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Abstract

Tuberculosis (TB) is one of the leading causes of death from a single infectious agent in the
world. In many high-burden regions, which often lack specialized healthcare professionals,
Chest X-Ray (CXR) exams continue to be of vital importance in the diagnosis and follow-up
of the various presentations of the disease. In this context, automated systems to support
diagnosis from CXR images constitute a fundamental cog as the World Health Organization
(WHO) confirmed in early 2021 that they can be used in place of human readers for the
interpretation of digital CXRs.

In this study, we investigate the benefits of automatic Pulmonary Tuberculosis (PTB) de-
tection methods based on radiological signs found on CXR. Contrary to direct scoring from
images, implemented in most related work, indirect detection offers natural interpretability
of automated reasoning. We identify generalization difficulties for direct detection mod-
els trained exclusively on the modest amount of publicly available CXR images from PTB
patients. We subsequently show that a model, pre-trained on tens of thousands of CXR
images using automatically annotated radiological signs, offers a more adequate base for de-
velopment. By relaying radiological signs through a simple linear classifier, one is able to
obtain state-of-the-art results on three publicly available datasets (test AUC on Montgomery
County-MC: 0.97, Shenzhen-CH: 0.90, and Indian-IN: 0.93). We further discuss limitations
imposed by the limited number of PTB-specific radiological signs available on public datasets,
and evaluate possible performance gains that could be obtained if more were available (test
AUC MC: 0.98, CH: 0.98, IN: 0.93).

We then analyze the relative importance of each of the radiological signs for PTB pre-
diction using two distinct methods and conclude that more than a specific sign, it is their
combination that allows a reliable detection of the disease.

Finally, we propose a visual overview of the radiological signs predictions over radiographs
using grad-CAMs and highlight the importance of annotating PTB datasets to study the
reliability of these visualizations.

Our work is made open-source1 and fully reproducible in the hopes it becomes useful to
further explore the application of Deep Learning to PTB screening.

1https://gitlab.idiap.ch/bob/bob.med.tb
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1. Introduction

Despite being preventable and curable, Tuberculosis (TB) is still one of the leading causes of
death from a single infectious agent in the world [1]. Indeed, it is estimated that about one
quarter of the world population is infected with TB bacteria (Mycobacterium tuberculosis),
and carry the disease in an asymptomatic latent form [2]. However, only a small percentage
of infected people (10-15% [3]) will become sick with active pulmonary TB (PTB). The rest
of the infected population will keep it in a latent, asymptomatic, and non-contagious form,
typically described as Latent TB Infection or LTBI. Although being a global disease, over
95% of cases and deaths are localized in developing countries (Figure 1.1). In fact, the risk of
developing PTB is greater if an LTBI patient is affected by another disease impairing their
immune system (co-morbidities), or if people suffer from undernutrition; precisely the kind
of situations more frequent in developing countries. For example, chances to develop PTB is
19 times greater for HIV-infected people [4]. Common signs and symptoms of an active TB
case include cough with sputum and a small amount of blood at times, chest pains, weakness,
weight loss, fever, and night sweats. On the lungs, it is characterized by several combinations
of radiological findings including infiltration, pleural effusion, and more.

Although tuberculosis is considered a rare disease in developed countries, it is a major
threat worldwide, killing more people than HIV/AIDS. In 2019, 1.4 million people died from
TB, and an estimated 10 million people contracted it [1].

Hopefully, TB is curable and preventable. The ambitious aim of the United Nations is,
incidentally, to end TB epidemic thanks to the World Health Organization (WHO) "End TB
Strategy" [5]. This strategy corresponds to a 95% reduction in the number of deaths and a
90% reduction in TB incidence rate by 2035 compared to the baseline of 2015.

To reach United Nations goal, both active TB and LTBI cases need to be treated (Fig-
ure 1.2). While active TB cases can be suspected thanks to patient’s symptoms and mi-
crobiologically tested, LTBI asymptomatic patients are more difficult to identify. Therefore,
WHO’s recommendations for LTBI elimination consist of a cascade of steps starting with
at-risk populations identification followed by active TB rule out, LTBI testing, and treat-
ment (Figure 1.3). At-risk populations spawn a very large set of potential LTBI treatment
candidates including adults and children infected with HIV, HIV-negative contacts of either
active TB or HIV patients, and other HIV-negative at-risk groups.

Although active PTB patients usually have symptoms, some are asymptomatic and could
potentially be wrongly placed in the LTBI at-risk population. Those patients need to be
eliminated from the group which will receive an LTBI treatment (as they require an active

1



Figure 1.1: Estimated TB incidence rate (percentage of new cases in a population), 2019 [1].
Over 95% of cases and deaths are localized in developing countries where co-morbidities and
undernutrition are frequent.

Figure 1.2: TB elimination projections from [6]. Only by treating both active TB and LTBI,
United Nations goal can be reached.

TB treatment instead). Since asymptomatic active TB patients can not do a microbiological
test in the absence of sputum, chest radiography is required to rule them out. In consequence,
every patient having a positive TST (tuberculin skin test) or IGRA (interferon-gamma re-
lease assay) will be screened using Chest X-Ray (CXR) imaging before receiving an LTBI
treatment [8].
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Figure 1.3: Algorithm for targeted diagnosis and treatment of LTBI and exclusion of ac-
tive TB in HIV-negative household contacts aged >= 5 years and other at-risk populations
from [7]. The red box indicates the stage of the process we are going to work on. It is where
active TB cases are ruled out of the LTBI at-risk group.

Being the most basic form of radiography, CXR technology is widely available. Chest
radiography is also considered the most accurate screening tool for detecting PTB in the
general population among standard testing tools protocoled by the WHO [9]. But despite
being considered a simple exam (and rather non-sensitive), accurate interpretation of CXR
images requires experience as, depending on disease progression and clinical covariates, PTB
may lead to different radiological signs (or to their absence). Unfortunately, there is often a
lack of specialized professionals at the location of the examination or the few available are
overburdened by the sheer volume of images to analyze. In this context, automated systems
to support diagnosis from CXR images constitute a fundamental cog. Furthermore, the use
of computer-aided detection software is expected to grow in the future as the WHO confirmed
in early 2021 that they can be used in place of human readers for the interpretation of digital
CXRs, for screening and triage for TB disease [9]. Such systems contain advanced pattern
recognition software enabling the identification of radiologic abnormalities corresponding to
the manifestations of diseases.

In the current clinical workflow, the patient is referred to CXR imaging and a radiologist
analyzes the image to identify radiological signs, confirming or not the presence of PTB.

3



In both cases, the radiologist will send back a report of the analysis, including supporting
evidence (radiological signs) to the original referrer. While discernment of PTB signs from
this imaging modality is considered to be a highly specialized task, this relationship between
the radiologist and the referring healthcare professional can be characterized by the flow of
image annotations (signs) and impressions. From an engineering perspective, radiological
signs constitute, therefore, a natural and interpretable basis in this context. However spon-
taneous, the automated detection of PTB via radiological signs is not a common practice
in the literature [10], as a direct and less explainable approach, indicated in Figure 1.4, is
usually preferred.

Model

DIRECT DETECTION

INDIRECT DETECTION

Model

Model

... Active TB
Probability

Active TB
Probability

Sign 2
Sign 1

Sign N-1
Sign N

Figure 1.4: Direct and indirect PTB assessment from CXR images. Machine Learning models
found in the literature usually implement direct detection while healthcare professionals an
indirect approach.

In the present work, we investigate if an indirect detection of PTB, exclusively based on
radiological signs extracted from CXR imaging provides better generalization and is capable
to reach state-of-the-art results, via Deep Learning (DL) methods, with minimal tuning. Our
work, contrary to most publications on this realm, is made fully reproducible (open-source
and exclusively built on public datasets).

As it follows, in Section 2, we provide an overview of related work in automatic PTB
detection and introduce the Bob framework that we use to make our work reproducible.
In Section 3, we present our evaluation process, public datasets used, and direct detection
baselines for comparison. Then, the details of our indirect approach are exposed in Section 4,
where we present our results, compare them with the baselines, evaluate the importance of
each radiological sign, and propose a visualization of the predictions. We finally conclude
with the contributions and limitations of our study in Section 5.
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2. Related Work

A large amount of studies addressing automatic PTB detection from CXR images exist in the
literature [10, 11]. Albeit various Machine Learning (ML) methods were tried in the past [12,
13, 14], current state-of-the-art results stem from Deep Learning (DL) techniques based on
convolutional neural networks (CNN) [10], which offer great plasticity and generalization
capabilities in image classification [15, 16, 17].

PTB detection is generally posed as a binary classification problem, where one needs
to identify PTB patients from healthy subjects [10]. It seems common practice to base
ground-truth labels of available datasets [18, 19] on the results of standard skin and sputum
tests while avoiding the sometimes prohibitive workload of enumerating and locating various
radiological signs on CXR imaging for the classification problem. In practice though, realistic
scenarios where computer-aided diagnosis (CAD) from CXR imaging for PTB could be useful
are rather different [20]. In high-burden countries, for example, PTB must be screened against
the general population, with individuals potentially presenting various other (pulmonary)
diseases. Patients with positive skin or sputum tests, in different stages of the disease, or
due to other clinical covariates (e.g. HIV-positive), may not present classical PTB symptoms
clearly visible on CXR images [21]. In this scenario, we argue that CAD from CXR should
limit itself to identify factual and reportable radiological signs that can be identified on the
original images. Attempts to perform a direct detection from images that have not gone
through rigorous radiological screening, coupled with the relatively small size of available
datasets, could lead to unaccounted biases.

In the present section, we will first review studies addressing active PTB detection and
then review studies addressing radiological findings detection.

2.1 Detecting Tuberculosis

A systematic review assessing the diagnostic accuracy of studies discriminating PTB and
healthy cases has been published by Harris et al. [10] in 2019. Looking at the top 7 best
performing deep learning models of this study (Table 2.1), one takes note of the very high
detection accuracy of published work, identifying a strong relationship between candidate
PTB images and available ground-truth labels. The area under the specificity versus sensi-
tivity "ROC" curve (AUC1, range [0.0, 1.0]) is used here as a figure of merit for performance

1AUC systematically refers to the area under the receiver operating characteristic curve (AUROC)
throughout this report.
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reporting. It is possible to observe AUC results ranging from 0.82 to an impressive 0.99 with
relatively tight confidence intervals in some of the studies [22, 23], for which estimation is not
described. Hwang et al. [22] encouragingly indicate that these results would be comparable
to the accuracy of trained thoracic radiologists in detecting PTB simply using CXR images.
Most of the entries report results on private datasets, and none provide source code, which
makes reproducibility impossible to achieve.

Table 2.1: Results of the top 7 models, from Harris et al. [10] systematic review, classifying
PTB vs healthy cases solely using CXR. We notice impressive AUC with relatively tight
confidence intervals indicating a strong relationship between PTB images and ground-truth
labels. Datasets references are available in the original study but most are private.

Authors
Datasets
used for
training

Number
of CXRs
used for
training

Datasets
used for
testing

Number
of CXRs
used for
testing

AUC
(95% CI)

Heo et al. [24] YU AWHE 2000 YU AWHE 37475 0.91, 0.92

Hwang et al. [22] SNUH 60989
SNUH, BMC,
KUHG, DEMC,

MC, CH
NR 0.988 (0.976-0.999)

Lakhani et al. [23] MC, CH,
TJH, Belarus 857 MC, CH,

TJ, Belarus 150 0.99 (0.96-1.00)

Santosh et al. [25] MC, CH, IN 976 MC, CH, IN 976 0.92 (MC), 0.82 (CH),
0.96 (IN)

Lopes et al. [26] NR NR CHMC, CI, NR 1031 0.834 (CH), 0.926 (MC)

Santosh et al. [27] NR NR CHMC, CI 878 0.93 (CH), 0.88 (MC)

Hwang et al. [28] KIT 9221 KIT, MC, CH 2427 0.96

To the best of our knowledge, the only fully reproducible PTB-specific CAD study has
been published by Pasa et al. [29]. The authors propose a simple CNN optimized for deploy-
ment in mobile settings, evaluating its performance on the publicly available Montgomery
County (from now on referred to as "MC") and Shenzhen ("CH") datasets [18]. In this
work, the test AUC reaches 0.811 for MC, 0.9 for CH, and 0.925 when both datasets are
combined (Figure 2.1). The higher AUC on the combined dataset is likely due to a better
generalization of the model when trained on more images. Given the small and efficient DL
architecture proposed in that work, results are notable. Yet, considering the limited number
of model parameters and the small amount of CXR images used for training, it is not possible
to exclude a poor generalization on other data. Indeed, no cross-dataset analysis has been
performed in this study.

The algorithm used by Pasa et al. is also able to generate either grad-CAMs or saliency
maps to visualize where TB has been identified on the image, as illustrated in Figure 2.2.
However, it is not clear whether the authors were able to verify the validity of these results
as the datasets used do not include any ground-truth.

More recently, another DL model has been applied to the special case of PTB detection
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Figure 2.1: Receiver Operating Characteristic (ROC) curves from Pasa et al. [29]. Corre-
sponding AUC: (a) 0.811 for the Montgomery dataset, (b) 0.9 for the Shenzhen dataset, and
(c) 0.925 for the combined dataset. It is remarkable that the AUC is higher on the combined
dataset.

Figure 2.2: Saliency map with overlay for one correctly classified case. Panel (a) shows the
chest image of the patient, panel (c) shows the saliency map, while panel (b) shows the
saliency map overlaid on the chest image for comparison. From Pasa et al. [29].

in HIV-positive patients by Rajpurkar et al. [30]. The development of TB in HIV-positive
patients is indeed specific as TB injury is a result of the immune response of the host, which
is likely impaired in this group of patients [31]. Radiological signs may be thus atypical,
with many patients presenting no CXR alterations. This work makes use of six radiological
signs and clinical covariates among which the age, oxygen saturation, and the patient’s
prior TB history. Their encouraging results suggest that the use of a DL assistant improves
the diagnostic capabilities of radiologists and confirm that radiological signs can provide an
effective basis for TB identification. Datasets used in this study are private, making this
work difficult to reproduce.
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2.2 Detecting Radiological Signs

In a more general context, other studies [32, 33, 34] highlight the ability of DL models to
extract various radiological signs from images. In particular, the CheXNeXt study by Ra-
jpurkar et al. [35] presents a model concurrently detecting 14 clinically important radiological
findings, using an ensemble of dense DL models. Trained on the NIH CXR14 dataset [32],
this model is able to predict if each of the 14 signs is present on input images, with a perfor-
mance similar to trained radiologists (Table 2.2). Although this is not the first study where
DenseNet models are used to predict radiological signs [36, 37, 38], it is the first where the
performance of the model is directly compared with that of radiologists. Moreover, the code
as well as the training and validation datasets used are publicly available. Unfortunately,
this is not the case for the test data on which AUCs were calculated.

Table 2.2: AUC results from CheXNeXt [35]. For ten radiological findings, the model is able
to give equivalent performances while giving better results for one finding and worse results
for three others respectively. We observe that some radiological findings seem easier to detect
for both radiologists and CheXNeXt.
Radiological sign Radiologists (95% CI) Algorithm (95% CI) Algorithm - Radiologists

Difference (99.6% CI) Advantage

Atelectasis 0.808 (0.777 to 0.838) 0.862 (0.825 to 0.895) 0.053 (0.003 to 0.101) Algorithm

Cardiomegaly 0.888 (0.863 to 0.910) 0.831 (0.790 to 0.870) -0.057 (-0.113 to -0.007) Radiologists

Consolidation 0.841 (0.815 to 0.870) 0.893 (0.859 to 0.924) 0.052 (-0.001 to 0.101) No difference

Edema 0.910 (0.886 to 0.930) 0.924 (0.886 to 0.955) 0.015 (-0.038 to 0.60) No difference

Effusion 0.900 (0.876 to 0.921) 0.901 (0.868 to 0.930) 0.000 (-0.042 to 0.040) No difference

Emphysema 0.911 (0.866 to 0.947) 0.704 (0.567 to 0.833) -0.208 (-0.508 to -0.003) Radiologists

Fibrosis 0.897 (0.840 to 0.936) 0.806 (0.719 to 0.884) -0.091 (-0.198 to 0.016) No difference

Hernia 0.985 (0.974 to 0.991) 0.851 (0.785 to 0.909) -0.133 (-0.236 to -0.055) Radiologists

Infiltration 0.734 (0.688 to 0.779) 0.721 (0.651 to 0.786) -0.013 (-0.107 to 0.067) No difference

Mass 0.886 (0.856 to 0.913) 0.909 (0.864 to 0.948) 0.024 (-0.041 to 0.080) No difference

Nodule 0.899 (0.869 to 0.924) 0.894 (0.853 to 0.930) -0.005 (-0.058 to 0.044) No difference

Pleural thickening 0.779 (0.740 to 0.809) 0.798 (0.744 to 0.849) 0.019 (-0.056 to 0.094) No difference

Pneumonia 0.823 (0.779 to 0.856) 0.851 (0.781 to 0.911) 0.028 (-0.087 to 0.125) No difference

Pneumothorax 0.940 (0.912 to 0.962) 0.944 (0.915 to 0.969) 0.004 (-0.040 to 0.051) No difference

In order to take into account the labeling errors of the dataset, the authors first trained
multiple 121-layer DenseNet models [36] on the training subset to predict the 14 radiological
signs. A selection of those models, based on their performance on the validation subset,
was then used to build an ensemble producing predictions by computing the mean over the
predictions of each individual network. This ensemble was subsequently used to relabel the
training and validation subsets in the following way: the label for each radiological sign was
defined as positive if the prediction of the ensemble or the original label was positive. Next,
they trained new networks on the relabeled training subset and selected the 10 best ones
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according to their average error on the relabeled validation subset to generate predictions on
the test subset.

While multiple variables, among which patient’s history, age, and environment, are usually
taken into account to establish a diagnosis, in the CheXNeXt study only the image was
used by the model and the radiologists. In a real context, with access to this information,
performances are expected to improve.

CheXNeXt also includes the ability to generate an overlay, through the use of class ac-
tivation mappings (grad-CAMs), highlighting parts of the image most indicative of each
predicted finding (Figure 2.3).

Figure 2.3: Example of a CheXNeXT prediction. Original patient’s chest radiograph image
(left) and 2 upper-lobe pulmonary masses with both right and left-sided central venous
catheter highlighted on the same image (right) [35].

2.3 Detecting Tuberculosis Using Radiological Signs

As we have seen, active PTB is typically detected on CXR images using binary labels (direct
CAD) [10, 29] although one study has used radiological signs along with clinical covariates in
the special case of TB detection in HIV-positive patients [30]. To the best of our knowledge,
this last study is the only existing one proposing to use radiological signs as a basis for
indirect disease detection. Other models for CXR computer-aided diagnosis (i.e. CheXNeXt)
currently focus on radiological findings identification [35].

While clinical covariates are important for final diagnosis, we hypothesize that a modular
indirect ML model efficiently detecting and localizing PTB-related radiological signs can be
equivalently efficient in detecting PTB, solely considering CXR images. We notice that such
a detector would be naturally interpretable and immediately relatable to healthcare workers,
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given the workflow similarities. In what follows, we conduct a series of experiments to validate
this hypothesis.

2.4 Reproducibility With The Bob Framework

As we have seen in our literature review, most PTB detection research is not reproducible
as no source code or precise algorithm description is usually made available. To solve this
problem, we implemented our experiments using the Bob framework methodology [39, 40].
Bob is a free signal-processing and machine learning toolbox designed to facilitate contin-
uous reproducibility of data science related projects. It is designed to be efficient and to
reduce development time. A typical workflow in machine learning and pattern recognition is
illustrated in Figure 2.4.

Figure 2.4: Typical workflow in machine learning and pattern recognition. Data protocols,
pre-processing steps, and all experiments and analysis are standardized in order to be repro-
ducible. From Bob framework [40].

Thanks to this toolkit and to the use of publicly available datasets, we have standardized
data treatments as well as our experiments so that they can be reproduced by anyone.

We also took special care in implementing both unit and integration tests. Unit tests
verify the functionality of particular sections of code, such as specific functions. While
integration tests allow us to check command lines as if a user was executing them. Examples
of this second class of tests are the execution of a training epoch of one of our models or
the prediction of PTB on a dataset. All tests cover more than 93% of the code and their
execution is automated with Gitlab’s continuous integration so that they are systematically
executed whenever the code is modified.
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In terms of documentation, we have taken care to describe the use of each command
available in our package, to list the main results as well as to describe precisely the process of
model optimization and the required resources. As we do not provide the datasets themselves,
links to their download locations are provided alongside their descriptions. The list of possible
commands and of all their parameters is automatically created, as is the API of the package.
When the code is modified on Gitlab, all the documentation is automatically generated to
keep it up to date.

The package allowing the execution of all the experiments described in this report is
available on the GitLab of the Idiap Research Institute2, along with the documentation.

2https://gitlab.idiap.ch/bob/bob.med.tb
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3. Direct Detection Baselines

To compare results of the proposed indirect detection algorithm, we introduce three public
datasets, our evaluation protocol and metrics, as well as two baselines for the direct detection
method, that in our understanding, are representative of the accessible state-of-the-art.

3.1 Active Pulmonary Tuberculosis Datasets

At the time of writing, four frontal CXR datasets containing postero-anterior (PA) images
and labels for active PTB classification as well as a larger additional dataset featuring a
subset of PTB cases are publicly available: MC, CH, Indian Collection ("IN"), NIAID TB
and PadChest [18, 19, 41, 42]. Given the limited amount time available for this study, our
work is focused on the first three datasets (MC, CH, and IN) for which a compact overview
is provided in Table 3.1.

Table 3.1: Overview of the three publicly available PTB datasets we will use in the present
study. We notice that all datasets contain information about the final diagnosis but no
radiological signs annotations.

TB cases Normal cases Resolution Annotations

Montgomery
County [18] 58 80 4020×4892 or

4892×4020

Final diagnosis,
Region segmen-
tation, and lung
masks

Shenzhen [18] 336 326
Varying dimensions

from 948 to
3001 pixels

Final diagno-
sis and Region
segmentation

Indian collection
(New Delhi) [19] 78 77 1024×1024

or more
Final diagnosis

Within these datasets, CXR images are divided into normal (i.e healthy lungs) and active
PTB cases depending on the final diagnosis (samples in Figure 3.1), which is based on the
results of standard skin and sputum tests for the MC and CH datasets (no information is
available for IN). Active PTB cases are also commonly referred to as "positive cases" in the
medical literature, whereas normal cases are known as "negative cases".
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Figure 3.1: Publicly available frontal CXR datasets typically pose the diagnosis of PTB as
a binary classification problem between healthy and PTB patients. Two samples from the
Montgomery County dataset [18] are displayed here (left: healthy patient, right: active PTB
case).

We briefly introduce each of these three datasets in the present section. Each of them
was first separated into three subsets (training/validation/testing), the details of which are
provided in this section, so that the best model hyperparameters could be easily identified
using a grid search. We then applied a stratified k-fold cross-validation, presented in detail
in Section 3.1.2, on each dataset to improve the reliability of our final results.

Montgomery County [18] The Montgomery County (MC) set is made available by the
U.S. National Library of Medicine and contains radiographs from Montgomery County’s
Tuberculosis screening program. It is composed of 138 frontal CXR images, including 58
TB cases. They are provided as 8-bits greyscale PNG files and resolution of images is either
4020×4892 or 4892×4020 pixels.

The group to which each CXR image belongs is indicated by the end of the file name:
1 for TB, 0 for healthy. Moreover, text files with gender and age of the patients and scan’s
diagnosis information are supplied. A typical reading has the following form:

Patient’s Gender: F
Patient’s Age: 031Y
cavitary nodular infiltrate in RUL; active TB

Some clinical readings include details about radiological findings and their position on
the lungs, but not all.

The average patient’s age of this dataset is 40.11 years old and CXR images come from 73
women, 61 men, and 1 unspecified. Each radiograph corresponds to a single patient, except
4 which come from 2 patients.
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Additionally, the Montgomery dataset contains manually segmented lung masks (sample
in Figure 3.2) usable for the evaluation of automatic segmentation methods.

Figure 3.2: Lung masks from the Montgomery County dataset [18].

To identify the best model hyperparameters, we have randomly separated the dataset in
a training, a validation, and a testing set as detailed in Table 3.2. The list of images included
in each subset can be found in the code.

Table 3.2: Overview of the number of samples in the different subsets randomly created from
the Montgomery dataset for the hyperparameters optimization.

Training n (%) Validation n (%) Testing n (%)

Number of Positive Cases 37 (42%) 9 (41%) 12 (43%)

Number of Negative Cases 51 (58%) 13 (59%) 16 (57%)

Total Cases 88 22 28

Shenzhen [18] The Shenzhen (CH) set is also made available by the U.S. National Library
of Medicine and contains radiographs collected at Shenzhen No.3 People’s Hospital (China).
Of the 662 frontal CXR images, 326 represent healthy patients and 336 are cases with mani-
festations of TB. Scans are provided as 8-bits RGB PNG files with varying resolution (width
and height from 948 to 3001 pixels).

The group (healthy or TB, samples in Figure 3.3) to which each CXR image belongs is
indicated by the end of the file name, similarly to the MC dataset. Patient’s information and
diagnosis are also available in a similar form.

The average patient’s age is 35.43 years old and CXR images come from 449 women and
213 men (one radiograph per patient).
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Figure 3.3: Two samples from the Shenzhen dataset [18] (left: healthy patient, right: active
PTB case).

To identify the best model hyperparameters, we have randomly separated the dataset in
a training, a validation, and a testing set as detailed in Table 3.3.

Table 3.3: Overview of the number of samples in the different subsets randomly created from
the Shenzhen dataset for the hyperparameters optimization.

Training n (%) Validation n (%) Testing n (%)

Number of Positive Cases 215 (51%) 54 (50%) 67 (50%)

Number of Negative Cases 207 (49%) 53 (50%) 66 (50%)

Total Cases 422 107 133

Indian collection [19] The Indian Collection (IN) set has been obtained from two different
CXR machines at the National Institute of Tuberculosis and Respiratory Diseases of New
Delhi (India). It contains 155 CXR images of which 78 are healthy patients and 77 are TB
cases. Radiographs are provided as 8-bits greyscale JPEG files of at least 1024×1024 pixels
resolution.

Like previously cited datasets, files are binary classified between normal (healthy patients)
and TB cases. The category to which an image belongs is indicated in the file name: "nx"
for normal, "px" for TB. Two samples are displayed in Figure 3.4.

Unfortunately, no additional patients metadata is provided with this set.
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Figure 3.4: Two samples from the Indian Collection dataset [19] (left: healthy patient, right:
active PTB case).

This dataset is already divided into training and testing subsets of 103 and 52 CXR
respectively. To identify the best model hyperparameters, we kept the provided train-test
split, but further separated 20% of the training subset to form a validation one as indicated
in Table 3.4.

Table 3.4: Overview of the number of samples in the different subsets of the Indian Collection
dataset for the hyperparameters optimization.

Training n (%) Validation n (%) Testing n (%)

Number of Positive Cases 42 (50%) 10 (50%) 26 (50%)

Number of Negative Cases 41 (50%) 10 (50%) 26 (50%)

Total Cases 83 20 52

3.1.1 Aggregated Datasets

To perform a cross-dataset analysis, we decided to train the models progressively on in-
creasingly more data to see the evolution of prediction performance on the test subsets of
the MC, CH, and IN datasets, as explained in Section 3.3. To do so, we created two new
datasets (MC-CH and MC-CH-IN) by aggregating the subsets of our three original datasets
as shown in Figure 3.5. The training subset of the MC-CH dataset is, for instance, created
by aggregating the training subsets of the MC and CH datasets together.
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Figure 3.5: The MC-CH and MC-CH-IN datasets were created by aggregating the subsets of
the MC, CH, and IN datasets together.

3.1.2 Cross-Validation

Cross-validation is a statistical method commonly used to assess the performance of ML
models in the presence of a limited amount of data [29].

For instance, the Montgomery dataset is composed of 138 images and its testing subset
of only 28. Since these 28 images were randomly selected, they may not be representative of
the whole dataset and this could induce a bias in the performance evaluation of our models.
Furthermore, the correct or incorrect PTB identification on a single additional image will
greatly influence the percentage of success of the model given the limited number of images
in the testing subset.

To address this problem, we applied stratified k-fold cross-validation with a k equal to
10. This means that from our initial dataset we created 10 new sets with a different train-
ing/validation/testing separation, as illustrated in Figure 3.6. Thus, each of the 10 testing
subsets contains one tenth of the total number of images and together they represent the
entire initial dataset. Instead of training a single model on our dataset, we trained 10 times
each model on the 10 training subsets separately and predicted the PTB on the 10 testing
subsets. In this way, we evaluated the performance of the model on all images in the dataset
while avoiding a selection bias.

It is important to note that the "stratified" adjective indicates that we systematically
used the same proportion of positive and negative cases as in the original dataset within each
of the subsets created for every 10 new sets during this procedure.

We thus used cross-validation for all PTB datasets when conducting the experiments in
this work. The list of samples included in each of the folds is available in the code.
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Figure 3.6: Illustration of a k-fold cross-validation from [43].

3.1.3 Data Augmentation

No specific image pre-processing is required to use radiographs as they are typically treated
identically to conventional images. However, to improve resilience with variable quality CXR
images and to prevent overfitting, data augmentation is frequently implemented [29, 35, 24,
22].

Data augmentation is a powerful technique used to generate artificial variations in exist-
ing datasets. The range of possible data augmentations includes transformation techniques
like rotation, cropping, random contrast degradation, addition of noise, and more advanced
techniques like elastic deformation (illustrated in Figure 3.7).

Figure 3.7: An original CXR image alongside the same image that has undergone elastic
deformation as part of a data augmentation process. The use of data augmentation techniques
improves the resilience of machine learning models.
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In our case, data augmentation techniques need to take into account probable variations
of CXR images. Indeed, radiographs are generated on a wide range of differently configured
machines and could look slightly different on each of them. We choose to rely on the elastic
deformation technique used in related work [29].

All images from PTB datasets will thus be pre-processed to remove black contours, re-
sized to a resolution of 512 x 512 pixels, and be subject to data augmentation via elastic
deformation with a probability of 80% before going through the ML models, like in [29], as
illustrated in Figure 3.8.

Figure 3.8: Illustration of the pre-processing pipeline applied to all images from PTB datasets.

An image standardisation step has also been implemented in order to facilitate models
optimisation:

xstand =
x−mean(x)

standard deviation(x)
(3.1)

The latter has been directly incorporated into all models so that the mean and standard
deviation are automatically calculated and stored as parameters when the training subset is
fed in.

3.2 Models

To establish a performance baseline for the direct detection method, we assessed the model
proposed by Pasa et al. [29] as well as a DenseNet-121 network [36] on the aforementioned
datasets and splits.

3.2.1 The Pasa Model

For the first baseline, we selected the model proposed by Pasa et al. [29] because it is the only
open source model which is both specifically dedicated to PTB detection and evaluated on
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public datasets. It is a small model (201’905 parameters) built to be trained on CXR images
annotated with binary labels and deployed in mobile settings. It is made of 5 convolutional-
blocks followed by a global average pooling and a fully-connected layer with two outputs.
Each convolutional-block is composed of two 3×3 convolutions (stride of 2) with ReLUs, one
1×1 parallel convolution and a 3×3 max-pooling operation (stride of 2). Additionally, batch
normalization is used after each convolution to improve training performance and prevent
overfitting. Following the original code, we implemented the model in our own framework.
While the original implementation has two output nodes, we decided to use only one for
having a code compatible with multi-class classifiers. As a consequence, we used a Binary
Cross-Entropy loss in place of the original Cross-Entropy loss.

Figure 3.9: Schematic representation of the network architecture proposed by Pasa et al.
[29].

We retained the hyperparameters for training the model proposed by Pasa et al. [29]:
batch size of 4, learning rate of 8× 10−5. The evolution of losses when the model is trained
on the MC-CH-IN dataset with these parameters is illustrated in Figure 3.10. We notice a
high variability in the validation loss which is probably due to variations of images coming
from three distinct datasets. Training has been conducted with a Binary Cross-Entropy loss
for 500 epochs via an Adam optimizer with the default parameters: β1 = 0.9, β2 = 0.999,
ε = 1×10−8. The checkpoints with the lowest validation losses have been kept for evaluation.

3.2.2 The Densenet-121 Model

For our second baseline, we chose a Densenet-121 model (7’216’513 parameters) [36]. Our
motivation to use this network stem from the fact that various studies on our review used
relatively dense models in such a task with promising results [23, 26]. Moreover, DenseNets
encompass various regularization mechanisms (skip connections and batch normalization)
that are important in image classification tasks.

A grid search was conducted on the aggregated MC-CH-IN dataset to determine the best
hyperparameters for training this model, as shown in Table 3.5: learning rate of 5 × 10−5,
batch size of 8, and the default Adam optimizer parameters. We used a maximum batch size
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Figure 3.10: Losses evolution of the Pasa model trained with hyperparameters proposed
by Pasa et al. [29] on the MC-CH-IN dataset. The vertical red line indicates the location of
the lowest validation loss.

of 8 as the available memory did not allow loading more images at once. The evolution of
losses when the model is trained on the MC-CH-IN dataset with the best hyperparameters
is illustrated in Figure 3.11 alongside another losses evolution with a smaller learning rate.
In both cases, the lowest validation loss is quickly reached and we notice the same high
variability as with the Pasa model. That a lower learning rate does not reduce the loss and
that we reach the lowest point so quickly indicates that the variability of the data in the three
datasets and their small quantity leads to difficulties for the model optimization. To generate
the final results, we trained the model from random initialization for 2000 epochs and the
checkpoints with the lowest validation Binary Cross-Entropy losses have been retained for
the evaluation.

Table 3.5: Results of the grid search conducted on the aggregated MC-CH-IN dataset to
identify the best hyperparameters for the Densenet-121 model. This table indicates the
minimum validation loss obtained for each combination of learning rate and batch size.

Learning rate Batch size: 4 Batch size: 8

1× 10−4 (training for 600 epochs) 0.3658 0.3676

5× 10−5 (training for 150 epochs) 0.3490 0.3168

1× 10−5 (training for 1000 epochs) 0.3791 0.3831
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Figure 3.11: Losses evolution of the DenseNet-121 model trained with a batch size of 8 and a
learning rate of a) 5e−5 (leading to the minimum validation loss) or b) 1e−5 on the MC-CH-IN
dataset. The vertical red line indicates the location of the lowest validation loss.

3.3 Evaluation Protocol

Each model has been trained in three different scenarios, using an increasing amount of
datasets in the training mix: MC only, MC+CH, and MC+CH+IN. This setup allowed the
evaluation of generalization as more data is gradually used to train model parameters. The
threshold used to classify a CXR image as PTB-positive or healthy in the test subset has
been systematically selected as being the threshold giving the best F1-score on the validation
subset of the dataset on which the model has been trained. Since we made use of cross-
validation, our thresholds correspond to the average of the 10 thresholds identified on the
validation subsets, as illustrated in Figure 3.12. Table 3.6 shows the respective thresholds
used.

To avoid biases towards any of the datasets, a data balancing mechanism has been im-
plemented to ensure feedback loss is not dominated by datasets with more samples. More
precisely, this mechanism consists of sampling with replacement an equal number of samples
in each of the datasets whatever their size. The same mechanism is applied to ensure that
an equal number of PTB and healthy cases is being fed to the models.

We subsequently evaluated each of the three models on the individual test subsets of MC,
CH, and IN. Since we used cross-validation, we employed each of the 10 models to predict the
presence of PTB on the corresponding 10 testing subsets of each dataset. We then aggregated
these predictions, for each dataset, to perform the evaluation.
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Figure 3.12: Calculation process of the optimal threshold to evaluate predictions on tests
subsets during cross-validation.

Table 3.6: Thresholds used to classify a CXR image as PTB-positive or healthy for our two
baselines. The threshold has been identified by maximizing the F1-score on the validation
subset of the dataset on which the model has been trained. The threshold indicated here is
an average of 10 thresholds as we made use of cross-validation.

Model Threshold

Pasa (train: MC) 0.5057

Pasa (train MC+CH) 0.4966

Pasa (train: MC+CH+IN) 0.4135

DenseNet-121 (train: MC) 0.5183

DenseNet-121 (train: MC+CH) 0.2555

DenseNet-121 (train: MC+CH+IN) 0.4037

3.3.1 Measures

To be able to compare our results to state-of-the-art research, we mainly use the Area Under
the Receiver Operating Characteristic Curve (AUROC or AUC) to evaluate the performance
of our models on the various test subsets. The AUC is therefore introduced in this section
alongside the score distribution, which allows for a better understanding of it. Additionally,
we present the F1 score which we used in the threshold optimization process, as well as the
precision and the recall measures.
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Score Distribution

For binary labels, the score distribution plots the probability distribution of positive (PTB
cases) and negative (healthy cases) classes with the model output on the x-axis and nor-
malized counts on the y-axis. The score distribution in Figure 3.13 illustrates a situation in
which the model does not perfectly separate positive (green curve) and negative (red curve)
cases. We can observe the presence of an overlap containing both false positives and false
negatives. Indeed, each model prediction can be classified into one of the four categories of
the confusion matrix (Figure 3.14): true positive, true negative, false positive, or false neg-
ative. Depending on the chosen threshold, more items will be classified as positive and the
number of both true and false positives will increase simultaneously. The score distribution
of a perfect model will contain two non-overlapping curves while that of a bad model will
display totally superimposed ones.

Figure 3.13: The score distribution of an imperfect model: the positive (green curve) and
negative (red curve) cases are not perfectly separated, introducing false positives and false
negatives. The green and red curves of a perfect model would not overlap.

Area Under the Curve

One of the most widely used measures is the Area Under the Receiver Operating Character-
istic Curve (AUROC or AUC) [10, 11, 29]. It measures the percentage of area underneath
the entire receiver operating characteristic curve (ROC). The latter is simply the summary
of the score distribution, plotting true positive rate against false positive rate. Therefore,
the AUC shows us the classification model performance across all classification thresholds
(Figure 3.15).

TPR (True Positive Rate) =
TP

TP + FN

FPR (False Positive Rate) =
FP

FP + TN
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Figure 3.14: Each model prediction can be classified into one of the four categories of the
confusion matrix: true positive (TP), true negative (TN), false positive (FP), or false negative
(FN). With a successful model, most of the predictions will be true positives or true negatives.
Multiple rates can be computed from those four categories.

Figure 3.15: Area under the ROC curve. The AUC of a model having good prediction
capabilities will be close to 1.0 (100% correct) while systematic misprediction will lead to 0.0
(100% wrong). A model predicting at random would give a diagonal (red dotted line).

Precision and Recall

Although it is not the most published evaluation diagram, the precision-recall curve is helpful
when classes are imbalanced. In this case, the ROC curve is not perfectly representative of
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the performances [44]. However, since the state-of-the-art of PTB detection uses AUC, we
choose not to use precision and recall as primary measures because our results would not be
comparable. Nevertheless, we define precision and recall here so that we can introduce the
F1 score below.

Precision tells us what proportion of the positive predictions were actually correct and is
defined as follows:

Precision =
TP

TP + FP

On the other hand, recall indicates what proportion of actual positive classes were iden-
tified correctly. It is the TPR from previous section.

Recall =
TP

TP + FN

The precision-recall curve is the plot of those two parameters for each threshold. Again,
improving one parameter degrades the other and vice versa.

F1 Score

To define a threshold classifying a sample as positive or negative according to the score
predicted by the models, we optimized the F1 score on the validation subset of the dataset
on which the model was trained.

The F1 score is defined as the harmonic mean of precision and recall. The maximum
value it can take is 1.0, indicating perfect precision and recall, and the minimum value 0.0
when either precision or recall is 0.

F1 score = 2 · precision · recall
precision+ recall

3.4 Results

Table 3.7 summarizes the cross-validated results of our baselines. With both models, a lack
of generalization is observable and can be confirmed by looking at the corresponding ROCs
presented in Figures 3.16 and 3.17. As a general rule, performances are consistent with
reported values in the literature only after the dataset being tested was also seen during
training. We also notice that the results of the DenseNet-121 model are slightly superior in
most cases, probably due to the higher number of parameters.
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It is important to keep in mind that even when the AUC is around 0.9, neither model
indicates which radiological signs are present on the CXR image.

The inability to separate TB cases from healthy ones depending on the dataset used
during training can also be seen thanks to the score distribution. We compare on Figure 3.18
the score distribution of the worst performing direct detection model (Pasa trained on MC,
tested on CH) with that of the best one (DenseNet-121 trained on MC-CH-IN, tested on
CH). We observe that the positive (TB) and negative (healthy) cases are well separated with
the second model, whereas this is not the case at all for the first one.

Table 3.7: Baseline benchmark results: models are trained on the train subsets in parenthesis
and tested on the three tests subsets using cross-validation. The test AUC is reported and
the best result in each column is highlighted.

AUC MC test CH test IN test

Pasa (train: MC) 0.890 0.576 0.642

Pasa (train MC+CH) 0.870 0.893 0.669

Pasa (train: MC+CH+IN) 0.881 0.898 0.848

DenseNet-121 (train: MC) 0.822 0.607 0.625

DenseNet-121 (train: MC+CH) 0.883 0.905 0.672

DenseNet-121 (train: MC+CH+IN) 0.860 0.917 0.850

Figure 3.16: ROCs of our implementation of the Pasa model. The cross-validated predictions
were generated by the model after training it on the (a) MC, (b) MC-CH, and (c) MC-CH-IN
datasets. Performances are consistent with reported values in the literature only after the
dataset being tested was also seen during training.
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Figure 3.17: Cross-validated ROCs from the DenseNet-121 model trained on the (a) MC, (b)
MC-CH, and (c) MC-CH-IN datasets. A similar lack of generalization is observable.

Figure 3.18: Score distribution of the worse and best direct detection models. We observe
an inability to separate TB cases from healthy ones for the left model.
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4. Indirect Detection

We will now introduce and evaluate the proposed indirect detection method illustrated in
Figure 4.1. A first model will classify radiological signs present on the CXR image which will
then be fed to a second model taking care of PTB prediction.

Figure 4.1: The proposed indirect detection method is composed of two models.

4.1 General Radiological Signs Dataset

To train the first of the two models, a dataset of CXR images annotated with radiological
findings is required. Several large datasets of this kind are publicly available: NIH CXR14,
CheXpert, MIMIC CXR [32, 45, 46, 47]. We decided to work with the NIH CXR14 dataset as
it is composed of good quality CXR images annotated with multiple radiological signs (illus-
trated in Figure 4.2), some of which are TB-related. The main characteristics of this dataset,
which will be used to train a classifier to detect the underlying radiological abnormalities of
TB, are summarized in Table 4.1.

Table 4.1: Summary of the NIH CXR14 dataset annotated with radiological findings. This
dataset does not contain information about patient’s final diagnosis.

Nb of images Resolution Findings

NIH CXR14 [32, 45] 112’120 1024×1024

Atelectasis, Consolidation, Infiltra-
tion, Pneumothorax, Edema, Emphy-
sema, Fibrosis, Effusion, Pneumo-
nia, Pleural thickening, Cardiomegaly,
Nodule, Mass and Hernia

31



Figure 4.2: Eight visual examples of common thorax diseases from the NIH CXR14
dataset [32].

The NIH CXR14 dataset has been extracted from the clinical PACS database at the
National Institutes of Health Clinical Center (USA) and represents 60% of all their radio-
graphs. It is composed of 112’120 images of 30’805 unique patients with labels for fourteen
common radiological signs including atelectasis, consolidation, infiltration, pneumothorax,
edema, emphysema, fibrosis, effusion, pneumonia, pleural thickening, cardiomegaly, nodule,
mass, and hernia. The greyscale CXRs are provided in PNG format with 8-bits depth in a
standardized resolution of 1024×1024 pixels.

Metadata are provided in a CSV file reporting the following information for each CXR:
image index, finding labels, follow-up number, patient id, patient age, patient gender, view
position, original image size, and original image pixel spacing.

On top of that, hand-labeled bounding-boxes in CSV format are supplied for approxi-
mately 1’000 images of the set. For each of these boxes, the visible radiological finding is
indicated.

The authors of the CheXNeXt study [35], following the identification of partially incorrect
original labels, have relabelled the training and validation subsets. We will therefore use
their version of the annotations and their split, detailed in Table 4.2. The authors have been
careful to put images related to the same patient in only one of the subsets. Regarding the
test subset, as it has not been relabelled, we will use annotations provided in the original
dataset.

The average patient’s age is 46.6 years old with radiographs from 63’340 men and 48’780
women.

The fourteen radiological signs annotated on the NIH CXR14 dataset can be separated
into three categories according to their link with PTB. Some indicate a probable presence
of the disease while others do not, as summarized in Table 4.3. In the context of active
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Table 4.2: Overview of the number of samples in the different subsets of the NIH CXR14
dataset with the split proposed by the CheXNeXt study authors [35].

Training n (%) Validation n (%) Testing n (%)

Number of Cases 98’637 (90%) 6’350 (6%) 4’054 (4%)

PTB rule-out, signs indicating a probable presence of the disease imply that TB preventive
therapy should not be started. When the signs are possibly related to PTB, a medical doctor
should interpret the radiograph to take a decision. And when radiological findings are not
TB-related, the TB preventive therapy could start.

Table 4.3: Summary of the relationship between the different radiological signs annotated
on the NIH CXR14 dataset and PTB. This table has been produced by a team of medical
experts on PTB.

Radiological sign Link with PTB

Pleural Effusion Likely PTB
Infiltration Likely PTB
Pneumonia Likely PTB
Mass Could be PTB
Nodule Could be PTB
Atelectasis Could be PTB
Fibrosis Could be PTB
Consolidation Could be PTB
Cardiomegaly Unlikely PTB
Emphysema Unlikely PTB
Hernia Unlikely PTB
Pneumothorax Unlikely PTB
Pleural thickening Unlikely PTB
Edema Unlikely PTB

4.2 Models

4.2.1 Radiological Signs Classification Model

Inspired by the CheXNeXt study [35], we decided to use a DenseNet-121 model for radiolog-
ical sign classification. On this model, we replaced the final layer with a new fully-connected
one, producing a 14-dimensional output (one dimension per radiological finding). But this
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time, rather than starting from a random initialization of the weights, we selected the model
provided by PyTorch, pre-trained on the ImageNet dataset [48]. While the original work
from Rajpurkar et al. [35] uses model ensembles to maximize performance, we satisfy our-
selves of the simplification and use a single model. Although we did not compare them with
an ensemble of 10 models, we consider the performance of a single model to be sufficient for
the purpose of our study. Indeed, the tenfold increase in computational cost required by the
ensemble would not alter our conclusion.

Like in [35], we use a Multi-Class Cross-Entropy loss, a batch size of 8 samples, a learning
rate of 1 × 10−4, and the default Adam optimizer parameters. We train the model for
10 epochs on the NIH CXR14 [45] dataset, as in [35], and the checkpoint with the lowest
validation loss, illustrated in Figure 4.3, is retained for our pipeline.

Figure 4.3: Losses evolution of the DenseNet model trained with hyperparameters from Ra-
jpurkar et al. [35] on the NIH CXR14 dataset [45]. The vertical red line indicates the location
of the lowest validation loss.

Table 4.4 presents the AUC for each radiological sign classified by our model alongside the
corresponding one from the CheXNeXt study [35]. We notice that our results are higher for
three radiological signs and lower for the eleven others. This difference is primarily explained
by the fact that we used the full original test subset of the NIH CXR14 dataset [32] while
CheXNeXt used a selection of 420 images newly annotated by three radiologists. Hence, our
test subset may contain labelling errors as this was the case in the training and validation
subsets. The second reason is the use of an ensemble of 10 models by CheXNeXt when
we use only one model on our side. Note that our implementation is strictly similar to the
CheXNeXt one as consistent predictions are generated when we input the same radiographs
to our model configured with identical parameters.
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Table 4.4: AUC results from our implementation of a DenseNet-121 model on the original
test subset of the NIH CXR14 dataset [32] compared with those from CheXNeXt [35]. We
observe that CheXNeXt achieves better results for 11 radiological signs.

Radiological sign Our model CheXNeXt (95% CI)

Atelectasis 0.667 0.862 (0.825 to 0.895)

Cardiomegaly 0.855 0.831 (0.790 to 0.870)

Consolidation 0.680 0.893 (0.859 to 0.924)

Edema 0.819 0.924 (0.886 to 0.955)

Effusion 0.737 0.901 (0.868 to 0.930)

Emphysema 0.858 0.704 (0.567 to 0.833)

Fibrosis 0.755 0.806 (0.719 to 0.884)

Hernia 0.854 0.851 (0.785 to 0.909)

Infiltration 0.636 0.721 (0.651 to 0.786)

Mass 0.782 0.909 (0.864 to 0.948)

Nodule 0.664 0.894 (0.853 to 0.930)

Pleural thickening 0.759 0.798 (0.744 to 0.849)

Pneumonia 0.693 0.851 (0.781 to 0.911)

Pneumothorax 0.780 0.944 (0.915 to 0.969)

4.2.2 Pulmonary Tuberculosis Prediction Model

To predict PTB from the fourteen radiological signs classified by the DenseNet-121 model
described above, we tested two different models: a simple logistic regression classifier and a
shallow network with a single layer of hidden neurons. Since we obtained superior perfor-
mance with the former, we will focus on it here.

The classifier has been trained via backpropagation like all other DL models so far and
has been subject to hyperparameter tuning: batch size of 4, learning rate of 10−2, and the
default Adam optimizer parameters. Although we could have used a closed-form solution such
as L-BFGS (a quasi-Newton method approximating the Broyden-Fletcher-Goldfarb-Shanno
algorithm) instead of Adam, we chose to use the latter because it allowed us to standardize
the training code for all models. The details of the performed grid search are presented in
Table 4.5 and the evolution of the losses with the optimal hyperparameters in Figure 4.4. We
observe a much lower validation loss variability here, probably related to the small amount of
information (14 scalars) that the model receives as input, than with direct detection models.
However, we once again reach the lowest validation loss very quickly because our sample
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number is still limited. We trained the linear models for 100 epochs and the checkpoints
with the lowest validation Binary Cross-Entropy losses have been retained for the evaluation.

Table 4.5: Results of the grid search conducted on the aggregated MC-CH-IN dataset to
identify the best hyperparameters for the logistic regression classifier. This table indicates
the minimum validation loss obtained for each combination of learning rate and batch size.

Learning rate Batch size: 4 Batch size: 8 Batch size: 16

1× 10−1 (training for 50 epochs) 0.3932 0.4013 0.4229

1× 10−2 (training for 100 epochs) 0.3835 0.3998 0.4126

1× 10−3 (training for 200 epochs) 0.3875 0.4075 0.4188

1× 10−4 (training for 800 epochs) 0.3942 0.4059 0.4123

Figure 4.4: Losses evolution of the logistic regression classifier trained with optimized hyper-
parameters on the radiological signs annotations generated for the MC-CH-IN dataset. The
vertical red line indicates the location of the lowest validation loss.

4.3 Prediction Procedure

Once the radiological sign detection model was trained, we used it to predict the presence
of the fourteen signs on the three PTB-specific datasets: MC, CH, and IN. We subsequently
trained the logistic regression classifier on these three datasets following the same process as
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for direct detection, detailed in Section 3.3, but feeding the radiological signs to the model
rather than CXR images. Again, we made use of cross-validation by using the same 10
folds of each dataset as before. Similarly, the thresholds used for the indirect prediction
correspond to the average of the 10 thresholds identified on the validation subsets and are
shown in Table 4.6.

Table 4.6: Thresholds used to classify a CXR image as PTB-positive or healthy for our
indirect model. The threshold is identified by maximizing the F1-score on the validation
subset of the dataset on which the model has been trained. The threshold indicated here is
an average of 10 thresholds as we made use of cross-validation.

Model Threshold

Indirect (train: MC) 0.5340

Indirect (train MC+CH) 0.2838

Indirect (train: MC+CH+IN) 0.2371

4.4 Results

Table 4.7 presents AUCs of our indirect detection method subject to the same evaluation
protocol as in Table 3.7. We reported the best results from that table here, for ease of com-
parison. We first observe that, contrary to baseline results for direct detection, cross-database
generalization in this scenario becomes consistently independent of the PTB training sub-
set. This conclusion is corroborated by the similarity of the three corresponding ROC plots
presented in Figure 4.5. Another visual illustration of this aspect is provided in Figure 4.6
with a comparison of score distributions when predicting on the IN dataset using the Pasa
model and the indirect model, both trained on MC. While neither model has seen the CH
dataset during training, only the indirect model is able to separate PTB cases (positives)
from healthy cases (negatives). Secondly, we observe that the test AUC is now more consis-
tent with state-of-the-art values reported in other less reproducible work (top 3 AUC from
the systematic review [10]: 0.99, 0.98, 0.96). We further hypothesize that if a dataset with a
larger number of PTB-specific signs would be available, classification performance could be
boosted to optimal levels.

To test this hypothesis, we return to a direct classification scheme using the DenseNet-
121 model. In place of starting with random initialization of the weights, as we did in our
first attempt, we use the model pre-trained on ImageNet provided by PyTorch. We pre-train
the model a second time on NIH CXR14, remove its multi-class output and adapt a new
output layer (random initialization) for binary classification. We train the resulting model
for a further 300 epochs on the TB datasets, using hyperparameters identified using a grid
search: learning rate of 10−4 and batch size of 8. The details of the performed grid search are
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Table 4.7: Indirect detection via a Logistic Regressor from Radiological Signs shows better
generalization capabilities over unseen data. The test AUC is reported.

AUC MC test CH test IN test

Direct (best overall) 0.890 0.917 0.850

Indirect (train: MC) 0.966 0.867 0.926

Indirect (train: MC+CH) 0.961 0.901 0.928

Indirect (train: MC+CH+IN) 0.951 0.895 0.920

Figure 4.5: ROCs of our indirect detection model. These cross-validated curves were gen-
erated after training the model on the (a) MC, (b) MC-CH, and (c) MC-CH-IN datasets.
Cross-database generalization is consistently independent of the PTB training subset.

Figure 4.6: Comparison of score distributions when predicting on the IN test subset by the
Pasa model and the Indirect model both trained on MC. We observe that only the indirect
model is able to separate PTB cases (positives) from healthy cases (negatives).

presented in Table 4.8 and the thresholds used in Table 4.9. The results of the final models
are summarized in Table 4.10.
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Table 4.8: Results of the grid search conducted on the aggregated MC-CH-IN dataset to
identify the best hyperparameters for the DenseNet-121 model pre-trained on ImageNet and
NIH CXR14. This table indicates the minimum validation loss obtained for each combination
of learning rate and batch size.

Learning rate Batch size: 4 Batch size: 8 Batch size: 16

1× 10−4 (training for 300 epochs) 0.2053 0.1511 0.2372

1× 10−5 (training for 500 epochs) 0.1832 0.1931 0.2326

1× 10−6 (training for 600 epochs) 0.2086 0.2139 0.2138

Table 4.9: Thresholds used to classify a CXR image as PTB-positive or healthy for the
DenseNet-121 network pre-trained on ImageNet and NIH CXR14. The threshold is identified
by maximizing the F1-score on the validation subset of the dataset on which the model has
been trained. The threshold indicated here is an average of 10 thresholds as we made use of
cross-validation.

Model Threshold

DenseNet-121@CXR14 (train: MC) 0.4126

DenseNet-121@CXR14 (train MC+CH) 0.3711

DenseNet-121@CXR14 (train: MC+CH+IN) 0.4255

Table 4.10: A Densenet-121 model successively pre-trained on ImageNet and NIH CXR14
may provide insight into possible performance gains using datasets annotated with more
TB-specific radiological signs. The test AUC is reported.

AUC MC test CH test IN test

Best overall 0.966 0.917 0.928

DenseNet-121@CXR14 (train: MC) 0.966 0.917 0.901

DenseNet-121@CXR14 (train: MC+CH) 0.984 0.979 0.869

DenseNet-121@CXR14 (train: MC+CH+IN) 0.965 0.978 0.931

We can see that the results are even better, at the cost of a loss of interpretability.
Indeed, radiological signs cannot be identified using direct detection. However, we notice
that the corresponding ROCs, presented in Figure 4.7, fluctuate more than with indirect
detection when the model is trained on different datasets. Thus, it appears that it is the

39



use of radiological signs as an intermediate basis that allows us to obtain more stable results
when the training subset varies.

Figure 4.7: The corresponding ROCs of the DenseNet-121 model. We notice less stable
curves than with the indirect detection method.

Since the annotations of the NIH CXR14 dataset are not specifically adapted to PTB
detection and we still get state-of-the-art results, we believe that PTB-specific annotations
would allow our indirect detection model to achieve similar performance to that presented
here while having a more interpretable diagnosis and more stable predictions regardless of
the PTB training subset. The best of both worlds in other words.

4.5 Radiological Signs Importance Analysis

To assess the relative impact, in PTB prediction, of each of the fourteen radiological signs
used within our indirect detection method, we used two different approaches, presented in
this section.

4.5.1 Random Permutation

First, we randomly permuted the values of one of the radiological signs within the subsets of
a selected dataset and computed the mean squared error over all samples between the new
outputs and the original ones:

Impacti =
1

N

N∑
j=1

[output(~xj)− output(~xj | xj,i = xk,i)]
2 (4.1)

with k 6= j and such that we use each value only once.

This manipulation, proposed in [49, 50], has been performed for each radiological sign, one
after the other, and allowed us to measure their relative impact on the output. If our model
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is particularly sensitive to one variable, the error that its random permutation will generate
will be large. Conversely, permuting a variable that is of little use for PTB prediction will
generate little or no error. The model used for this process is the Logistic Regression model
already trained on the first non-modified fold of the aggregated MC-CH-IN dataset for 100
epochs. We present in Figure 4.8 a plot of the mean squared error generated with the multiple
subsets of the MC, CH, and IN datasets.

Figure 4.8: Relative importance of individual radiological signs for PTB prediction with
our logistic regression model, calculated using random permutations. The color of the bars
indicates the relationship between the radiological sign and PTB (green: likely TB, orange:
could be TB, red: unlikely TB).
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We find that the importance of each radiological sign in isolation is very low when predict-
ing PTB. Indeed, the highest value is below 0.06 in the case of the nodule on the MC dataset.
Furthermore, although 4 radiological findings (mass, nodule, pleural thickening, and fibrosis)
are represented on all the plots, they are present in varying proportions and are accompanied
by different other signs depending on the dataset. These results indicate that more than one
sign in particular, it is an ensemble of radiological signs that would allow the detection of
PTB. We also note that signs that are relatively more important during diagnosis are not
necessarily signs classified as "likely TB" by physicians. Further analysis in collaboration
with healthcare specialists is required to better understand this element.

4.5.2 Radiological Sign Dropping

Whereas we did not re-train the model with previous method, a more direct but more com-
putationally costly technique for measuring the importance of each sign involves removing
the data for that sign from the dataset for both model training and prediction. Given the un-
availability of information about the discarded sign in this process, biases potentially present
in the first technique are eliminated, as explained by Parr et al. [50].

This time we started by training and evaluating our logistic regression model on the
original MC-CH-IN aggregated dataset. Then we repeated this training and evaluation by
systematically discarding the information of one radiological sign from the dataset at a time.
The result, shown in Figure 4.9, is a ROC curve and its corresponding AUC for each version
of the dataset from which one of the signs has been dropped. We can consequently see to
what extent each radiological finding influences the predictive performance of the model. We
expect a much lower AUC than the original (0.87) when a sign of major importance in PTB
prediction is no longer available. We find, however, that the decrease in AUC is at most 2%
in the case of the nodule (AUC of 0.85), which was one of the most influential signs with the
random permutation method. These results confirm the fact that no sign taken in isolation
has a strong impact on the predictive capacity of the model. Indeed, no significant decrease
in performance can be observed when a radiological sign is discarded.

Further analysis of the interactions between the different signs is thus required to draw
more accurate conclusions about their role in PTB prediction.

4.6 Radiological Signs Visualisation

Although we do not possess radiological signs annotations for PTB datasets, we have imple-
mented a grad-CAM prediction functionality to produce a visual overview of the predictions.
Among the various possible implementations of grad-CAMs [51, 52, 53, 54], we chose to use
the method proposed by Ramprasaath R. Selvaraju et al. in [51]. This method consists
of using the gradient of a prediction (a radiological sign in the present case) to produce a
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Figure 4.9: Predictive capabilities of our logistic regression model after removing the data
for each radiological sign (d0-d13 correspond, in this order, to cardiomegaly, emphysema,
effusion, hernia, infiltration, mass, nodule, atelectasis, pneumothorax, pleural thickening,
pneumonia, fibrosis, edema, and consolidation).

coarse localization map highlighting the important regions of the chest radiograph for this
prediction. To discard less confident predictions, we decided to calculate the grad-CAM only
for signs with a score higher than 0.5. We illustrate this work with the four predictions shown
in Figure 4.10.

We find that most areas are located within the chest cavity, which is a good sign, but
that there are some misses, such as the case of fibrosis prediction using a presumably useless
part of the radiograph in the top-left of the second image.

If in the future these PTB datasets are annotated by radiologists, we could further evaluate
the precision of these grad-CAMs.
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Figure 4.10: Sample grad-CAMs generated on the PTB datasets (no ground-truth available)
using the method proposed by Ramprasaath R. Selvaraju et al. in [51].
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5. Conclusion

TB is still one of the leading causes of death from a single infectious agent in the world,
second only to COVID-19. To mitigate this, the United Nations propose to treat active TB
and LTBI simultaneously. In the case of LTBI, an important step in triage, prior to treatment,
involves ruling out patients who have developed an active TB. CXR imaging is commonly
part of this process as it is a widely available form of radiography, and is considered the most
accurate screening tool for detecting PTB in the general population among standard testing
tools protocoled by the WHO. Moreover, this technology allows for the identification of
asymptomatic patients. Unfortunately, there is often a lack of trained radiologists to analyze
images at the location of the examination. In this context, CAD software may constitute a
fundamental cog of the solution. More recently, the WHO confirmed that they can be used
in place of human readers for the interpretation of digital CXRs, for screening and triage.

A direct detection method is generally preferred for such systems in state-of-the-art re-
search. With this method, a radiograph is fed into a model producing a score reflecting
the presence or absence of the disease. Although results from studies using this method are
remarkable (top 3 AUC of [10]: 0.99, 0.98, 0.96), they are not interpretable by healthcare pro-
fessionals who commonly use radiological signs as a basis for their work. Most of these studies
are also not reproducible as code or datasets are usually kept private. A second category of
studies has successfully investigated the classification of radiological signs using CXRs. We
further hypothesized that an indirect detection of PTB, based on the radiological findings
identified on a radiograph, could offer naturally interpretable results, better cross-database
generalization, and provide state-of-the-art results. The suggested indirect detection method
is illustrated in Figure 5.1.

Figure 5.1: The indirect detection method is composed of two models. The first one takes
CXR images as input and outputs radiological signs while the second one predicts PTB from
these signs.

The baseline from Chapter 3, composed of a model proposed in the only reproducible
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study by Pasa et al. [29] and of a DenseNet-121, provided a base for comparison and allowed us
to confirm the generalization difficulties of these models. Indeed, performances are consistent
with reported values in the literature only after the dataset being tested was also seen during
training. We visually observed this difficulty on ROCs of the Pasa model, trained on different
datasets, presented alongside their corresponding AUCs in Figure 5.2. We also report in
Table 5.1 the best results that the direct detection models allowed us to obtain for each test
subset.

Figure 5.2: ROCs of our implementation of the Pasa model. The cross-validated predictions
were generated by the model after training it on the (a) MC, (b) MC-CH, and (c) MC-CH-IN
datasets. Performances are consistent with reported values in the literature only after the
dataset being tested was also seen during training.

Table 5.1: Best results generated by the direct detection models in our baseline. The test
AUC is reported.

AUC MC test CH test IN test

Direct (best overall) 0.890 0.917 0.850

While direct detection is generally preferred in the literature, our study of the indirect
detection method presented in Chapter 4 suggests that radiological signs extracted from
CXR images constitute a sufficient canvas, close to clinical requirements, to build more
interpretable and generalizable CAD for active PTB detection. We obtained state-of-the-
art results, presented in Table 5.2, by simply plugging a linear classifier into a DL-based
framework detecting radiological signs on CXR images. Our indirect detection algorithm
provides better generalization as can be seen in Figure 5.3, more interpretable diagnosis,
and state-of-the-art performance while using a training set containing only 8 TB-related
radiological signs. These results confirm that our hypothesis should not be rejected at this
point and that further research should be carried out in this direction.

We further hypothesized that if a dataset with a larger number of PTB-specific signs
would be available, classification performance could be boosted to optimal levels. To test
this hypothesis, we returned to a direct classification scheme and fine-tuned a DenseNet-
121 model pre-trained on thousands of CXR images. By doing so, we obtained even better
results, shown in Table 5.3, in exchange for interpretability. However, we notice that the
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Table 5.2: Best results generated by the proposed indirect detection method. The test AUC
is reported.

AUC MC test CH test IN test

Indirect (best overall) 0.966 0.901 0.928

Figure 5.3: ROCs of our indirect detection model. These cross-validated curves were gen-
erated after training the model on the (a) MC, (b) MC-CH, and (c) MC-CH-IN datasets.
Cross-database generalization is consistently independent of the PTB training subset.

corresponding ROCs, presented in Figure 5.4, fluctuate more than with the indirect detection
method. Thus, it appears that it is the use of radiological signs as an intermediate basis that
allows us to obtain more stable results in presence of different training subsets. Nevertheless,
these results offer a glimpse of the possible performance gains that an adapted PTB dataset
with more specific radiological signs annotations could bring.

Table 5.3: A Densenet-121 model successively pre-trained on ImageNet and NIH CXR14
may provide insight into possible performance gains using datasets annotated with more
TB-specific radiological signs. The test AUC is reported.

AUC MC test CH test IN test

Direct pre-trained (best overall) 0.984 0.979 0.931

Finally, we measured the impact of individual radiological signs in predicting the disease.
Our results suggest that more than one radiological sign in isolation, it is the combination
of several signs that allows our model to predict PTB. This is a conclusion that is consistent
with the methodology applied by healthcare workers today.

While state-of-the-art results could be extracted in the proposed indirect workflow, it is
adequate to highlight the limitations of this work. First and foremost, public PTB datasets
are relatively small in size and may not be representative of realistic deployment conditions.
A study considering confidence intervals may throw some light on this matter. Secondly,
the use of known markers for a disease may limit the discovery of new ones. Thirdly, as
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Figure 5.4: ROCs of the pre-trained DenseNet-121 model. We notice less stable curves than
with the indirect detection method.

the results of the indirect detection methodology are promising, it would make sense to
annotate PTB datasets with radiological signs information to check the consistency of the
numerical and visual predictions of our models. Considering all of the above, we believe that
a combination of both direct and indirect techniques into a single CAD solution could offer
both interpretability and the required robustness in realistic deployments. On the technical
side, possible improvements are the implementation of a scheduler reducing the learning rate
progressively, the evaluation of different resolution methods for the logistic regressor or the
calculation and usage of more precise thresholds for grad-CAMs generation.

Finally, we point out that the proposed workflow could be applicable to other diseases
and medical imaging techniques, but this remains untested at the moment. To bridge this
gap, we make our findings fully reproducible, distributing code and documentation1 so these
limitations may be eventually addressed.

1https://gitlab.idiap.ch/bob/bob.med.tb
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A. Results of the Experiments

Trained on
/tested on Model F1

(95% CI)
Accuracy
(95% CI)

Sensitivity
(95% CI)

Specificity
(95% CI) AUROC

MC
training
subset

/
MC

testing
subset

Pasa 0.79 (0.71,
0.85)

0.83 (0.75,
0.88)

0.78 (0.65,
0.86)

0.86 (0.77,
0.92)

0.890

Densenet121 0.74 (0.65,
0.81)

0.78 (0.71,
0.84)

0.74 (0.62,
0.84)

0.81 (0.71,
0.88)

0.822

Logistic Re-
gression

0.91 (0.85,
0.95)

0.93 (0.87,
0.96)

0.90 (0.79,
0.95)

0.95 (0.88,
0.98)

0.966

Pre-trained
Densenet121

0.94 (0.88,
0.97)

0.95 (0.90,
0.97)

0.90 (0.79,
0.95)

0.99 (0.93,
1.00)

0.966

Trained on
/tested on Model F1

(95% CI)
Accuracy
(95% CI)

Sensitivity
(95% CI)

Specificity
(95% CI) AUROC

MC
training
subset

/
CH

testing
subset

Pasa 0.67 (0.64,
0.70)

0.51 (0.47,
0.55)

0.99 (0.98,
1.00)

0.01 (0.00,
0.03)

0.576

Densenet121 0.67 (0.64,
0.70)

0.51 (0.47,
0.55)

0.99 (0.97,
1.00)

0.01 (0.00,
0.03)

0.607

Logistic Re-
gression

0.71 (0.67,
0.75)

0.77 (0.74,
0.80)

0.56 (0.51,
0.61)

0.99 (0.97,
1.00)

0.867

Pre-trained
Densenet121

0.82 (0.79,
0.85)

0.80 (0.77,
0.83)

0.90 (0.87,
0.93)

0.70 (0.64,
0.74)

0.917

49



Trained on
/tested on Model F1

(95% CI)
Accuracy
(95% CI)

Sensitivity
(95% CI)

Specificity
(95% CI) AUROC

MC
training
subset

/
IN

testing
subset

Pasa 0.68 (0.61,
0.73)

0.52 (0.44,
0.59)

1.00 (0.95,
1.00)

0.03 (0.01,
0.09)

0.642

Densenet121 0.67 (0.61,
0.73)

0.50 (0.43,
0.58)

1.00 (0.95,
1.00)

0.00 (0.00,
0.05)

0.625

Logistic Re-
gression

0.90 (0.84,
0.93)

0.90 (0.84,
0.94)

0.88 (0.79,
0.94)

0.91 (0.82,
0.95)

0.926

Pre-trained
Densenet121

0.73 (0.67,
0.78)

0.63 (0.55,
0.70)

1.00 (0.95,
1.00)

0.25 (0.16,
0.35)

0.901

Trained on
/tested on Model F1

(95% CI)
Accuracy
(95% CI)

Sensitivity
(95% CI)

Specificity
(95% CI) AUROC

MC-CH
training
subset

/
MC

testing
subset

Pasa 0.72 (0.63,
0.80)

0.78 (0.71,
0.84)

0.67 (0.54,
0.78)

0.86 (0.77,
0.92)

0.870

Densenet121 0.77 (0.68,
0.83)

0.80 (0.72,
0.86)

0.79 (0.67,
0.88)

0.80 (0.70,
0.87)

0.883

Logistic Re-
gression

0.88 (0.81,
0.92)

0.88 (0.82,
0.93)

0.97 (0.88,
0.99)

0.82 (0.73,
0.89)

0.961

Pre-trained
Densenet121

0.94 (0.88,
0.97)

0.95 (0.90,
0.97)

0.93 (0.84,
0.97)

0.96 (0.90,
0.99)

0.984

Trained on
/tested on Model F1

(95% CI)
Accuracy
(95% CI)

Sensitivity
(95% CI)

Specificity
(95% CI) AUROC

MC-CH
training
subset

/
CH

testing
subset

Pasa 0.83 (0.80,
0.86)

0.83 (0.80,
0.85)

0.83 (0.79,
0.87)

0.82 (0.78,
0.86)

0.893

Densenet121 0.83 (0.80,
0.85)

0.81 (0.78,
0.84)

0.88 (0.84,
0.91)

0.75 (0.70,
0.79)

0.905

Logistic Re-
gression

0.84 (0.81,
0.87)

0.85 (0.82,
0.88)

0.79 (0.75,
0.83)

0.91 (0.88,
0.94)

0.901

Pre-trained
Densenet121

0.94 (0.92,
0.95)

0.94 (0.92,
0.95)

0.94 (0.91,
0.96)

0.94 (0.90,
0.96)

0.979
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Trained on
/tested on Model F1

(95% CI)
Accuracy
(95% CI)

Sensitivity
(95% CI)

Specificity
(95% CI) AUROC

MC-CH
training
subset

/
IN

testing
subset

Pasa 0.70 (0.63,
0.75)

0.59 (0.51,
0.66)

0.94 (0.86,
0.97)

0.23 (0.15,
0.34)

0.669

Densenet121 0.68 (0.61,
0.74)

0.57 (0.49,
0.64)

0.90 (0.81,
0.95)

0.23 (0.15,
0.34)

0.672

Logistic Re-
gression

0.86 (0.80,
0.91)

0.85 (0.78,
0.89)

0.97 (0.91,
0.99)

0.71 (0.60,
0.80)

0.928

Pre-trained
Densenet121

0.80 (0.74,
0.85)

0.75 (0.68,
0.82)

0.97 (0.91,
0.99)

0.53 (0.42,
0.64)

0.869

Trained on
/tested on Model F1

(95% CI)
Accuracy
(95% CI)

Sensitivity
(95% CI)

Specificity
(95% CI) AUROC

MC-CH-IN
training
subset

/
MC

testing
subset

Pasa 0.80 (0.71,
0.86)

0.83 (0.75,
0.88)

0.81 (0.69,
0.89)

0.84 (0.74,
0.90)

0.881

Densenet121 0.72 (0.64,
0.80)

0.77 (0.69,
0.83)

0.72 (0.60,
0.82)

0.80 (0.70,
0.87)

0.860

Logistic Re-
gression

0.87 (0.80,
0.91)

0.88 (0.81,
0.92)

0.95 (0.86,
0.98)

0.82 (0.73,
0.89)

0.951

Pre-trained
Densenet121

0.92 (0.85,
0.96)

0.93 (0.88,
0.96)

0.88 (0.77,
0.94)

0.97 (0.91,
0.99)

0.965

Trained on
/tested on Model F1

(95% CI)
Accuracy
(95% CI)

Sensitivity
(95% CI)

Specificity
(95% CI) AUROC

MC-CH-IN
training
subset

/
CH

testing
subset

Pasa 0.83 (0.80,
0.86)

0.82 (0.79,
0.85)

0.87 (0.83,
0.90)

0.78 (0.73,
0.82)

0.898

Densenet121 0.86 (0.83,
0.88)

0.85 (0.82,
0.88)

0.87 (0.83,
0.90)

0.83 (0.79,
0.87)

0.917

Logistic Re-
gression

0.85 (0.82,
0.87)

0.85 (0.82,
0.88)

0.80 (0.75,
0.84)

0.91 (0.88,
0.94)

0.895

Pre-trained
Densenet121

0.94 (0.92,
0.95)

0.94 (0.92,
0.95)

0.93 (0.90,
0.95)

0.95 (0.92,
0.97)

0.978
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Trained on
/tested on Model F1

(95% CI)
Accuracy
(95% CI)

Sensitivity
(95% CI)

Specificity
(95% CI) AUROC

MC-CH-IN
training
subset

/
IN

testing
subset

Pasa 0.79 (0.72,
0.84)

0.77 (0.70,
0.83)

0.86 (0.76,
0.92)

0.68 (0.56,
0.77)

0.848

Densenet121 0.81 (0.74,
0.86)

0.80 (0.73,
0.86)

0.83 (0.74,
0.90)

0.77 (0.66,
0.85)

0.850

Logistic Re-
gression

0.86 (0.80,
0.91)

0.85 (0.78,
0.89)

0.97 (0.91,
0.99)

0.71 (0.60,
0.80)

0.920

Pre-trained
Densenet121

0.90 (0.85,
0.94)

0.90 (0.84,
0.94)

0.95 (0.88,
0.98)

0.84 (0.75,
0.91)

0.931
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