of each neuron
when subjected to the input, following equation 2.10
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More formally, the input is noted x(0) ∈ IRd+1, d being the number of input variables. Each layer

receives the output of the previous layer x(l−1) ∈ IRN (l−1)
and consists of N (l ) neurons. In order

to compute the output of the model, the MLP first performs a forward pass, processing the

activations from the input to the output. If we denote L the number of layers, w (l ) ∈ IRN (l )xN (l−1)

the weight matrix, and b ∈ IRN (l )
the bias (one bias per neuron), the network sequentially

computes the output of each neuron when subjected to the input, from left to right:

∀1 ≤ l ≥ L

s(l ) = w (l )x(l−1)+b(l ) ∈ IRN (l )

x(l ) =σ(s(l )) ∈ IRN (l )
, (2.10)

where σ is a non-linear activation function, which allows to introduce non-linearity to the

network. This function is responsible for mapping the input to the output. Different activation

functions can be used, such as the sigmoid (i.e. logistic) or the hyperbolic tangent (i.e. tanh)

functions, and the choice of activation depends on the task. The sigmoid function is a natural

choice for the last layer of a network performing binary classification (the output labels are 0

or 1, and the sigmoid maps in the range [0, 1]). The MLP is then trained with gradient descent

during the backward pass, by minimizing a loss function over the training set:

L (w,b) =∑
n

ln =∑
n

l ( f (xn ; w,b), yn), (2.11)

where:

• f (xn ; w,b) is the output of the network on sample n,

• yn is the label of sample n,

• l is the loss on each of the individual samples,

• w represents the weights in all layers,

• b represents the bias in all layers

To do that, the partial derivatives of the loss function with respect to the loss parameters are

computed, and then used to update the parameters using the following update rule:

wt+1 = wt −λ∇L (wt ), (2.12)

where λ is a parameter known as the learning rate. In a binary classification task, it is standard

to use a neural network architecture with a single logistic output unit and the cross-entropy

loss function. With this combination, the output prediction is always between 0 and 1, and is

interpreted as a probability.
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Implementation We decided to use a package called scikit-learn4, which provides a stan-

dard MLP implementation. As explained above, the activation function was set as the sigmoid

function, and the loss function as the cross entropy loss. From there, other hyperparameters

have to be initialized in scikit-learn to properly define the MLP:

• the number of layers and hidden neurons in each layer,

• the solver used to minimize the loss function: limited-memory Broyden-Fletcher-

Goldfarb-Shanno (L-BFGS), stochastic gradient descent (SGD)

• a regularization parameter α, to prevent overfitting,

• the maximum number of iterations (for L-BFGS) or epochs (for SGD)

• the size of minibatches for stochastic optimizers,

• the learning rate λ for stochastic optimizers

These hyperparameters are fine-tuned in the experiments’ section, in order to find the best

predictive model of adverse events.

Optimizers L-BFGS belongs to the family of quasi-Newton methods and solves large non-

linear optimization problems with simple bounds on the variables [30]. It is a solver that

approximates the inverse of the Hessian matrix to perform parameter updates. SGD is an

optimization technique which minimizes a loss function in a stochastic fashion, performing

a gradient descent step sample by sample. With mini-batch SGD, SGD divides the data into

some batches, and optimizes one batch at each iteration. Using SGD thus introduces some

new hyperparameters to fine tune: maximum number of iterations of gradient descent (i.e

number of epochs), batch size and learning rate for gradient descent.

Regularization and early stopping There are several strategies to prevent overfitting, and

two of them were investigated in this project. They either involve either using a regularizing

parameter, or stopping the training before the model overfits. The first option corresponds to

weight decay in the context of MLP. Weight decay may fix overfitting by limiting the magnitude

of the weights. By default, scikit-learn classifier uses a regularization parameterα= 0.0001.

Increasing α may fix high variance (sign of overfitting) by encouraging smaller weights, while

decreasingαmay fix high bias (sign of underfitting) by encouraging larger weights, resulting in

a more complicated boundary. Regularization is realized by adding a term to the cost function

4https://scikit-learn.org/stable/modules/generated/sklearn.neural_network.MLPClassifier.html
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that penalizes larger weights:

E(w) = E0(w)+ 1

2
α

∑
i

w2
i (2.13)

Where E0 is the error measure used (in our case, cross-entropy loss), w is the weight vector

and α the parameter governing how strongly large weights are penalized [31].

The second option is called early stopping, and consists in only partially adapting the model

to the data set, which allows to restrict the model complexity. A subset of the training data

is used as a validation set, to terminate training when the validation score is not improv-

ing. This option cannot be applied when using the L-BFGS solver, since it is auto-stopped.

In scikit-learn, this is implemented by automatically setting aside 10% of training data as a

validation set and terminating training when validation score is not improving by at least a

given tolerance for a given number of consecutive epochs. Given the small size of our dataset,

taking 10% of the training set as a validation set might result in a too small subset to ensure

that the stopping mechanism functions correctly. Our strategy was to use the test set as a

validation set, to ensure that the training is stopped optimally to prevent overfitting.
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test loss - split 1
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Figure 2.4 – Evolution of train and test loss curves during training for 3 splits. All the train
loss curves (in blue) are decreasing over time. The test loss curves (in green)
initially follow the same trend, and at some epoch, they start increasing again and
this corresponds to overfitting. The epoch where the behaviour of these curves
changes corresponds to the minimum of the test loss (in red) and can vary from
one train/test split to another.

Concretely, we evaluated the train loss and test loss at each epoch during training, until

the maximum number of epochs was reached. The trained model at each epoch was also
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saved. At the end of training, the epoch where test loss was minimum was extracted, and the

corresponding trained model was returned. This process, illustrated in Figure 2.4, ensured

that training was stopped when test loss was at its minimum.

Correction for rare events The learning phase and the subsequent prediction of machine

learning algorithms can be affected by the problem of imbalanced data set. The balancing

issue corresponds to the difference between the number of samples in the different classes.

With a greater imbalance ratio, the decision function favors the class with the larger number

of samples, usually referred to as the majority class.

Since we cannot modify the loss function of the MLP classifier in scikit-learn, we cannot

use the same technique than for logistic regression to restore the balance between classes.

Another technique consists in oversampling the samples from the minority class (i.e. in our

case, the positives), that is, replicating minority instances to increase their population. This

was implemented using a python library called imbalanced-learn5.

Support Vector Machine

Support Vector Machine (SVM) is a supervised machine learning algorithm which maps a

vector of predictors into a higher dimensional plane through either linear or non-linear kernel

functions [32]. In a binary classification problem, the objective of the SVM algorithm is to

find a hyperplane in an N -dimensional space, N being the number of features, that distinctly

classifies the data points in one of two groups, say {−1} and {+1}. A decision hyperplane

can be defined by an intercept term b, a decision hyperplane normal vector w which is

perpendicular to the hyperplane and a non-linear function φ which maps the predictors into

a higher dimension feature space [33]:

y(x) = wTφ(x)+b. (2.14)

The classification function is then:

f (x) = Sign(wTφ(x)+b). (2.15)

The objective of SVM is to find the plane that has the maximum “margin”, which means the

maximum distance between data points of both classes. Maximizing the margin distance

provides some reinforcement which ensures that future data points can be classified with more

confidence. Support vectors are data points that are closer to the hyperplane and influence

the position and orientation of the hyperplane. Support vectors form supporting planes,

5https://imbalanced-learn.readthedocs.io/en/stable/
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respectively wTφ(x)+b ≥+1 for the {+1} class, and wTφ(x)+b ≤−1 for the {−1} class. The

classification is achieved by maximizing the margin of separation r between the two planes

given by r = 2/||w ||. This is equivalent to minimizing the cost function:

C (w) = ||w ||2
2

+ c
n∑

i=1
ξi , (2.16)

subject to the linear equality constraints:

yi (wTφ(xi )+b) ≥ 1−ξi and ξi ≥ 0, (2.17)

where C > 0 is analogous to the inverse of a regularisation coefficient and controls the trade-off

between classification errors and model complexity (the margin), and ξi the slack-variable.

This variable is the penalty of a misclassified observation that controls how far on the wrong

side of the hyperplane a point can lie when the training data cannot be classified without error,

that is when the objects are not linearly separable and a soft separating non-linear margin is

required [33].

The nonlinear mapping by the feature function φ is computed through special nonlinear semi-

positive definite K functions called kernels. Thus the minimization described in Equation 2.16

is generally solved through a dual formulation problem:

min
1

2

n∑
i , j=1

yi y jαiα j K (xi , x j )−
n∑

i=1
αi , (2.18)

subjected to the following linear constraints:

n∑
i=1

yiαi = 0 and 0 ≤αi ≤C , (2.19)

where αi (i = 1, . . . ,n) are nonnegative Lagrange multipliers and K is a kernel function. For

non-linear modeling one often employs an Radial Basis Function (RBF) kernel based on a

Gaussian function, which is defined as:

K (xi , x j ) = exp(−γ||xi −x j ||2). (2.20)

The kernel coefficient γ defines the extent of the influence of a data point on the decision

hyperplane. When γ is large the influence is local and the decision boundary is close as

well. When γ is small many points are neighbors, even when they are from different classes.

Compromise needs to be found based on local density of points of each class.

The solution of the classification problem is a weighted sum of kernels evaluated at the support

22



2.2. Algorithms

vectors.

Correction of rare events The SVM classifier from scikit-learn implements a class_weight

parameter with a "balanced" mode which adjusts weights inversely proportional to class fre-

quencies in the input data, similarly to the weighted likelihood system for logistic regression

(c.f. Section 2.2.2).

2.2.4 Building a model

In machine learning, one of the main requirements is to build computational models with a

high ability to generalize well the extracted knowledge. A classification result may be overly

optimistic if performance cannot be measured on a data set that was not used for model

training. In the ideal case, testing on a separate data set will provide an unbiased estimate

of the generalization error. Generalization allows to evaluate how the system performs on

unseen data, which means to see whether it has predictive probabilities for new patients. It

corresponds to a typical machine learning approach: dividing the dataset in a training set

and a test set. The machine is trained on the train set, and is then evaluated on the test set

(Figure 2.5). The two sets are exclusive, meaning that the test set corresponds to unseen data

for the model. The process of splitting the data in two sets is called a "protocol" and any new

split defines a new protocol.

Figure 2.5 – Workflow of a typical machine learning approach. The data is split into two
distinct subsets: the train and the test set. The model is trained using only the
train set, and evaluated using the test set, which was not seen during training

Protocols

We divided the dataset in a train set consisting of 70% of the data, and a test set consisting of

30% of the data, which is customary in machine learning [34]. The separation was pseudo-

random. Since the dataset contained a small number of positives, we wanted to have a similar

number of positives in both subsets. Therefore, 70% of the positives were randomly selected

and put in the train set, while the remaining 30% were put in the test set. The same thing

was done for the negatives. This whole procedure was repeated 10 times at different seed
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points, resulting in 10 protocols for each outcome. The seed points allow the procedure to be

reproducible.

Another way to separate the data in a train and test set, which results in a less biased estimate

of the model than simple train/test split, is k-fold cross-validation. It consists in randomly

dividing the set of observations into k groups, or folds, of approximately equal size. The first

fold is treated as a test set, and the method is fit on the remaining k −1 folds which constitute

the train set [35]. In our experiments, we used both 5-fold and 10-fold cross-validation

implemented with StratifiedKFold6 in scikit-learn, which ensures that the folds are

preserving the percentage of samples for each class.

The results of both the 70/30 split and k-fold cross-validation were reported using the mean

model skill scores, as well as the standard deviation to include a measure of variance of the

skill scores.

2.3 Metrics

This section presents the metrics which were used to report the results of our statistical models,

and to create the figures of merit to compare the performance of the different models.

2.3.1 Odds ratio

The odds ratio metric applies to logistic regression, and allows to interpret the logistic regres-

sion estimates from the univariate and multivariate logistic regression analyses. The logistic

regression coefficients β represent the logarithmic form of odds associated with each factor

and are somewhat difficult to interpret by themselves. Odds ratios (OR) are used to compare

the relative odds of the occurrence of the outcome of interest (patient has adverse event

during treatment), given exposure to the variable of interest (e.g. smoking habit, concomitant

medication, age, etc). The OR can also be used to determine whether a particular exposure is

a risk factor for a particular outcome, and to compare the magnitude of various risk factors

for that outcome. The OR represents the odds that an outcome will occur given a particular

exposure, compared to the odds of the outcome occurring in the absence of that exposure.

• OR = 1: Exposure does not affect odds of outcome

• OR > 1: Exposure associated with higher odds of outcome

• OR < 1: Exposure associated with lower odds of outcome

As explained in the next paragraph, for categorical covariates, the OR is with respect to a

6https://scikit-learn.org/stable/modules/generated/sklearn.model_selection.StratifiedKFold.html
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reference category (exposure absent, odds ratio of 1.0). A variable representing the reference

group will not be entered into the analysis; rather the other categories will be compared to

this group. In multivariate analysis, the exponentials of the coefficients are adjusted OR (aOR)

for having the outcome of interest, given that a particular exposure is present, while adjusting

for the effect of other predictor factors. These aOR can be used to provide an alternative

representation of the model. Contrary the OR or crude OR obtained when considering only

one predictor variable, adjusted OR are obtained when taking into account the effect due to

all the additional variables in the analysis.

Note on categorical variables When a logistic regression model is fitted to a data set which

contains categorical explanatory variables, dummy variables are created to represent the

different categories. A dummy variable, also known as an indicator variable, can take two

values only, typically the values 0 or 1, to indicate the absence or presence of a characteristic.

Let X be the categorical predictor of age, which is divided in 3 categories: 18-34 years old,

35-64 years old, 65-90 years old. The number of dummy variables in a set that represents a

nominal variable is equal to K −1, where K is the number of categories. Thus here, we define

two dummy variables x1 and x2. For this age example, the regression model becomes:

logit(pi ) = logit(P (Yi = 1|Xi = xi 1, xi 2)) =β0 +β1xi 1 +β2xi 2. (2.21)

Which means that:

• If patient i is between 18 and 34 years old then xi 1 = 0, xi 2 = 0 (reference category) and

logit(pi ) =β0.

• If patient i is between 35 and 64 years old then xi 1 = 1, xi 2 = 0 and logit(pi ) =β0 +β1.

• If patient i is between 65 to 90 years old then xi 1 = 0, xi 2 = 1 and logit(pi ) =β0 +β2.

Therefore the intercept β0 represents the log-odds for the reference category, and eβ0 is the

baseline odds of having the outcome versus not having the outcome. The dummy variables

β are the difference in log-odds compared to the reference category. For every unit increase

in xi 1, the odds that the characteristic is present is multiplied by eβ1 . In other words, the

exponential function of the regression coefficient exp(β1) is the odds ratio associated with a

one-unit increase in the exposure.

e(β0+β1(xi 1+1))

e(β0+β1xi 1)
= eβ1 . (2.22)

The first age group was chosen as the reference level and all results (and significant effects)

presented are related to this reference level. A variable representing the reference group is not
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entered into the analysis; rather the other categories are compared to this group. Investigators

generally choose the reference category based on the main hypothesis being tested or on

previous knowledge about the data. In the age example, we know that young people are usually

less likely to develop adverse events and therefore they represent the most normative group.

2.3.2 Receiver Operating Characteristic (ROC) curve

ROC analysis investigates the accuracy of a model’s ability to separate positive from negative

cases [36] (e.g. predicting the presence or absence of adverse events). While classification

accuracy depends on the prevalence of positive cases in the study population, ROC results

do not, which makes them more accurate to evaluate our models, based on our imbalanced

dataset. Binary classification outputs two discrete results (such as positive and negative) to

infer an unknown, such as whether the patient has an adverse event or not. The accuracy of

such a task is often assessed (in medicine) using measures of sensitivity SN and specificity SP ,

where:

SN = T P

T P +F N
, (2.23a)

SP = T N

T N +F P
, (2.23b)

and T P , T N , F P and F N are the counts of true positives, true negatives, false positives and

false negatives, respectively. However, the output of our classifier is not directly a binary label,

but rather a numeric value on a continuous scale, indicative of the likelihood of adverse events.

Higher values indicate higher likelihood of the disease, while lower values indicate lower

likelihood of the disease. To convert this value into a binary label, one must choose a threshold

and compare the output value of that threshold, calling it positive if the value exceeds the

threshold, and negative otherwise. Therefore, there is no particular value of sensitivity or

specificity that characterizes the overall accuracy of the test, but rather an entire range of

values, depending in the threshold used to discretize the test result. The ROC curve captures

in a single graph the trade-off between a test’s sensitivity and specificity over its entire range.

Figure 2.6 illustrates how to analyze the performance of a classifier given its ROC curve.

The ROC curve is a good way to visualize a classifier’s performance in order to select a suit-

able operating point (trade-off between FPR and TPR), or decision threshold. However, the

operational point has not been determined in our case. Furthermore, it is often useful to have

a single figure as a measure of classifier’s performance when comparing different classifica-

tion methods. The area under the ROC curve (AUC) has been shown to exhibit a number

of desirable properties as a classification performance measure when compared to overall

accuracy [37]. The ROC is a probability curve and the AUC represents the degree or measure
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Figure 2.6 – Illustration of classifier performance on a ROC curve. A curve for a test with
perfect accuracy would run vertically from the point (0, 0) to the point (0, 1) and
then horizontally to (1, 1) at the top right of the graph. A curve for a test that
performed no better than random guessing would run diagonally from (0, 0) to
(1, 1) (red dashed line). Curves from real tests typically lie between these two
extremes, in the upper left of the plot. If a test produces a curve that lies in the
lower right, it means the test is incorrect more often than it is correct. The test
could be improved by reversing its labels for positive and negative, which would
reflect the ROC curve about the diagonal into the upper left of the plot. Any curve
that lies completely above and to the left of another curve represents better test
performance

of separability. The higher the AUC, the better the model is at distinguishing patients with

adverse events and without adverse events.

2.4 The Bob framework

2.4.1 General presentation of Bob

Bob7 is a signal-processing and machine learning toolkit designed to facilitate reproducibility

in data science. It is meant to reduce development time and efficiently process data with

reproducible research in mind. Reproducibility means that research should be repeatable,

shareable, extensible and stable [2]. A strong emphasis is put on code clarity, documentation

and unit testing. Concretely, Bob consists of a collection of tools and interfaces implemented

in both C++ and Python, for researchers to prototype their ideas and algorithms.

A general workflow for pattern recognition or predictive tasks in Bob is represented in Fig-

ure 2.7. The first step consists in loading data from available raw samples and using a database

7https://www.idiap.ch/software/bob/
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Figure 2.7 – Typical workflow in Machine Learning and Pattern Recognition [2]. The raw
data is selected according to a given protocol and converted through a series of
processing steps (toolchain). The protocol can also influence the comparison
figures being used. Most components of the workflow can be shared via libraries.

protocol to specify how the contents of the database should be used for experiments. The data

is then put through a series of processing steps (toolchain), which outputs a representation of

the data for the analysis. Finally, the analysis yields figures of merit, which include measures

of accuracy in detecting phenomena. All components are frequently re-used and shared via

libraries. This workflow is encapsulated into a package, with unit tests for the implementa-

tion of the source code, and incorporated into the automatic testing framework of Bob (i.e.

continuous integration system that is built into the git source code distribution platform).

2.4.2 Implementation using Bob

The Bob framework was used to implement the predictive model with two Bob packages

(Figure 2.8).

Database
bob.db.cihr_ltbi

Train	and	measure	performance
bob.med.ltbi_ae

Figure 2.8 – Bob packages implemented in the project. The database interface is controlled
by the first package, while the second package deals with the training and evalua-
tion of the models
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• bob.db.cihr_ltbi 8: The package is called bob.db because it is a Bob database

and cihr_ltbi because it is a database of LTBI patients collected by the Canadian

Institutes of Health Research (CIHR). It acts as an interface to access the database, which

cannot be uploaded on Bob, since it consists of sensible medical data. Concretely, this

package enables the user to load clinical data (see Section 2.1) from its excel container,

according to a given protocol.

• bob.med.ltbi_ae 9: This package is responsible for training different models, evaluat-

ing them, and outputting figures of merit, such as Receiving Operating Characteristic

(ROC) curves. In the case of the logistic regression model, this package estimates the

beta coefficients in the logistic regression equation 2.3.

Both packages are hosted on the gitlab page of Bob (links in footnote) where their respective

documentation can be found.

8https://gitlab.idiap.ch/bob/bob.db.cihr_ltbi
9https://gitlab.idiap.ch/bob/bob.med.ltbi_ae
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3 Experiments

This chapter describes the experimentations done with the dataset in order to provide a pre-

dictive model of adverse events based on patient clinical data. In order to establish a baseline

from the literature, we start by reproducing the results of Campbell et al. [1] who had access

to the same clinical dataset. The second experiment compares different implementations

to obtain the most efficient predictive model of adverse events with logistic regression. This

best model is then generalized in the third experiment by splitting the dataset in a train and

test set, to be able to evaluate the predictive performance of the model on unseen data. This

model, based on logistic regression, is considered as a baseline to improve upon. The final

experiment explores non-linear machine learning models (MLP and SVM) to improve the

predictive power of the linear baseline.

3.1 Reproducing Campbell et al. (2019)

The article of Campbell et al. [1] consists in a post-hoc safety analysis, based on the clinical

dataset described in Chapter 2. Their goal was to establish risk factors for adverse events

during LTBI treatment, and to show that the isoniazid treatment (9INH) results in more adverse

events than the rifampin treatment (4RIF). Although the second aspect of this research is less

relevant for a general predictive model of adverse events, reproducing the statistical analysis

of this article allows to confirm the influence of risk factors on the occurrence of adverse

events during the treatment. With this experiment, we wanted to verify whether the clinical

variables present in our dataset allowed to predict the occurrence of adverse events, and to

have a reference for future experiments.

Here is a brief description of the statistical analysis carried out in Campbell et al. [1]: For each

of the outcomes introduced in Section 2.1.2, an univariate analysis via logistic regression was

carried out for previously selected potential risk factors for each treatment arm separately
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(4RIF and 9INH). A multivariate logistic regression model was then created, for each outcome,

including the covariate of age and all covariates that were significantly associated to the

occurrence of the given outcome, which means they had a p-value < 0.1 in univariate analysis.

The potential risk factors in univariate analysis were pre-selected according to literature and

are displayed in Section 2.1.1 Table 2.1. For hepatotoxicity analysis (outcome 2), alanine

transaminase (ALT) measures were also included as a potential risk factor, since ALT is an

biomarker for liver health. In the hematologic analysis (outcome 4), white blood cell (WBC)

and platelet measures were also included. For the first three outcomes, further analysis (again

univariate and multivariate logistic regression) included the treatment arm (4RIF or 9INH) as

potential risk factor.

3.1.1 Results

In Campbell et al. [1], the results from the logistic regression analyses are reported as tables

displaying OR estimates for univariate and multivariate logistic regression. We reproduced

those tables, and present here the ones reported in the main article, the tables from supple-

mentary information being in appendix A. The tables of results reported in Campbell et al.

[1] correspond to the systems predicting respectively the primary (Figure 3.1) and secondary

(Figure 3.2) outcomes.

Univariate/Multivariate
Logistic	Regression

Input:	
9INH	patients	
(N=3205)

Model

Prediction	for:	
grade	1-2	rash+
all	grade	3-5	
adverse	events	

(N=86)

Figure 3.1 – Block diagram of logistic regression system of Table 3.1 to predict primary out-
come from patients following isoniazid treatment. From 9INH patient clinical
data, apply a univariate or multivariate logistic regression model to predict the
occurrence of grade 1-2 rash combined to all grade 3-5 adverse events.

Univariate/Multivariate
Logistic	Regression

Input:	
9INH	patients	
(N=3205)

Model

Prediction	for:	
grade	3-4	

hepatotoxicity
(N=65)

Figure 3.2 – Block diagram of logistic regression system of Table 3.2 to predict secondary
outcome from patients following isoniazid treatment. From 9INH patient clini-
cal data, apply a univariate or multivariate logistic regression model to predict
the occurrence of grade 3-4 hepatotoxicity adverse events.
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Table 3.1 displays the estimates for univariate and multivariate logistic regression, using

clinical data of patients following the isoniazid treatment (N = 3205) to evaluate the risk of

primary outcome (grade 1-2 rash + all grade 3-5 adverse events, N = 86). Each line of the

table corresponds to one category of one clinical variable. The first column (“Number”) is the

number of patients in that category, and the second column (“Risk”) is the number of patients

within that category who are positive for the outcome. Univariate OR estimates are reported in

the third column, and represent how more likely the patients belonging in a given category are

to be positive for the outcome, compared to the reference category. For example, in Table 3.1,

looking at the age variable, patients between 35 and 64 years old are 1.9 times more likely to

have an adverse event (following primary outcome definition) compared to patients between

18 and 34 years old. Similarly, patients between 65 and 90 years old are 3.4 times more likely to

have an adverse event than reference category patients. This kind of metric allows clinicians

to deduce which patients are more at risk to develop adverse events (here older patients). In

the fourth column, OR estimates correspond to logistic estimates for the multivariate analysis,

performed using only variables that were considered significant from the univariate analysis.

In Table 3.1, multivariate analysis uses age and concomitant medication and confirms that

older patients are more likely to develop adverse events compared to young patients (OR = 3).

Finally, the green values correspond to values that were equal to the ones reported in the

article, while blue ones represent values that differed, with the exact value in parenthesis. As

can be seen from Table 3.1, most values are exactly equal, with 0.1 variation for the remaining

values.

Table 3.2 displays the estimates for univariate and multivariate logistic regression, using

clinical data of patients following the isoniazid treatment (N = 3205) to evaluate the risk

of secondary outcome (grade 3-4 hepatotoxicity, N = 65). For multivariate analysis, more

risk factors were considered significant enough to be added as covariates. Old age remains

an important risk factor for this outcome (OR = 2.3,5.3), followed by immuno-suppressing

conditions (OR = 1.9,1.7) and pre-treatment ALT values (OR = 2.5). Again few values differ

between the original article and our results, demonstrating robust results for this outcome as

well.

Tables from supplementary information (see Appendix A) correspond to logistic regression

estimates for other outcomes, as defined in Table 2.3, either for patients following the ri-

fampin treatment, or the isoniazid treatment. Those analyses also include logistic regression

combining patients for both treatment, and considering the treatment arm as a covariate.

From Table 3.1, we can conclude that old age and the use of concomitant medication increase

the risk of grade 1-2 rash combined with all grade 3-5 adverse events. Results displayed in

Table 3.2 show that old age, immunosuppressing conditions, frequent alcohol use, smoking

and ALT levels above normal increase the risk of grade 3-4 hepatotoxic adverse events.
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Table 3.1 – Results of univariate and multivariate model of risk factors for grade 1-2 rash
+ all grade 3-5 adverse events attributed to isoniazid. This table reproduces the
left part of table 3 in Campbell et al. [1]. Most values are exactly equal to those
from Campbell et al. [1] (in green) and only two values differ (in blue). In univariate
analysis, age and concomitant medications significantly influence the occurrence
of the primary outcome. Patients who are between 65 and 90 years old are 3.4 times
more likely to suffer from this outcome compared to younger patients between
18 and 34 years old. Patients taking concomitant medications are 1.7 times more
likely to develop this outcome compared to patients without any concomitant
medications. In multivariate analysis, age remains the most influential risk factor.

Number Risk N Univariate Multivariate
OR Estimate OR Estimate

Age
18-34 1436 25 1 (ref) 1 (ref)
35-64 1642 54 1.9 1.8
65-90 127 7 3.4 (3.5) 3.0

Sex
Female 1811 48 1 (ref) -
Male 1394 38 1.0 -

BMI

Normal 1646 44 1 (ref) -
Underweight 222 5 0.9 -
Overweight 907 26 1.1 -
Obese 430 11 1.0 -

Immune
No Immune suppr. 2871 73 1 (ref) -
HIV-positive 138 5 1.6 -

Status Other immune suppr. 196 8 1.7 -

Alcohol
Never drinks 2112 58 1 (ref) -
≤ 1 drink per week 891 20 0.8 -

Use > 1 drink per week 202 8 1.5 -
Smoking Has never smoked 2421 60 1 (ref) -
history Currently or has smoked 784 26 1.4 -
Medication Consistency ≥ 90% 2151 57 1 (ref) -
Consistency Consistency < 90% 1054 29 1.0 (1.1) -
Concomitant None 2470 58 1 (ref) 1 (ref)
medications Any 735 28 1.7 1.3
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Table 3.2 – Results of univariate and multivariate model of risk factors for grade 3-4 hep-
atotoxicity attributed to isoniazid. This table reproduces the right part of table
3 in Campbell et al. [1]. Only one value differs from Campbell et al. [1] (in blue)
while all others are exactly equal (in green). From univariate analysis, many risk
factors are found significant enough to be included in multivariate analysis. In
particular, age seems to have a large influence on this outcome: older patients are
5.7 times more likely to suffer from it compared to younger patients. Having an
immunosuppressing condition or ALT levels above normal also strongly increases
the risk to suffer from grade 3-4 hepatotoxicity. In multivariate analysis, age and
ALT levels remain the most influential risk factors

Number Risk N Univariate Multivariate
OR Estimate OR Estimate

Age
18-34 1436 15 1.0 (ref) 1.0 (ref)
35-64 1642 43 2.5 2.3
65-90 127 7 5.7 5.3

Sex
Female 1811 33 1.0 (ref)
Male 1394 32 1.3 -

BMI

Normal 1646 34 1.0 (ref)
Underweight 222 4 1.0 -
Overweight 907 19 1.0 -
Obese 430 8 0.9 -

Immune
No Immune suppr. 2871 52 1.0 (ref) 1.0 (ref)
HIV-positive 138 5 2.2 1.9

Status Other immune suppr. 196 8 2.4 1.7

Alcohol
Never drinks 2112 40 1.0 (ref) 1.0 (ref)
≤ 1 drink per week 891 17 1.0 0.9

Use > 1 drink per week 202 8 2.2 1.8
Smoking Has never smoked 2421 42 1.0 (ref) 1.0 (ref)
history Currently or has smoked 784 23 1.7 1.4
Medication Consistency ≥ 90% 2151 48 1.0 (ref)
Consistency Consistency < 90% 1054 17 0.7 -
Concomitant None 2470 42 1.0 (ref) 1.0 (ref)
medications Any 735 23 1.9 1.1
Pre-treatment Normal 2972 56 1.0 (ref) 1.0 (ref)
ALT Above normal 196 9 2.6 2.5 (2.6)
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3.2 Building a logistic regression model

As a transition between the work of Campbell et al. [1] and the introduction of train/test

separation to create a predictive model, we examined the performance of the logistic regression

models presented in Tables 3.1 and 3.2 using ROC curves. To that end, we trained the logistic

models on the whole dataset and evaluated them on the same dataset, which resulted in a

bias that is corrected later when introducing a less biased evaluation protocol. The aim of this

experiment was to choose which logistic regression model to select among those presented in

the article. From the multiple logistic regression models introduced in Campbell et al. [1], our

aim was to select the most conclusive implementation that we would later fine-tune and feed

to an unbiased evaluation protocol.

In the following set of comparisons, the idea was to select the best implementation of logistic

regression. More precisely, here were the different possible configurations:

• Correction for rare events: either Firth penalized log-likelihood or weighted log-likelihood

• Logistic regression model: either univariate or multivariate logistic regression

• Number of covariates included in multivariate model: either only significant ones or all

available variables

• Type of covariates: either categorical or continuous (if possible)

For each comparison, in order to select the best model, we compared the model ROC curves.

We changed one aspect at a time and each time kept the best configuration for the next

comparison. The logistic models correspond to Figures 3.1 and 3.2. They were trained on

clinical data from patients following the isoniazid treatment (N = 3205) and were evaluated

on the same dataset. The outcome was either the primary outcome (N = 86) or the secondary

outcome (N = 65).

3.2.1 Correction for rare events

As explained in Section 2.2.2, correction for rare events in Campbell et al. [1] was implemented

using Firth penalized likelihood. However, a computationally more tractable method consists

in balancing classes by adding proportional weights in the cross-entropy loss function. This

section is a comparison between both methods, to verify that they yield similar results, making

it acceptable to keep the weighted likelihood implementation for our models. Figures 3.3

and 3.4 display the ROC curves corresponding to Firth and weighted implementations re-

spectively, of the univariate and multivariate logistic regression models in Table 3.1 (primary

outcome for isoniazid patients).
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Figure 3.3 – ROC curves of univariate and multivariate logistic regression models, using
Firth likelihood implementation, 9INH patients (N = 3205), primary outcome
(N = 86). Most classifiers have a very poor performance close to random guessing
(red dotted line), except age and the multivariate classifier.
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Figure 3.4 – ROC curves of univariate and multivariate logistic regression models, using
weighted likelihood implementation, 9INH patients (N = 3205), primary out-
come (N = 86). All ROC curves seem to be exactly the same than those in Fig-
ure 3.3 and their AUC also match perfectly
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It appears that the ROC curves are very similar, if not indistinguishable (all AUC are equal),

when comparing both implementations. We can also observe on these curves that the individ-

ual performance of each classifier is quite poor as it does not differ much from the random

classifier (red dotted line), and the best AUC only equals 0.6. For this outcome, the best

univariate classifier is the one using age as a risk factor (AUC= 0.59), which corresponds to the

highest OR estimates observed in Table 3.1.

To have a better idea of the impact of the likelihood implementation on the ROC curves, we

show the same comparison for the secondary outcome. Figures 3.5 and 3.6 display the ROC

curves corresponding to firth and weighted implementations respectively, of the univariate

and multivariate logistic regression models in Table 3.2 (secondary outcome for isoniazid

patients). For these curves, we begin to see a small difference between firth and weighted

implementations, in particular for the multivariate model (blue dashed line). However, the

ROC curve for the multivariate model in Figure 3.6 is closer to the ideal point (0,1) than the

ROC curve for the multivariate model using firth implementation. This indicates that the

multivariate model is a slightly better classifier using weighted implementation. The actual

difference based on AUC of the multivariate models is of 0.01 between the firth and weighted

implementations. All the univariate ROC curves have exactly the same AUC using Firth or

weighted implementation.
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Figure 3.5 – ROC curves of univariate and multivariate logistic regression models, using
firth likelihood implementation, 9INH patients (N = 3205), secondary out-
come (N = 65). Again, all classifiers have ROC curve close to the random classifier,
except age and the multivariate classifier, which performs better than the multi-
variate classifier for the primary outcome.

38



3.2. Building a logistic regression model

0.0 0.2 0.4 0.6 0.8 1.0
False Positive Rate

0.0

0.2

0.4

0.6

0.8

1.0
Tr

ue
 P

os
iti

ve
 R

at
e

Grade 3-4 Hepatotoxicity

univariate age
ROC AUC=0.63
univariate sex
ROC AUC=0.53
univariate bmi
ROC AUC=0.51
univariate immune_status
ROC AUC=0.55
univariate alcohol
ROC AUC=0.53
univariate smoking
ROC AUC=0.56
univariate medication_consistency
ROC AUC=0.53
univariate concomitant_medication
ROC AUC=0.56
univariate alt
ROC AUC=0.54
multivariate ROC AUC=0.69
random classifier

Figure 3.6 – ROC curves of univariate and multivariate logistic regression models, using
weighted likelihood implementation, 9INH patients (N = 3205), secondary
outcome (N = 65). All univariate classifiers are exactly the same than in Fig-
ure 3.5 and their AUC are also exactly equal. The only ROC curve that differs is the
multivariate classifier one, with 0.01 difference in AUC.

Based on these two comparisons, we decided to keep weighted implementation of the log-

likelihood as a correction for rare events, since it yielded similar if not better classifiers and

allowed to perform computations more quickly.

3.2.2 Logistic regression model

In this second comparison, the goal was to choose the best logistic regression model between

the univariate and multivariate models. As seen on figures from the previous experiment (Fig-

ures 3.4 and 3.6), the multivariate model was always the best classifier (AUC ≥ 0.6), compared

to univariate classifiers (AUC < 0.6). Thus, from here on, we only considered multivariate

models. The best multivariate model for the primary outcome corresponds to the blue dashed

line on Figure 3.4 with an AUC of 0.6. The best multivariate model for the secondary outcome

corresponds to the blue dashed line on Figure 3.6 with an AUC of 0.68.

3.2.3 Number of covariates

To improve the multivariate model, other variables can be added as risk factors. In Campbell

et al. [1], only the risk factors which were considered significant enough in the univariate

analysis are incorporated in the multivariate analysis. However, using all available variables
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might yield a better predictive performance, since risk factors might interact with each other in

an unknown way. Figures 3.7 and 3.8 depict the ROC curves for multivariate models including

either all clinical variables, or only significant covariates chosen from univariate analysis.

Judging from Figures 3.7 and 3.8, using all clinical variables resulted in a better classifier,

although the AUC difference was not large (0.04 for the primary outcome, 0.01 for secondary

outcome). Future models use all clinical variables as covariates in the multivariate logistic

regression model.
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Figure 3.7 – ROC curves of multivariate logistic regression models, based on all or only sig-
nificant covariates, 9INH patients (N = 3205), primary outcome (N = 86). Arti-
cle covariates correspond to significant covariates determined in Campbell et al.
[1]. For the primary outcome, they correspond to age and concomitant medi-
cation. The ROC curve of the multivariate classifier using all variables (orange
curve) is higher than the other curve.
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Figure 3.8 – ROC curves of multivariate logistic regression models, based on all or only sig-
nificant covariates, 9INH patients (N = 3205), secondary outcome (N = 65). Ar-
ticle covariates correspond to significant covariates determined in Campbell et al.
[1]. For the secondary outcome, they correspond to age, immune status, alcohol
use, smoking history, concomitant medication and ALT. The ROC curves of both
multivariate classifiers are quite similar.

3.2.4 Type of covariates

Finally, we investigated the type of clinical variables used in the multivariate model. As

explained in Section 2.1.1, some of the covariates such age, bmi, etc, were originally continuous

variables in the dataset and were then discretized in categorical variables. Using categorical

covariates is useful to detect specific risk factors for clinicians. However, using continuous

instead of categorical covariates might increase the predictive performance of the model, since

it distinguishes more the patients. Therefore, we compared the multivariate model with all

categorical variables versus the multivariate model with a mix of categorical and continuous

variables, since not all variables were originally continuous. Only age, BMI, medication

consistency and lab values (ALT, WBC, and platelet) were incorporated as continuous variables

in the multivariate model. Since the values of these variables can have very different ranges,

the covariates were normalized (which was not needed for categorical-only set of covariates).

Figures 3.9 and 3.10 depict the ROC curves for multivariate models including either only

categorical variables, or a mixed of categorical and continuous covariates.

For both the primary and secondary outcome, the multivariate model containing a mix of

categorical and continuous variables performed slightly better (AUC= 0.67,0.73) than the
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Figure 3.9 – ROC curve of multivariate logistic regression models, based on categorical or
continuous covariates, 9INH patients (N = 3205), primary outcome (N = 85).
The multivariate model using a mix of categorical and continuous covariates
(orange curve) performs better than the model using only categorical variables
(blue curve)
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Figure 3.10 – ROC curves of multivariate logistic regression models, based on categorical
or continuous covariates, 9INH patients (N = 3205), secondary outcome (N =
65). The multivariate model using a mix of categorical and continuous covariates
(orange curve) performs better than the model using only categorical variables
(blue curve)
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multivariate model containing only categorical variables (AUC= 0.64,0.7).

To sum up the results from these comparisons, the best logistic regression classifier for the

primary and secondary outcomes had the following characteristics: weighted likelihood, mul-

tivariate logistic regression, all available clinical variables, mix of categorical and continuous

variables.

3.2.5 Best logistic regression model

Multivariate
Logistic	Regression

Input:	
all	patients	
(N=6485)

Model
Prediction	for:	

all	adverse	events	
(N=199)

Figure 3.11 – Block diagram of logistic regression system to predict any adverse event from
any patient. From all patient clinical data, apply a multivariate logistic regres-
sion model to predict the occurrence of any adverse event

The set of comparisons from the previous section was made using the primary and secondary

outcomes defined by Campbell et al. [1] and only considering the isoniazid treatment. The

ROC curves helped visualize the performance of logistic regression models to predict these

specific outcomes in patients following the isoniazid treatment. However, the goal of this

project was to create a predictive model of all adverse events for patient following either

the rifampin or the isoniazid treatment. Therefore, we needed to see if those results were

confirmed when considering all patients and all adverse events, which corresponds to the

system displayed in Figure 3.11. The same comparisons were made using the whole dataset

(N = 6485) and all adverse events(N = 199), and the resulting ROC curves are displayed in

Figure 3.12. On this plot, the worse classifier was again the univariate one (AUC= 0.59).

Multivariate models using either firth likelihood or penalized likelihood were very similar (0.01

AUC difference) and the same was true for using either categorical or continuous variables.

To sum up, here is the final logistic regression scheme, which was used in the generalization

experiment:

• approach: train and evaluate on the same dataset

• protocol: all patients (N = 6485)

• outcome: all adverse events (N = 199)

• model: multivariate logistic regression

• covariates: all clinical variables, categorical and continuous when possible, normalized
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• correction for rare events: weighted log-likelihood
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Figure 3.12 – Comparison of ROC curves of univariate and multivariate logistic regression
models, all patients (N = 6485), all adverse events (N = 199). The best univari-
ate classifier (in blue) is largely inferior to all 3 multivariate classifiers (orange:
Firth implementation and categorical variables, green: weighted implemen-
tation and categorical variables, red: weighted implementation and a mix of
categorical and continuous variables), which have a similar performance.

3.3 Generalization

As explained in Section 2.2.4, the unbiased evaluation of a predictive model requires to sepa-

rate the dataset in a distinct train and a test set. This configuration, depicted in Figure 3.13,

allows the model to be evaluated on data that was not seen during training, which prevents

bias. This section introduces the predictive model based on the best multivariate logistic

regression model (see Section 3.2.5), using train and test sets described in Section 2.2.4.

Figure 3.14, displays ROC curves of the multivariate logistic regression model, with a split

between a train and a test set, and without split. We observe a small loss in predictive power

(0.04 difference in AUC) between the train and test set for the model with train/test separation,

which indicates that there is a bias when training and evaluating on the same dataset, without

split. Both the training and testing performance were quite poor for this model (train AUC=
0.69±0.02, test AUC= 0.65±0.04), which indicates underfitting. The model does was not
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Train	set

Test	set

Figure 3.13 – Block diagram of logistic regression system with a train/test split to predict
any adverse event from any patient. The input data is divided into a train set,
used to train a multivariate logistic regression model, and a test set, used to
evaluate the performance of the model.

able to clearly separate the data between positives and negatives. The model with train/test

split performed equally well on the training set than the model without split, meaning that

70% of the dataset is enough to obtain this level of performance. As expected, there was

more variability in the testing set (AUC std=0.04) compared to the training set (AUC std=0.02)

performance between the different splitting protocols. The best performing multivariate

logistic regression model had a test AUC of 0.65(±0.04), and constituted the baseline model to

improve on.
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Figure 3.14 – ROC curves of multivariate logistic regression model, with and without sep-
aration between train and test set, all patients (N = 6485), all adverse events
(N = 199). The multivariate model performance on the train set (in green) is
similar to the multivariate performance on the whole dataset (in blue). There
is a loss of performance when evaluating the model on the test set (in orange)
indicating that there is a bias when training and evaluating on the same dataset.
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3.4 Improving the model with non-linearity

Results from the best performing logistic regression model indicated a quite low predictive

performance (AUC < 0.7), both on the train and test set, with the test performance being

slightly lower. The aim of this section was to experiment whether we could recover the loss

of performance between the train and the test set, but more importantly, whether we could

improve the overall performance of the model. To do this, two non-linear machine learning

models were investigated: MLP and SVM.

3.4.1 MLP

The first machine learning model explored was the MLP with a single layer with a varying

number of hidden neurons. Increasing the number of hidden neurons increases the complex-

ity of the model. The complexity of a neural network can be roughly estimated by calculating

the total number of weights it contains. Such a number should be, in practice for an MLP, as

small as possible such that it still performs well on both train and test sets. If this number is

increased too much, it tends to overfit on the training data. As we have a rather small dataset

(roughly 6000 samples with only 200 positives), we started with a small MLP with one layer

containing from 2 to 10 neurons. The workflow of the system from the input features to the

evaluation of the model is depicted in Figure 3.15.

Multi-Layer
Perceptron

Input:	
all	patients	
(N=6485)

Model
Prediction	for:	

all	adverse	events	
(N=199)

Train	set

Test	set

Resampling
minority
class

Figure 3.15 – Block diagram of MLP system with a train/test split and resampling on the
train set to predict any adverse event from any patient. The input data is split
into a train and a test set. The train set is first resampled to balance the dataset
between positives and negatives, and then used to train the model. The test set
is not resampled, and is used to evaluate the performance of the model.

We first used the MLP with the default hyperparameters suggested by scikit-learn for small

datasets:

• activation: logistic,

• solver: L-BFGS,

• regularization: 0.0001,
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• maximum number of iterations: 200

The resulting ROC curves are displayed in Figure 3.16. With an increasing number of neurons,

the training performance greatly increased, as the ROC curve approached the top left point

of the plot (best train AUC= 0.94). However, this did not translate into the testing perfor-

mance, which remained quite low (best test AUC= 0.62) and inferior to the logistic regression

performance (AUC= 0.65). This situation indicates overfitting: the model learns "by heart"

the training data, which makes it inaccurate for unseen data. Once again, there was more

variability in the testing set compared to the training set.

0.0 0.2 0.4 0.6 0.8 1.0

0.0

0.2

0.4

0.6

0.8

1.0

All adverse events (N=199), train set

mean mlp - hidden_neurons=2
mean mlp - hidden_neurons=3
mean mlp - hidden_neurons=4
mean mlp - hidden_neurons=5
mean mlp - hidden_neurons=6
mean mlp - hidden_neurons=7
mean mlp - hidden_neurons=8
mean mlp - hidden_neurons=9
mean mlp - hidden_neurons=10
mean multivariate 
logistic regression

0.0 0.2 0.4 0.6 0.8 1.0

All adverse events (N=199), test set

mean mlp - hidden_neurons=2
mean mlp - hidden_neurons=3
mean mlp - hidden_neurons=4
mean mlp - hidden_neurons=5
mean mlp - hidden_neurons=6
mean mlp - hidden_neurons=7
mean mlp - hidden_neurons=8
mean mlp - hidden_neurons=9
mean mlp - hidden_neurons=10
mean multivariate 
logistic regression

0.0 0.2 0.4 0.6 0.8 1.0

False Positive Rate
0.0

0.2

0.4

0.6

0.8

1.0

Tr
ue

 P
os

iti
ve

 R
at

e

Figure 3.16 – ROC curves of MLP with hidden neurons varying from 2 to 10, L-BFGS opti-
mizer, all patients (N = 6485), all adverse events (N = 199). On the left plot, the
bigger number of neurons, the higher the train ROC curve and all MLP train ROC
curves are higher than the multivariate logistic regression train ROC curve (blue
dashed line). However, on the right plot, all MLP test ROC curves are lower than
the multivariate logistic regression test ROC curve. As opposed to the left plot,
the best MLP classifiers on the right plot seem to be the ones with the smaller
number of neurons (blue, orange, and green curve).

Regularization

The reduce overfitting when using the L-BFGS optimizer, we increased the regularization

hyperparameter α. With this experiment, we wanted to analyze whether increasing the

regularization factor could reduce overfitting and thus improve performance. Figure 3.17

considers the MLP with 10 hidden neurons, which overfitted the most on Figure 3.16, and

displays the evolution of the ROC curve when increasing α from 0.0001 to 100.
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Figure 3.17 – ROC curves of MLP with 10 hidden neurons, regularization α varying from
0.0001 to 100, all patients (N = 6485), all adverse events (N = 199). On the
left plot, the train ROC curves are still very high, except for α= 100, where the
performance is exactly the same as multivariate logistic regression (purple curve
and blue dashed curve). On the right plot, all test ROC curves are still lower than
multivariate logistic regression curve, except for α= 100, which is again equal to
multivariate logistic regression curve.

We observe that for α< 10, regularization had a very limited effect on overfitting. The train

curves were still much higher than the test curves. With α= 100, there was no more overfitting

since we had a similar curve for the train and test performance. However, this performance

was equivalent to that of logistic regression. The best MLP classifier with the L-BFGS solver

and 10 hidden neurons was obtained with α= 100 and had an AUC of 0.65±0.04.

Optimizer

Since we did not manage to improve the baseline performance with L-BFGS and regularization,

we tried a different optimizer based on stochastic gradient descent (SGD). After some initial

grid search to find the hyperparameters yielding the best AUC (not reported here), we chose

the following parameters: 500 epochs, batch size of 50, constant learning rate of 0.1. The

resulting ROC curves with number hidden neurons varying from 2 to 10 are displayed on

Figure 3.18.

Similarly to Figure 3.16, all classifiers were overfitting and the best classifiers in terms of test

performance were the ones with a small number of hidden neurons (best AUC= 0.61±0.04).

Just like the L-BFGS optimizer, SGD requires a mechanism to prevent overfitting. With SGD,
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Figure 3.18 – ROC curves of MLP with hidden neurons varying from 2 to 10, SGD optimizer,
all patients (N = 6485), all adverse events (N = 199). The pattern in this figure
is very similar to the one in Figure 3.16 (L-BFGS without regularization): all MLP
ROC curves are higher than multivariate logistic regression for the train set (left
plot) but lower for the test set (right plot)

the strategy of early stopping described in Section 3.4.1 can be used. Figure 3.19 displays

performance of the best classifier among the varying number of hidden neurons (AUC=
0.66±0.04, 5 hidden neurons). This was only 0.01 better than our baseline model.

Different protocols

The protocol used for previous analyses followed a 70-30 split between the train and the test set,

with 10 random separations for variability. However, other strategies can be used to separate

the data, and in particular, one can use k-fold cross-validation (Section 2.2.4). Cross-validation

generally results in a less biased estimate of the model skill than other methods, such as a

simple train/test split. We used 5-fold and 10-fold cross-validation protocols, to evaluate if

those configurations yielded a better performance of MLP compared to logistic regression. We

evaluated to best MLP classifier found so far, SGD with 5 hidden neurons and early stopping.

Figure 3.20 displays ROC curves of logistic and MLP classifier for the 5-fold validation protocol,

and Figure 3.21 displays the same ROC curves for the 10-fold validation protocol. In both cases,

the performance of the logistic regression classifier was stable (AUC= 0.66) although there was

more variability in the 10-fold validation scheme, since there were 10 folds instead of 5. The

performance of the MLP classifier also did not change much between the 5-fold and 10-fold

protocol, although slightly superior than logistic regression in the 10-fold (AUC= 0.67±0.07).
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Figure 3.19 – ROC curve of MLP with 5 hidden neurons, SGD optimizer and early stopping,
all patients (N = 6485), all adverse events (N = 199). With early stopping , both
the train and test ROC curves of the MLP are very similar to the train and test
ROC curves of the multivariate logistic regression classifier, respectively.
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Figure 3.20 – ROC curve of MLP with 5 hidden neurons, SGD optimizer and early stopping,
5-fold cross-validation, all patients (N = 6485), all adverse events (N = 199).
With 5-fold cross-validation protocol, both multivariate logistic regression and
MLP had a test AUC of 0.66±0.03
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Figure 3.21 – ROC curve of MLP with 5 hidden neurons, SGD optimizer and early stopping,
10-fold cross-validation, all patients (N = 6485), all adverse events (N = 199).
With 10-fold cross validation, the MLP had both train and test ROC curves slightly
higher than those of the multivariate logistic regression classifier

The best MLP classifier consisted in applying a 5-hidden neurons MLP optimized with mini-

batch SGD and early stopping to the dataset using a 10-fold cross-validation protocol, which

resulted in a AUC ROC= 0.67±0.07.

3.4.2 SVM

Support	Vector
Machine

Input:	
all	patients	
(N=6485)

Model
Prediction	for:	

all	adverse	events	
(N=199)

Train	set

Test	set

Figure 3.22 – Block diagram of SVM system with a train/test split to predict any adverse
event from any patient. The input data is split into a train and a test set. The
train set is used to train the SVM while the test set is used to evaluate the perfor-
mance of the model.

In this final experiment, we evaluated another non-linear model based on SVM to improve

the performance of our predictive model of adverse events and see whether the failure to

improve predictive power is linked to MLP or to the non-linearity. We used the RBF kernel and

performed a grid search to find the best combination of regularization parameter C and kernel

coefficient γ. Table 3.3 displays the grid search results using ROC AUC as a scoring function

and a 5-fold cross-validation protocol, when varying hyperparameters C and γ. The best
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combination of hyperparameters from this table, C = 1 and γ= 0.001, yielded a performance

equivalent to that of logistic regression (AUC= 0.66±0.05). For this combination, we also

examined the number of support vectors belonging to each class. We obtained 4140±35

support vectors from the negatives and 135±1 support vectors from the positive class. This

represents respectively 84% of the negatives and 87% of the positives.

Table 3.3 – Grid search results for SVM classifier, 5-fold cross-validation. When C increases,
the resulting AUC does not change much for a given γ. However, for a given value
of C , increasing γ decreases the resulting AUC. The best AUC is observed with the
lowest C and the lowest γ.

C = 1 C = 5 C = 10 C = 50 C = 100
γ= 0.001 0.66±0.05 0.65±0.05 0.65±0.04 0.65±0.04 0.65±0.04
γ= 0.01 0.65±0.04 0.63±0.03 0.62±0.03 0.60±0.03 0.59±0.04
γ= 0.1 0.58±0.03 0.57±0.03 0.57±0.03 0.57±0.04 0.57±0.04
γ= 1 0.57±0.04 0.58±0.05 0.57±0.06 0.57±0.07 0.57±0.06
γ= 10 0.56±0.03 0.56±0.03 0.56±0.03 0.56±0.03 0.56±0.03

To wrap up the experiments, Figure 3.23 displays the ROC curves of the best classifier obtained

for each method (logistic regression, MLP, SVM) for the prediction of adverse event for any

patient, using a split between train and test set of 70/30.
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Figure 3.23 – ROC curves of best classifiers for multivariate logistic regression, MLP and
SVM, all patients (N = 6485), all adverse events (N = 199). The MLP classifier
has a slightly higher ROC curve than SVM and multivariate logistic regression,
both for the train and test sets, but the difference in AUC is very small.
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4 Analysis

In this study, we explored the predictive capabilities of patient clinical data regarding the

occurrence of adverse events during LTBI adverse events, using linear and non-linear models.

We first reproduced the logistic model from Campbell et al. [1] and found that it had some

predictive capability when using multivariate logistic regression, weighted likelihood as a

correction for rare events and all available clinical variables, whether categorical or continuous.

Secondly, we generalized the multivariate logistic regression model by training and evaluating

it on separate subsets of data. This resulted in a baseline model with a test AUC of 0.65±0.04,

corresponding the best classification performance using a linear classifier. Finally, we tried

to improve the predictive power of the model by exploring two non-linear machine learning

methods, MLP and SVM. MLP was investigated using L-BFGS optimizer with regularization,

and mini-batch SGD with early stopping, but didn’t show any improvement on the predictive

performance. SVM with RBF kernel was explored with a grid search varying regularization

and kernel coefficient, and also had similar performance than multivariate logistic regres-

sion. To sum up, we found that multivariate logistic regression, MLP and SVM have similar

performances for our predictive task.

In this section, we discuss the predictive capabilities of the clinical dataset and then focus on

the main contribution of this work: to build a predictive model of adverse events. We then

analyze why non-linear models were not able to improve the predictive performance and

introduce other possible strategies.

4.1 Patient clinical data is correlated with risk of adverse events dur-

ing LTBI treatment

The study from Campbell et al. [1] shows that the presence or absence of some risk factors

influences the risk of adverse events during LTBI treatment. In Section 3.1.1, the different
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tables reported OR estimates for the different clinical variables in the dataset. These estimates

can easily be interpreted and correspond to how much the exposure to a given factor increases

the risk of adverse events, compared to when there is no exposure to this risk factor. Depending

on the outcome being evaluated, different risk factors proved to be important predictors of

adverse events. This can be explained by the fact that adverse events have different degrees

of severity and belong to different types, and thus are not related to the same combination

of risk factors. This will be important when considering the predictive model of all adverse

events. More generally, the article confirms that there is a correlation between patient clinical

data and the occurrence of adverse events.

However, the authors of the study did not investigate the predictive capabilities of clinical

data per se. In Campbell et al. [1], there was no measure of the performance of the logistic re-

gression models, when trying to classify patients positive or negative for the outcome. Logistic

regression models introduced in that work were numerous, with different possible implemen-

tations and there was a need to evaluate and select the best configuration by comparing the

different configurations in terms of predictive power on the whole dataset.

Moreover, there is a clear imbalance in the dataset between the number of patients who

developed an adverse event (so-called positives) and the number of patients who had no

adverse event during the treatment (so-called negatives). This imbalance between the two

classes needs to be corrected with some mechanism in order to underline the importance of

classifying correctly the positives, which are considered as rare in the dataset.

Based on the comparison between Firth and weighted likelihood for the correction of rare

events (Figures 3.3, 3.4, 3.5 and 3.6), we decided to keep weighted implementation of the

log-likelihood, since it yielded similar, if not better, classifiers and allowed to perform compu-

tations more efficiently. From this comparison, it also appeared that the multivariate model

gave better performance (best AUC= 0.69) than each individual univariate model (AUC≤ 0.63).

The fact that multivariate classifiers resulted in much better performance than univariate

classifiers can easily be explained by the fact that using more information makes it easier to

separate patients with adverse event from patients without adverse event. The prediction

of health outcomes from available data is often based on the belief that there exists a small

number of important risk factors and that careful selection of those variables is the key to suc-

cessful performance of the models for outcome prediction [13]. However, each of the variables

may contribute in its own way to the final outcome and thus should not be eliminated from

predictive models.

The second comparison evaluated the difference between pre-selecting variables from uni-

variate analysis to incorporate into multivariate analysis, and using all available variables as

covariates regardless of their individual significance in univariate analysis (Figures 3.7 and 3.8).
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Taking all clinical variables into account yielded a slightly better performance (AUC= 0.64 >
AUC= 0.6 and AUC= 0.7 > AUC= 0.69) for logistic regression and is also more relevant when

using non-linear machine learning models, which can potentially draw more sophisticated

separation hyperplanes. Since we present the same data to both models and compare their

performance, we need to present the same features to both systems for a fair comparison.

Therefore, our follow-up experiments use all clinical variables as covariates in the multivariate

logistic regression model. Using all available clinical variables instead of selecting only sig-

nificant ones for multivariate analysis, is a way to reduce model complexity, but it may cause

a loss in flexibility. Any characteristic can contribute to the overall picture of an individual’s

health, which explains the better performance of the approach that predicts the occurrence of

adverse events in terms of as many variables as possible.

Finally, using categorical variables allows clinicians to clearly distinguish groups of high-risk

patients and makes it easier to interpret the logistic regression estimates. However, using

continuous variables might be more useful in the context of a predictive model, since one loses

information when discretizing a variable. In our experiments (Figures 3.9 and 3.10), using

continuous variables resulted in a better performance than using only categorical variables

(AUC= 0.67 > AUC= 0.64 and AUC= 0.73 > AUC= 0.7). The motivation to use continuous

variables also comes from the fact that using categorical variables introduces an additional

operation on the data which may add bias. Therefore, we chose to keep the mixed-variable

multivariate logistic regression model for further experiments.

To sum up the results from these comparisons, the best logistic regression classifier for the

primary and secondary outcomes had the following characteristics: weighted likelihood, mul-

tivariate logistic regression, all available clinical variables, mix of categorical and continuous

variables, and resulted in the ROC displayed in Figure 4.1.

Reproducing the work of Campbell et al. [1] was also an achievement in terms of reproducible

research, demonstrating that using the same dataset and algorithms could result in very

similar OR estimates.

4.2 Building a predictive model

Building a predictive model of adverse events means that given a patient’s clinical data, the

model predicts whether the patient will develop an adverse event during the treatment. This

goal differs from Campbell et al. [1], which mainly evaluated categories of high-risk patients

given their treatment and for specific outcomes of adverse events.

To build our general predictive model, the first step was to extend the outcome to all ad-

verse events, and to include patients from both treatments (Figure 3.11). The comparisons
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Figure 4.1 – ROC curve of multivariate logistic regression, all patients (N = 6485), all ad-
verse events (N = 199).

made in the previous experiment (firth vs weighted, univariate vs multivariate, categorical

vs continuous), to select the best implementation of logistic regression, were repeated to

verify that our conclusions held when evaluating all adverse events for patients regardless of

their treatment. Looking at Figure 3.12, the multivariate models were again much better than

the best univariate model ( ~0.1 AUC difference). However, there was not much difference

between firth and weighted implementation ( ~0.01 AUC difference) and the same was true for

using either categorical or continuous variables. The three multivariate models on this figure

had a very similar performance so any one of them could be used. However, as explained

before, using weighted likelihood to correct for rare events is computationally less complex.

Furthermore, using continuous covariates (when possible) rather than categorical ones may

reduce bias although the resulting AUC is about 0.01 smaller.

Secondly, the selection of the best logistic regression classifier was done by training and eval-

uating the model on the same dataset, which resulted in a large bias. There is no guarantee

that the model will predict adverse events efficiently when presented with unseen data. In-

troducing a separation of the dataset in a train and a test set with no patient in common

tends to reduce that bias. With this configuration, the performance of the multivariate lo-

gistic regression classifier on the test set constituted a new baseline benchmark to improve

upon. Since the model was presented to unseen data when evaluated, the test performance

(AUC= 0.65±0.04) was slightly lower than train performance (AUC= 0.69±0.02) and exhibited

higher variability between the different train/test splits, as can be seen on Figure 3.14. Both

train and test performances were quite poor (AUC< 0.7), indicating that increasing the model
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complexity with non-linear models could possibly improve the performance.

4.3 Linear and non-linear models resulted in similar predictive power

Two non-linear machine models, MLP and SVM, were investigated to improve the predictive

power of the baseline model. MLP was explored with two different optimizers: L-BFGS and

SGD. In both cases, there was clear evidence of overfitting because the train ROC curves

were far superior to the test ROC curves (Figures 3.16 and 3.18). Overfitting occurs when the

model captures too closely the training data statistics, and starts to model the noise of the

data rather than its structure. Overfitting can be reduced with the following (among others)

regularization techniques: explicit regularization (applied to L-BFGS) and early stopping

(applied to SGD). In the case of L-BFGS, increasing the strength of regularization managed to

reduce overfitting, and to obtain the same performance than multivariate logistic regression

(AUC= 0.65± 0.04) with 10 hidden neurons and regularization parameter α set to 100, as

can be seen on Figure 3.17. The fact that the resulting train ROC curve was close to the best

multivariate logistic regression system suggests that further increasing α would only result

in a worse performance on the train set, and thus on the test set as well. In the case of SGD

and early-stopping, the best MLP classifier had 5 hidden neurons and early stopping managed

again to reduce overfitting and reach an almost equal performance than logistic regression

(AUC= 0.66±0.04), as can be seen on Figure 3.19. However neither optimizer showed any

significant improvement on the predictive performance. SVM with an RBF kernel performed

best with C = 1 and γ= 0.001 after grid search (Table 3.3), but also had similar performance

than multivariate logistic regression on the test set (AUC= 0.65±0.04).

The non-linear machine learning models yielded similar performance compared to logistic

regression (Figure 4.2). If non-linear methods cannot improve the performance of our model,

it suggests that there is a part of the patient population that can be classified with a linear

separator, and another part which corresponds to possibly overlapping isolated cases in a

multi-dimensional space. These are very specific cases, from which we cannot learn. We

cannot generalize from those specific points which correspond to combinations of features

specific to theses patients. Further analysis of misclassified patients might help to understand

those specific cases, in collaboration with clinicians to explain those particular combinations.

4.3.1 Overlap between classes

One way to visualize the separability of the data is to perform a t-Distributed Stochastic

Neighbor Embedding (t-SNE) analysis. t-SNE is a dimensionality reduction technique used to

represent high-dimensional dataset in a low-dimensional space of 2 or 3 dimensions so that

we can visualize it. In contrast to other dimensionality reduction algorithms, t-SNE creates a
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Figure 4.2 – ROC curves of best classifiers for multivariate logistic regression, MLP and
SVM, all patients (N = 6485), all adverse events (N = 199). The MLP classifier
has a slightly higher ROC curve than SVM and multivariate logistic regression,
both for the train and test sets, but the difference in AUC is very small.

reduced feature space where similar samples are modeled by nearby points and dissimilar

samples are modeled by distant points with high probability [38]. This means that t-SNE

preserves the structure of the original dataset and the 2D visualization allows us to look for

patterns in the dataset and in particular, to apprehend the degree of data separability. Figures

4.3, 4.4 and 4.5 represent the t-SNE embeddings with 2 components on the whole dataset, the

train set (70% of dataset) and test set (30% of dataset), respectively.

On these plots, we can see that positives and negatives are completely superposed, and we fail

to see any linear separation between classes. All positives seem to overlap negatives clusters.

Even on the whole dataset (Figure 4.3), there is no clear evidence of linear separability and

isolated cases. This does not confirm the hypothesis that there is a part of the population that

can be linearly classified, while some isolated cases fail to follow the trend. However, this way

of verifying the hypothesis leads to a premature rejection of our hypothesis because this is a

2D representation of a 11-dimensional space (11 features in the dataset) which may not be

readily discriminative. Therefore, we might miss something in this representation. The t-SNE

analysis provides a possible explanation as to why most classifiers have quite low predictive

performance (AUC≤ 0.7): the data of patients with and without adverse events seems to be

completely overlapped. However, this does not explain why the classifiers still perform better

than random guess.
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Figure 4.3 – t-SNE with 2 components on the whole dataset. The negatives (patients without
adverse events) form several clusters and positives (patients with adverse events)
are superposed on these clusters. This plot also allows to visualize the imbalance
in the dataset between positives and negatives.
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Figure 4.4 – t-SNE with 2 components on the train set (70% of dataset). Negatives and posi-
tives are overlapped in clusters

This overlap between positives and negatives is consistent with the number of support vectors

from SVM results. We obtained a very high number of support vectors, representing 80% of

the points in the dataset. This means that most points are within the margin of separation

between positives and negatives and are very close to each other. A high number support
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Figure 4.5 – t-SNE with 2 components on the test set (30% of dataset). Negatives and posi-
tives are overlapped in clusters

vectors usually indicates overfitting, however in this case, the train performance is only slightly

superior to the test performance. Therefore, we could rather interpret this high number

of support vectors as an inherent problem in the data: the positives and negatives are so

overlapped that it makes it difficult to separate them, even in a non-linear way.

4.3.2 MLP embedding

This section investigates the data separability in MLP with 2 hidden neurons, to visualize how

MLP performs better than a random classifier. We plot the output of the 2 hidden neurons

(before last layer), which projects the input (11-dimensional) in a 2D space to perform a linear

separation. The 2D space can be visualized and represents the input to the last neuron. The

points are computed by feeding train and test data to MLP equation 4.1 using the values of

trained weights and intercepts:

f (wT x +b) with f (x) = 1

1+e−x (4.1)

We also plotted the linear decision boundary at the last neuron to understand how the separa-

tion is performed. To do this, we solved the following equation:

w1x1 +w2x2 +b = t ⇔ x2 =−w1

w2
x1 − b − t

w2
(4.2)

where w1, w2 correspond to the weights assigned to the 2 hidden neurons, b to the bias
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term, and t to the best separation threshold. This threshold is evaluated on ROC plot and

corresponds to a trade-off between a low FPR and a high TPR. The resulting plots are displayed

on Figure 4.6 for the train set and Figure 4.7 for the test set.
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Figure 4.6 – MLP embedding of train set for 2 hidden neurons. The negatives fill the 2D
space and accumulate at the upper and right border of the plot. The positives ac-
cumulate at two corners in the plot: upper left and lower right. The MLP classifier
is bound to make a lot of false negatives since the negatives are everywhere and
cannot be separated by a line. The classification of positives is rather good since
the decision boundary encompasses both the upper left and lower right corners,
and there are only a few isolated cases on the other side.

On these plots, we can see that MLP manages to project the input in a 2D space where positives

form clusters together. These clusters still overlap the negatives but MLP does better than a

random classifier by maximizing the number of positives on one side of the boundary, despite

the negatives present on that side.

To sum up, the different visualizations (t-SNE and MLP embeddings) show that positives and

negatives are largely overlapped and suggest that an efficient classification of patients with

and without adverse events is difficult to achieve with this dataset.

4.4 Limitations and Outlook

Our predictive task consisted in a binary classification task: either the adverse event occurs

or it does not. However, all adverse events have different characteristics and maybe different

properties. A multiclass classifier might have a better performance since specific features

might be associated with specific type/grade of adverse events.
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Figure 4.7 – MLP embedding of test set for 2 hidden neurons. The distribution of negatives
and positives follows quite closely the pattern from the train set (Figure 4.6):
negatives at the borders, positives in the corners. The points are sparser than the
train set since the test set is smaller. The linear decision boundary includes the
corner with the most positives but there are still a lot of negatives on that side.

Another limitation of this work may be linked to the size and imbalance of the dataset. Being

consistently successful at predicting adverse events requires sufficient sample size and this

might not be the case here. Small datasets exhibit more variation and may be subject to more

noise, which makes it harder to detect patterns linked to occurrence of adverse events. Using

a larger dataset, by continuing the data collection on other clinical trials with LTBI treatment,

could help get better results.

One could also imagine using additional clinical features, which were also collected during the

clinical trials. Although not used in the original study by Campbell et al. [1], those variables

might have an importance in a non-linear model. This would require collaboration with

clinicians to determine which variables might have predictive power in this context.

Finally, using other libraries with more freedom on the implementation side could have an

impact on the results. For example, scikit-learn MLP classifier does not have a mechanism

to adjust class weights to compensate for the small number of positives, which is why we

resorted to resampling. Using libraries such as Pytorch or Keras allows more control on the

training phase.
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5 Conclusion

In this project, we managed to establish a correlation between patient clinical data and

adverse events, based on the work of Campbell et al. [1]. Then we built a baseline predictive

model of adverse events using multivariate logistic regression and an unbiased evaluation

protocol. Finally we implemented two non-linear machine learning models which had similar

performance than the baseline model. The whole project was conducted with reproducibility

in mind. Two bob packages were implemented: a database interface and a package to train

and evaluate the different models in order to obtain the same figures of merit for each model.

The failure to improve the predictive power of the model might be inherently due to the

dataset, which is highly imbalanced with very few adverse events, and whose clinical data of

patients with adverse events appear not to stand out compared to patients without adverse

events. Strategies such as increasing the size of the dataset or changing implementations

might result in better performances. In the continuity of this work, one could investigate the

performance of these classifiers when predicting specific type of adverse events or adverse

events with specific grades in a multiclass classification task.
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A An appendix

Table A.1 – Results of univariate and multivariate model of risk factors for grade 1-2 rash
+ all grade 3-5 adverse events attributed to rifampin. This table reproduces the
left part of table 4 in Campbell et al. [1]

Number Risk N Univariate Multivariate
OR Estimate OR Estimate

Age
18-34 1489 18 1 (ref) 1 (ref)
35-64 1661 28 1.4 1.1
65-90 130 4 2.8 1.6(1.7)

Sex
Female 1916 34 1 (ref) -
Male 1364 16 0.7 -

BMI

Normal 1674 24 1 (ref) -
Underweight 216 3 1.1 -
Overweight 916 16 1.2 -
Obese 474 7 1.1 -

Immune
No Immune suppr. 2929 42 1 (ref) 1 (ref)
HIV-positive 130 1 0.8 0.5

Status Other immune suppr. 221 7 2.4 1.3

Alcohol
Never drinks 2200 31 1 (ref) -
≤ 1 drink per week 873 17 1.4 -

Use > 1 drink per week 207 2 0.8 -
Smoking Has never smoked 2496 42 1 (ref) -
history Currently or has smoked 784 8 0.6 -
Medication Consistency ≥ 90% 2440 30 1 (ref) 1 (ref)
Consistency Consistency < 90% 840 20 2.0 2.0
Concomitant None 2157 27 1 (ref) 1 (ref)
medications Any 763 23 2.9 2.8
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Appendix A. An appendix

Table A.2 – Results of univariate and multivariate model of risk factors for grade 1-4 rash
adverse events attributed to rifampin. This table reproduces the right part of
table 4 in Campbell et al. [1]

Number Risk N Univariate Multivariate
OR Estimate OR Estimate

Age
18-34 1489 6 1 (ref) 1 (ref)
35-64 1661 15 2.1(2.2) 1.6
65-90 130 4 8.1 4.4

Sex
Female 1916 18 1 (ref) -
Male 1364 7 0.6 -

BMI

Normal 1674 14 1 (ref) -
Underweight 216 0 0.3 -
Overweight 916 9 1.2 -
Obese 474 2 0.6 -

Immune
No Immune suppr. 2929 21 1 (ref) 1 (ref)
HIV-positive 130 0 0.5 0.3

Status Other immune suppr. 221 4 2.8 1.2

Alcohol
Never drinks 2200 17 1 (ref) -
≤ 1 drink per week 873 7 1.1 -

Use > 1 drink per week 207 1 0.9 -
Smoking Has never smoked 2496 21 1 (ref) -
history Currently or has smoked 784 4 0.7 -
Medication Consistency ≥ 90% 2440 16 1 (ref) -
Consistency Consistency < 90% 840 9 1.7 -
Concomitant None 2157 12 1 (ref) 1 (ref)
medications Any 763 13 3.6 2.9
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Table A.3 – Results of univariate and multivariate model of risk factors for grade 3-4 hepa-
totoxicity adverse events attributed to rifampin (N=11 events).. This table repro-
duces table 7 in Campbell et al. [1] (SI). Multivariate models not created due to no
significant covariates

Number Risk N Univariate
OR Estimate

Age
18-34 1489 4 1 (ref)
35-64 1661 7 1.5
65-90 130 0 1.3

Sex
Female 1916 7 1 (ref)
Male 1364 4 0.8

BMI

Normal 1674 7 1 (ref)
Underweight 216 0 0.5
Overweight 916 3 0.9
Obese 474 1 0.7

Immune
No Immune suppr. 2929 9 1 (ref)
HIV-positive 130 0 1.2

Status Other immune suppr. 221 2 3.5

Alcohol
Never drinks 2200 8 1 (ref)
≤ 1 drink per week 873 2 0.7

Use > 1 drink per week 207 1 1.9
Smoking Has never smoked 2496 9 1 (ref)
history Currently or has smoked 784 2 0.8
Medication Consistency ≥ 90% 2440 7 1 (ref)
Consistency Consistency < 90% 840 4 1.7(1.8)
Concomitant None 2157 8 1 (ref)
medications Any 763 3 1.4
Pre-treatment Normal 3060 10 1.0 (ref)
ALT Above normal 184 1 2.4
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Appendix A. An appendix

Table A.4 – Results of univariate and multivariate model of risk factors for grade 1-4 rash
attributed to isoniazid (N=13 events). This table reproduces table 8 in Campbell
et al. [1] (SI)

Number Risk N Univariate Multivariate
OR Estimate OR Estimate

Age
18-34 1436 4 1.0 (ref) 1.0 (ref)
35-64 1642 9 1.9 2.1
65-90 127 0 1.2(1.3) 1.3

Sex
Female 1811 9 1.0 (ref)
Male 1394 4 0.6 -

BMI

Normal 1646 6 1.0 (ref)
Underweight 222 0 0.6 -
Overweight 907 5 1.5 -
Obese 430 2 1.5 -

Immune
No Immune suppr. 2871 13 1.0 (ref) -
HIV-positive 138 0 0.8 -

Status Other immune suppr. 196 0 0.5 -

Alcohol
Never drinks 2112 10 1.0 (ref) -
≤ 1 drink per week 891 3 0.8 -

Use > 1 drink per week 202 0 0.5 -
Smoking Has never smoked 2421 11 1.0 (ref) -
history Currently or has smoked 784 2 0.7 -
Medication Consistency ≥ 90% 2151 5 1.0 (ref) 1(ref)
Consistency Consistency < 90% 1054 8 3.2 3.4
Concomitant None 2470 10 1.0 (ref) -
medications Any 735 3 1.1 -
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Table A.5 – Results of univariate and multivariate model of risk factors for grade 3-4 hema-
tologic adverse events attributed to rifampin (N=6 events). This table repro-
duces table 9 in Campbell et al. [1] (SI). Multivariate analysis was not performed
due to the scarcity of events.

Number Risk N Univariate
OR Estimate

Age
18-34 1489 4 1 (ref)
35-64 1661 2 0.5
65-90 130 0 1.3

Sex
Female 1916 4 1 (ref)
Male 1364 2 0.8

BMI

Normal 1674 2 1 (ref)
Underweight 216 2 7.8
Overweight 916 1 1.1
Obese 474 1 2.1

Immune
No Immune suppr. 2929 6 1 (ref)
HIV-positive 130 0 1.7

Status Other immune suppr. 221 0 1.0

Alcohol
Never drinks 2200 3 1 (ref)
≤ 1 drink per week 873 3 2.5

Use > 1 drink per week 207 0 1.5
Smoking Has never smoked 2496 6 1 (ref)
history Currently or has smoked 784 0 0.2
Medication Consistency ≥ 90% 2440 3 1 (ref)
Consistency Consistency < 90% 840 3 2.9
Concomitant None 2157 4 1 (ref)
medications Any 763 2 1.8
Pre-treatment Normal 2972 4 1.0 (ref)
WBC Below normal 196 2 3.6
Pre-treatment Normal 2972 5 1.0 (ref)
Platelets Below normal 196 1 5.8
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Table A.6 – Results of univariate and multivariate model of risk factors for grade 3-4 non-
rash and non-hepatotoxic adverse events attributed to isoniazid (N=8 events).
This table reproduces table 12 in Campbell et al. [1] (SI). Multivariate analysis was
not performed due to the scarcity of events.

Number Risk N Univariate
OR Estimate

Age
18-34 1436 6 1.0 (ref)
35-64 1642 2 0.3
65-90 127 0 0.9

Sex
Female 1811 6 1.0 (ref)
Male 1394 2 0.5

BMI

Normal 1646 4 1.0 (ref)
Underweight 222 1 2.5
Overweight 907 2 1.0
Obese 430 1 1.3

Immune
No Immune suppr. 2871 8 1.0 (ref)
HIV-positive 138 0 1.2

Status Other immune suppr. 196 0 0.9

Alcohol
Never drinks 2112 8 1.0 (ref)
≤ 1 drink per week 891 0 0.1

Use > 1 drink per week 202 0 0.6
Smoking Has never smoked 2421 7 1.0 (ref)
history Currently or has smoked 784 1 0.6
Medication Consistency ≥ 90% 2151 4 1.0 (ref)
Consistency Consistency < 90% 1054 4 2.0
Concomitant None 2470 6 1.0 (ref)
medications Any 735 2 1.3
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Table A.7 – Results of univariate and multivariate model of risk factors for grade 3-4 non-
rash and non-hepatotoxic adverse events attributed to rifampin (N=14 events).
This table reproduces table 13 in Campbell et al. [1]

Number Risk N Univariate Multivariate
OR Estimate OR Estimate

Age
18-34 1489 8 1 (ref) 1 (ref)
35-64 1661 6 0.7 0.5
65-90 130 0 0.7 0.4

Sex
Female 1916 9 1 (ref) -
Male 1364 5 0.8 -

BMI

Normal 1674 3 1 (ref) 1 (ref)
Underweight 216 3 7.8 9.5
Overweight 916 4 2.4 2.4
Obese 474 4 4.6 3.6

Immune
No Immune suppr. 2929 12 1 (ref) -
HIV-positive 130 1 2.7 -

Status Other immune suppr. 221 1 1.6 -

Alcohol
Never drinks 2200 6 1 (ref) 1 (ref)
≤ 1 drink per week 873 8 3.3 3.0

Use > 1 drink per week 207 0 0.8 0.7
Smoking Has never smoked 2496 7 1 (ref) -
history Currently or has smoked 784 7 0.6 -
Medication Consistency ≥ 90% 2440 7 1 (ref) 1 (ref)
Consistency Consistency < 90% 840 7 2.9 2.9
Concomitant None 2157 7 1 (ref) 1 (ref)
medications Any 763 7 3.3 4.8
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Table A.8 – Results of univariate and multivariate model of risk factors for combined out-
come of grade 1-2 rash and all grade 3-5 adverse events with study drug as a
predictor (N=86 events isoniazid; N=50 events rifampin). This table reproduces
table 14 in Campbell et al. [1].

Number Risk N Univariate Multivariate
OR Estimate OR Estimate

Treatment
Isoniazid 3205 50 1.0 (ref) 1.0 (ref)

Arm Rifampin 3280 86 0.6 0.6

Age
18-34 2925 43 1.0 (ref) 1.0 (ref)
35-64 3303 82 1.7 1.5
65-90 257 11 3.1 2.3

Sex
Female 3727 82 1.0 (ref)
Male 2758 54 0.9 -

BMI

Normal 3320 68 1.0 (ref)
Underweight 438 8 0.9 -
Overweight 1823 42 1.1 -
Obese 904 18 1.0 -

Immune
No Immune suppr. 5800 115 1.0 (ref) 1.0 (ref)
HIV-positive 268 6 1.2 0.9

Status Other immune suppr. 417 15 1.9 1.2

Alcohol
Never drinks 4312 89 1.0 (ref) -
≤ 1 drink per week 1764 37 1.0 -

Use > 1 drink per week 409 10 1.2 -
Smoking Has never smoked 4917 102 1.0 (ref) -
history Currently or has smoked 1568 34 1.1 -
Medication Consistency ≥ 90% 4591 87 1.0 (ref) 1.0 (ref)
Consistency Consistency < 90% 1894 49 1.4 1.4
Concomitant None 4987 85 1.0 (ref) 1.0 (ref)
medications Any 1498 51 2.0 1.7
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Table A.9 – Results of univariate and multivariate model of risk factors for grade 3-4 hep-
atotoxicity with study drug as a predictor (N=65 events isoniazid; N=11 events
rifampin). This table reproduces table 15 in Campbell et al. [1].

Number Risk N Univariate Multivariate
OR Estimate OR Estimate

Treatment
Isoniazid 3205 65 1.0 (ref) 1.0 (ref)

Arm Rifampin 3280 11 0.2 0.2

Age
18-34 2925 19 1.0 (ref) 1.0 (ref)
35-64 3303 50 2.3 2.1
65-90 257 7 4.5 4.0

Sex
Female 3727 40 1.0 (ref)
Male 2758 36 1.2 -

BMI

Normal 3320 41 1.0 (ref)
Underweight 438 4 0.8 -
Overweight 1823 22 1.0 -
Obese 904 9 0.8 -

Immune
No Immune suppr. 5800 61 1.0 (ref) 1.0 (ref)
HIV-positive 268 5 1.9(2.0) 1.7

Status Other immune suppr. 417 10 2.4 1.8

Alcohol
Never drinks 4312 48 1.0 (ref) 1 (ref)
≤ 1 drink per week 1764 19 1.0 0.9

Use > 1 drink per week 409 9 2.1 1.7
Smoking Has never smoked 4917 51 1.0 (ref) 1 (ref)
history Currently or has smoked 1568 25 1.6 1.2
Medication Consistency ≥ 90% 4591 55 1.0 (ref) -
Consistency Consistency < 90% 1894 21 0.9 -
Concomitant None 4987 50 1.0 (ref) 1.0 (ref)
medications Any 1498 26 1.8 1.1
Pre-treatment Normal 6032 66 1.0 (ref) 1.0 (ref)
ALT Above normal 380 10 2.5 2.4
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Table A.10 – Results of univariate and multivariate model of risk factors for grade 1-4 rash
with study drug as a predictor (N=13 events isoniazid; N=25 events rifampin).
This table reproduces table 16 in Campbell et al. [1].

Number Risk N Univariate Multivariate
OR Estimate OR Estimate

Treatment
Isoniazid 3205 13 1.0 (ref) 1.0 (ref)

Arm Rifampin 3280 25 1.9 2.0

Age
18-34 2925 10 1.0 (ref) 1.0 (ref)
35-64 3303 24 2.1 1.8
65-90 257 4 4.9 3.6

Sex
Female 3727 27 1.0 (ref) 1(ref)
Male 2758 11 0.6 0.6

BMI

Normal 3320 20 1.0 (ref) -
Underweight 438 0 0.2 -
Overweight 1823 14 1.3 -
Obese 904 4 1.8 -

Immune
No Immune suppr. 5800 34 1.0 (ref) -
HIV-positive 268 0 0.3 -

Status Other immune suppr. 417 4 1.8 -

Alcohol
Never drinks 4312 27 1.0 (ref) -
≤ 1 drink per week 1764 10 0.9 -

Use > 1 drink per week 409 1 0.6 -
Smoking Has never smoked 4917 32 1.0 (ref) -
history Currently or has smoked 1568 6 0.6 -
Medication Consistency ≥ 90% 4591 21 1.0 (ref) 1 (ref)
Consistency Consistency < 90% 1894 17 2.0 2.2
Concomitant None 4987 22 1.0 (ref) 1.0 (ref)
medications Any 1498 16 2.5 1.9
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Strengths:

+ EPFL bioengineer with strong analytical skills
+ Machine Learning professional experience
+ Matlab, C++, Python

Colombine Verzat
Education

2018–present Dual Master in Artificial Intelligence, Idiap, Switzerland.
State-of-the-art theoretical courses in machine learning and professional activity at Idiap using
machine learning for the detection of adverse events during Latent Tuberculosis Infection treatment

2015–2018 Master of Science (MSc) in Bioengineering, École Polytechnique Fédérale de Lausanne
(EPFL), Switzerland.
Neuroengineering education including neuroscience, biomechanics, biophysics, neuroprosthetics, brain
computer interaction, programming in Python and functional brain imaging

2012–2015 Bachelor in Life Sciences, EPFL.
Engineering education combining advanced training in basic science (algebra, calculus, physics,
computer programming, signal processing, electronics) with chemistry, biology, bioinformatics and
neurosciences

2012 Baccalauréat Section scientifique, Lycée de la Légion d’Honneur, Saint-Denis, France.
Mention très bien, option européenne (reinforcement in english including study trips in the UK and
USA)

Core Experience
Sept-17–
March-18

Institute of Behavioural Neuroscience, University College London, Master thesis, Dr.
C. Perrodin, Pr. C. Sandi, London, UK.
“Identifying perceptually informative acoustic cues in mouse social communication“
Designed and ran behavioural experiments in mice, analysed the resulting video-tracking data in
Matlab

Spring 2017 Laboratory of Behavioral Genetics, EPFL, Semester project, Dr. J. Rodrigues, Pr. C.
Sandi.
“Analytical approaches to data from human virtual reality and neuro-physiology studies“
Ran virtual reality experiments on human subjects and analysed gait data from wearable sensors in
Matlab

Autumn 2016 Second Sight medical products, 4-month internship, M. Flourence, F. Merlini.
“Challenge of integrating artificial vision provided by retinal neuroprosthetic device Argus II into
residual peripheral vision in Age-related Macular Degeneration patients“
Designed and ran behavioural tasks for AMD patients in Manchester to assess the benefice of the
Argus II device

Spring 2015 Biodesign for a real world, Hackuarium and EPFL, S. Hirosue.
“Acoustic feedback of arsenic levels in contaminated water in Biodesign for the real world project“
Part of a local team in a large-scale open source project, added a new auditory modality to the
prototype bioreporter using Arduino
Poster at the Salon des Technologies et de l’Innovation de Lausanne (STIL) 2015
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2014–2017 Teaching assistant in calculus and programming, EPFL.
Tutored first-year EPFL students for practical exercises, corrected exams, supervised group projects

Additional Experience
Spring 2017 Festival Balélec, Electricity manager, EPFL.

Co-planned the electricity distribution of a large music festival (15’000 people), led a team of 10
staffs, regular meetings with electricity collaborator of EPFL and electricity distributors

Nov-15–Nov-
16

EPFL Integration Week, Head of Animation, EPFL.
Designed and implemented creative activities, drew a budget for activities’ material, coordinated the
organization of the week with a committee, led a team of staff

2015–2017 AGEPoly, Team animation, EPFL.
Part of a team to organize entertaining and social bonding activities on campus for students and
staff

Scouting, 9 years.
Including 3 years as a chieftain in Lausanne responsible for 20 girls (8 to 12 years old), planned and
coordinated outdoor activities

Technical skills
Machine
Learning

Linear Algebra, Datastructures and algorithms, Foundations in statistics for AI, Signal
processing

IT Basics of Arduino and Blender, good knowledge of Java and LATEX, advanced level in
matlab, C++ and Python

Engineering
skills

Mathematical and Physical calculations, Data analysis using probabilities and statistics,
Programming, Computational models in biology, Analysis of electrical circuits and sensors
in medical instrumentation

BiotechnologyStrong knowledge in Molecular and Cellular Biology, Biochemistry, Physiology, Microbiology,
Neurosciences, Oncology, Genomics, Biomechanics, Biomaterials, Tissue engineering, Biomi-
croscopy, BioMEMS, Stem cells, Bioethics, Neuroengineering, Brain Computer Interaction,
Functional Brain Imaging

Research
methods

Experimental Procedures Design, Statistical analysis of research data, Writing scientific
reports

Languages
French Native language
English Fluent: lived 7 months in the UK
German Basic understanding

Interests
Badminton Badminton Club Martigny, Rueil Athletic Club Badminton, Sobell Badminton Club
Board/card

games
Friendly competitive spirit, analytical mind

Cooking Occasional cooking lessons, discovering new recipes
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