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An Attention Mechanism for Deep Q-Networks
with Applications in Robotic Pushing

Marco Ewerton, Sylvain Calinon, Jean-Marc Odobez

Abstract— Humans effortlessly solve push tasks in every-
day life but unlocking these capabilities remains a research
challenge in robotics. Physical models are often inaccurate or
unattainable. State-of-the-art data-driven approaches learn to
compensate for these inaccuracies or get rid of the approx-
imated physical models altogether. Nevertheless, data-driven
approaches such as Deep Q-Networks (DQNs) get frequently
stuck in local optima in large state-action spaces. We propose
an attention mechanism for DQNs to improve their sampling
efficiency and demonstrate in simulation experiments with a
UR5 robot arm that such a mechanism helps the DQN learn
faster and achieve higher performance in a push task involving
objects with unknown dynamics.

I. INTRODUCTION AND RELATED WORK

Pushing is a motion that is important for moving objects
that are too large, too heavy, too cluttered or too distant to
be grasped. Thus, several types of pushes can be involved
in many manipulation tasks, to isolate object, reorient them,
bring them closer, put them into a container, or even aid
perception. However, deciding whether to push or not, which
push to perform and how to do it remains a challenging task.
Related work and motivations. For doing pushing, robots
often rely on physical models. However, these models are
computable but are only approximations of physical phenom-
ena. For instance, Yu et al. [1] present a dataset of planar
pushing experiments to study how reliable these models
are. The dataset can also be used for benchmarking motion
prediction methods and for learning. It shows that pushing
can be seen as a stochastic process even if a highly precise
manipulator (accuracy of pusher position = 0.1 mm) is
used to perform the pushes, highlighting the importance of
learning to tackle such tasks.

Zeng et al. [2] use model-free deep reinforcement learn-
ing to synergistically perform pushing and grasping. Their
learning architecture is comprised of two fully convolutional
networks. One network maps RGB-D images to the utility
of pushing 10 cm to the right at each pixel. The other
maps RGB-D images to the utility of grasping at each pixel.
By presenting these networks with the input RGB-D image
rotated at 16 different angles, the networks can compute the
utilities of pushes and grasps with different orientations. The
heights of the pushes and grasps depend on the D channel.
More specifically, Q-learning is used to train the networks.
A reward of 1 is achieved when a grasp is successful and
a reward of 0.5 when pushes produce detectable changes to
the environment. Otherwise, the reward is 0.
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Continuing to explore synergies between different kinds of
movements, [3] shows a method to learn grasping and throw-
ing of arbitrary objects. In that work, a perception module
computes a feature representation of an RGB-D image, and a
simple physics model is used to estimate the release velocity
necessary to throw an object at a certain target position.
The estimated release velocity is concatenated with a feature
representation and fed into the grasping module and the
throwing module. The grasping module computes the utility
of a grasp at each pixel. The throwing module computes, for
each possible grasp, the residual on top of the estimated
velocity to account for phenomena not accounted for by
the simple physics model like centripetal accelerations and
aerodynamic drag. The perception, grasping and throwing
modules are fully convolutional networks. The success of
grasps is quantified based on the end distance between the
parallel grippers or based on whether or not the thrown object
landed in the correct box.

The methods proposed in [2] and [3] succeed in learning to
push, grasp and throw objects in part due to the discretization
of the action space, which simplifies to the some extent
the reinforcement learning problem. In contrast, [4] uses
Logic-Geometric Programming [5] and Multi-Bound Tree
Search [6] to find and optimize a sequence of continuous
actions to solve several tasks involving the usage of tools
and the manipulation of different objects. Notwithstanding
its success in finding sequences of continuous actions, a
number of assumptions have been made in this work to make
this optimization problem numerically solvable. It has been
assumed, for example, that each object has a sphere-swept
convex geometry, that its dynamics are known and that there
are no uncertainties. Future work will need to make less
assumptions, deal with unknown dynamics and uncertainty
to succeed in real-world applications.

Hogan et al. [7] address the problem of pushing an object
on a plane along a desired trajectory or to pass through a
sequence of via points. The proposed method can deal with
disturbances such as the ones introduced by a human push-
ing the object orthogonally to the desired trajectory. Their
method consists of using Model Predictive Control and a
family of m mode sequences that have been designed by the
authors. Each mode has its own set of motion equations and
constraints. In real-time, m convex optimization programs
are solved and the mode sequence with the lowest cost is
chosen. The main limitation of that work is the necessity of
hand-designing a specific family of mode sequences for each
task the robot has to solve.

In [8], the push dataset presented in [1] is used. The



work presented in [8], as the one in [3], uses the concept
of Residual Physics, i.e., it augments analytical models with
data-driven techniques to compensate for the imperfections
of the models. In [8], the trained neural networks not only
correct the model predictions but also provide distributions
over possible outcomes of actions. This output in the form of
a distribution can be used to estimate the uncertainty of the
predictions, which can be useful for planning and control.

Strudel et al. [9] combine behavioral cloning (BC) [10]
with reinforcement learning (RL) to solve manipulation
tasks, potentially comprising several primitive motor skills.
Examples of primitive skills are “grasp a cube” or “pour
from a cup”. Each primitive skill is learned through BC. The
demonstrations are provided by an expert script with access
to the full state of the environment. Once each skill has
been learned through BC, a master policy is trained with the
PPO [11] algorithm to select the skill that will be executed
for the next n time steps, relying on sparse rewards. The
proposed method is able to achieve higher success rates in the
FetchPickPlace task from OpenAI Gym [12] than state of the
art imitation or reinforcement learning methods. This work
can potentially learn to combine skills with more variety than
only pushing and grasping, without discretizing the action
space such as in the method proposed by Zeng et al. [2].
On the other hand, it relies on predefining expert scripts for
each skill, while the method proposed by Zeng et al. simply
assumes a certain discretization of the action space, not the
existence of expert pushing and grasping policies.

Suh and Tedrake [13] propose a switch-linear model to
deal with the problem of pushing little carrot pieces towards
a certain region. They do not deal with variable height and
their images are binary, which is limiting when working with
arbitrary heaps of objects. Nevertheless, the authors show
that a switch-linear model can surpass the performance of
deep learning models for this task because the tested deep
models can get stuck in a loop, predicting actions that do
not cause any change in the actual scene.

Approach and contribution. In this work, our aim is to learn
when and how to push for different tasks, like reorienting
objects to better grasp them, or pushing objects into a box
on the border of a table. To do so and avoid hand crafting
pushing rules, we have adopted the learning framework of
Zeng et al. [2]. In this context, as in [13], we have observed
that the tested deep models can get stuck in a loop, predicting
actions that do not cause any change in the actual scene,
and also spends a large amount of training time only to
learn how to perform basic pushes that move objects. To
address these two issues, our main contribution is an attention
mechanism for Deep Q-Networks (DQNs) that improves
their sampling efficiency by constraining the set of possible
actions to actually lead to changes in the environment. Fig. 2
shows a workflow of our learning system with the attention
mechanism, which will be explained in detail in Section III.
We demonstrated in simulated experiments with a UR5 robot
arm that our attention mechanism helps the DQN learn a
push task faster and achieve better performance.

Fig. 1. Pushing into the box task.

II. PUSHING TASK AND LEARNING ARCHITECTURE

Fig. 1 depicts the task studied in this paper. The objective
is to make the robot push all the objects on the table top into
the transparent box juxtaposed with the table. The table top
has dimensions 45× 45 cm. A camera positioned in front of
the robot captures RGB-D images from the workspace. The
orthogonal projections of these images are fed as inputs to
the learning architecture (Fig. 2). The robot can push at the
(x, y, z) coordinates corresponding to any of the 224× 224
pixels on the image. The pushing actions can be performed
in any from 16 different orientations and are 10 cm long.
Our approach and main contribution in this paper is to
propose a learning system that combines Deep Q-Learning
with an attention mechanism, improving its learning speed
and performance on the pushing task.

We have defined the reward for taking action at at the
state st and transitioning to the state st+1 as

Rat(st, st+1) =
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where change is detected as follows: The depth heightmaps
before and after the push are binarized by setting 0 when
the height at a given pixel is smaller than 1cm and 1 if that
height is greater than or equal to 1 cm. Subsequently, the
pixelwise distance between the two binary height maps is
computed. If this distance is greater than 100, the scenario
is deemed to have changed.

The variables dti and dt+1
i are, respectively, the distances

before and after the push between the pixel i on an object
and the target pixel defined to be in the middle of the side
of the box juxtaposed with the table. The term 1

N

∑N
i=1 d

t
i



Fig. 2. Workflow of our learning system. A DenseNet predicts the state-action values Q(st, at) of pushing at each pixel with a certain angle while our
attention mechanism identifies push start position candidates that lead to moving objects. The mask A provided by this attention mechanism is combined
via the Hadamard product with Q to produce the state-action values Q∗. The optimal push a∗t is the one that maximizes Q∗. The attention mask A
prevents trying pushes that do not lead to any changes, speeding up the learning process and reducing the chances of getting stuck in local optima.

is the average distance between the N pixels on objects in
the image before the push and the target pixel. The term
1
M

∑M
i=1 d

t+1
i is the average distance between the M pixels

on objects in the image after the push and the target pixel.
The workflow of our learning system is depicted in Fig. 2.

The parameters of the DenseNet [14] are optimized via
backpropagation to minimize the temporal difference error

δt = |Q∗ (st, at)− yt| (2)

of the predicted Q-value Q∗ (st, at) to a target value

yt = Rat (st, st+1)+γQ∗
(
st+1, arg max

a′
(Q∗ (st+1, a

′))

)
,

(3)
where γ is the discount factor and a′ is an action in the set
of all available actions.

During training, the actions are sampled according to an
ε-greedy approach with ε = 0.1. A number n is sampled
from a continuous uniform distribution over the half-open
interval [0, 1). If n > ε, the action corresponding to the
maximum predicted Q-value is selected. If n ≤ ε, an action
corresponding to any of the next 99 highest Q-values is
selected at random. During test, the selected actions are the
ones that maximize Q∗.

III. ATTENTION MECHANISM

Our goal is to propose an attention mechanism that will
improve sampling efficiency, reduce training time, and select
better actions. It works by generating a mask A which is
applied to the output Q of the DenseNet. The updated output
which is effectively used to sample actions becomes

Q∗ = Q ◦A, (4)

where ◦ stands for the Hadamard product. For each orien-
tation, the mask A has value 1 at pixels corresponding to
suitable push candidates and 0 otherwise. See Fig. 3 for an
example.

Algorithm 1 shows in detail how the attention mask A is
computed. The two thresholds t1 and t2 are the parameters of

the Canny edge detection algorithm. The offset l determines
the desired distance between the start position of the push
and the corresponding point on the edge of an object to be
pushed. The angle θ is one of the possible 16 angles for
pushing. The parameter ∆x is used to compute edges that
can be pushed from a given direction and the parameter δ
defines the minimum distance between a push start position
and any edge. This minimum distance is important due to
the width of the fingers of the robot, which may prevent the
gripper from reaching certain positions. Algorithm 1 uses the
following equations:

pθ = Rθp, (5)

Rθ =

(
cos(−θ) − sin(−θ)
sin(−θ) cos(−θ)

)
, (6)

p−∆x
θ = pθ − (∆x, 0), (7)

p+∆x
θ = pθ + (∆x, 0), (8)

p−∆x = R−1
θ p−∆x

θ , (9)

p+∆x = R−1
θ p+∆x

θ , (10)

∆h = h
(
p+∆x

)
− h

(
p−∆x

)
. (11)

The value ∆h is the difference between the height h
(
p+∆x

)
at the point p+∆x and the height h

(
p−∆x

)
at the point

p−∆x. If ∆h > 0.1, the point p is an edge point of
interest because it is on an edge with the height varying
from low to high along the direction of the push, which
means that this edge can be pushed along this direction. The
corresponding start pushing position is then computed with
q = p− (l cos(θ), l sin(θ))

>, as depicted in Fig. 3c.
From line 15 on, the algorithm makes sure that the pushing

start position candidates are far enough from any edge point
such that the fingers of the gripper do not get unintentionally
stuck on the top of an object when the gripper goes down to
perform a push. To do so, for each point p on the edges, if the
Euclidean distance between p and the pushing start position
candidate q is less than or equal to the value d, update d



(a) (b) (c)
Fig. 3. (a) Depth heightmap. (b) The green points correspond to edges that can be pushed from a given angle, 45 degrees in this case. The blue points
correspond to suitable pushing start positions given that the push should start at a distance l from the edges. The yellow edges keep approximately the
same height along the direction of the push and the red edges drop in height along that direction. (c) Geometrical relation between edge points and suitable
start pushing position candidates.

with that distance. If the smallest distance d between q and
any edge point p is greater than or equal to δ, the pixel
of the mask corresponding to the candidate q receives 1. In
summary, a pushing start position candidate q is valid only
if the distance between q and any edge point p is greater
than or equal to δ (e.g. 10 pixels). This part of the algorithm

Algorithm 1 Attention mask based on edge detection
1: Inputs: m×n depth heightmap, threshold t1, threshold
t2, offset l, angle θ, ∆x, δ

2: Normalize heightmap such that (s.t.) its values are be-
tween 0 and 255

3: edges ← Canny(heightmap, t1, t2)
4: Find all points p on the edges
5: Normalize heightmap s.t. its values are between 0 and 1
6: mask ← zeros(m, n)
7: for each p do
8: Compute the coordinates of p with respect to the

frame rotated by −θ with (5) and (6)
9: Compute p−∆x

θ with (7) and p+∆x
θ with (8)

10: Compute p−∆x with (9) and p+∆x with (10)
11: Compute ∆h with (11)
12: if ∆h > 0.1 then
13: q← p− (l cos(θ), l sin(θ))

>

14: d←∞
15: for each edge point p′ do
16: if ‖q− p′‖2 ≤ d then
17: d← ‖q− p′‖2
18: end if
19: end for
20: if d ≥ δ then
21: mask(int(qy), int(qx)) ← 1
22: end if
23: end if
24: end for
25: return mask

IV. EXPERIMENTAL RESULTS

1) Experimental Protocol: We performed experiments in
simulation using a UR5 robot arm performing the task de-

picted in Fig. 1. The depth heightmaps in these experiments
had dimensions 224 × 224. We have used t1 = 70 and
t2 = 100 as parameters for the Canny edge detection. The
offset l was 12 pixels. The values ∆x and δ were 3 pixels
and 10 pixels, respectively.

Our simulationa involved eight different object shapes and
ten different object colors. Training and test scenarios were
generated by sampling object shapes and colors at random
and letting the objects fall from random poses around the
center of the table.

The training and test procedures moved from one stage to
the next if there were no objects remaining on the table top
or five pushes have been performed without any change or
60 pushes have been performed in total. This upper limit of
60 pushes has been used to move on in case of any possible
glitches such as an object getting stuck to the end effector.

2) Training Analysis: Figs. 4 and 5 show how the perfor-
mance of a model with our attention mechanism and of a
model without it evolved during training for scenarios with
one and ten objects, respectively. The learning models only
differed with respect to using or not the proposed attention
mechanism. The discount factor γ has been set equal to
zero since γ = 0 performed better than other choices (see
Fig. 7). We hypothesize that the reward function defined in
Equation 1 is already quite informative and that it is easier to
learn the Q-values if γ = 0 because the DQN has basically
to learn the reward function.

Each training stage in Figs. 4 and 5 corresponds to a
scenario with a predefined object configuration. Notice that
the model with the attention mechanism achieved a higher
average number of objects in the box earlier than the model
without it. The standard deviation of the number of objects
in the box was lower for the model with the attention
mechanism, meaning more consistent results. The models
with the attention mechanism achieved most of the time
a lower average number of objects remaining on the table
top and a lower average number of objects on the ground.
Moreover, the average reward achieved by the models with
the attention mechanism was higher, as shown in Fig. 6.

3) Test Results: Finally, we performed tests using 100
pregenerated test scenarios with one object and with ten



Model
# objects # objects # objects left # actions

(µ± σ)
avg. # objects in the box

avg. # actionsin the box on the ground on the table
(µ± σ) (µ± σ) (µ± σ)

with mask 0.99± 0.10 0.01± 0.10 0.00± 0.00 3.19± 0.96 0.31
no mask 0.92± 0.27 0.07± 0.26 0.01± 0.10 3.67± 1.18 0.25

TABLE I
TESTS WITH ONE OBJECT

Model
# objects # objects # objects left # actions

(µ± σ)
avg. # objects in the box

avg. # actionsin the box on the ground on the table
(µ± σ) (µ± σ) (µ± σ)

with mask 7.39± 1.50 2.47± 1.29 0.14± 1.01 19.00± 6.57 0.39
no mask 4.20± 2.79 1.63± 1.43 4.17± 3.38 21.32± 6.66 0.20

TABLE II
TESTS WITH TEN OBJECTS
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Fig. 4. Curves depicting the training of a model with our proposed attention
mechanism (mask) and of a model without any attention mechanism. Each
scenario used for training in this case consisted of one object with shape and
color randomly chosen from a set of possible shapes and colors. The same
sequence of scenarios has been used to train both models. The moving
average has been computed based on the last 200 training stages. In the
beginning of the training, less than 200 training stages have been used to
compute the average.

objects. The models tested with one object were trained in
scenarios with one object and the models tested with ten
objects, in scenarios with ten objects. The models tested
with one object were achieved after 11800 training steps.
The ones tested with ten objects, after 22350 training steps.
The results presented in Tables I and II show that the model
using the attention mechanism consistently outperformed the
model without it.
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Fig. 5. Same as Fig. 4 for training with ten objects.
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Fig. 6. Learning curves depicting how the moving average of the reward
obtained by the robot changed during training. (a) Training in scenarios with
one object. (b) Training in scenarios with ten objects. The moving average
has been computed based on the last 200 training steps. In the beginning
of the training, less than 200 training steps have been used to compute the
average.



Fig. 7. Evolution of the moving average of the number of objects in the
box for different choices of the discount factor γ. The model with γ = 0
achieved the highest plateau.

V. CONCLUSION

We proposed an attention mechanism for Deep Q-
Networks (DQNs). In particular, we demonstrated that this
mechanism helps a DQN to learn a push task faster and
to achieve better performance. It improves the sampling effi-
ciency of the DQN by constraining the set of possible actions
to pushes that actually lead to changes in the environment.

Currently we are looking into whether such an attention
mechanism can be learned by training a DQN simply to
push such that there are changes in the environment. The
predicted Q-values of such a DQN could then be used to
mask the predicted Q-values of a DQN learning the actual
task of pushing objects into the box, for example. Learning
an attention mechanism in this way would be applicable to
several different tasks without the necessity of designing
a specific mechanism to each task. As future work, we
also intend to improve the performance of the learning
system with our proposed attention mechanism when pushing
multiple objects into the box and to evaluate it in real-robot
experiments
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