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Abstract

We present Claim-Dissector: a novel latent
variable model for fact-checking and fact-
analysis, which given a claim and a set of re-
trieved provenances allows learning jointly: (i)
what are the relevant provenances to this claim
(ii) what is the veracity of this claim. We pro-
pose to disentangle the per-provenance rele-
vance probability and its contribution to the fi-
nal veracity probability in an interpretable way
— the final veracity probability is proportional
to a linear ensemble of per-provenance rele-
vance probabilities. This way, it can be clearly
identified the relevance of which sources con-
tributes to what extent towards the final proba-
bility. We show that our system achieves state-
of-the-art results on FEVER dataset compara-
ble to two-stage systems typically used in tra-
ditional fact-checking pipelines, while it often
uses significantly less parameters and compu-
tation.
Our analysis shows that proposed approach
further allows to learn not just which prove-
nances are relevant, but also which prove-
nances lead to supporting and which toward
denying the claim, without direct supervision.
This not only adds interpretability, but also
allows to detect claims with conflicting evi-
dence automatically. Furthermore, we study
whether our model can learn fine-grained rel-
evance cues while using coarse-grained super-
vision. We show that our model can achieve
competitive sentence-recall while using only
paragraph-level relevance supervision. Finally,
traversing towards the finest granularity of rel-
evance, we show that our framework is capa-
ble of identifying relevance at the token-level.
To do this, we present a new benchmark focus-
ing on token-level interpretability — humans
annotate tokens in relevant provenances they
considered essential when making their judge-
ment. Then we measure how similar are these
annotations to tokens our model is focusing on.
Our code, and dataset will be released online.

1 Introduction

Automated fact-checking systems today are mov-
ing from predicting the claim’s veracity by cap-
turing the superficial cues of credibility, such as
the way the claim is written, the statistics cap-
tured in the claim author’s profile or the stances
of its respondents on the social networks (Zubi-
aga et al., 2016; Derczynski et al., 2017; Gorrell
et al., 2019; Fajcik et al., 2019; Li et al., 2019) to-
wards evidence-grounded systems which given a
claim, identify relevant sources and then use these
to predict the claim’s veracity (Thorne et al., 2018;
Jiang et al., 2020; Park et al., 2022). In practice,
providing precise evidence turns out to be at least
as important as predicting the veracity itself. Dis-
proving claim without linking it to factual evidence
often fails to be persuasive, and can even cause
a “backfire“ effect — refreshing and strengthen-
ing the belief into errorneous claim (Lewandowsky
et al., 2012)1.

For evidence-grounded fact-checking, most of
the existing state-of-the-art systems (Jiang et al.,
2021; Stammbach, 2021; Khattab et al., 2021) em-
ploy a 3-stage cascade approach; given a claim,
they retrieve relevant documents, rerank relevant
provenances2 within these documents and then
predict the claim’s veracity from the top-K (usu-
ally K=5) relevant provenances.

This comes with several drawbacks; firstly the
multiple steps of the system lead to multi-step er-
ror propagation, i.e. the input to the last system
might often be too noisy to contain any informa-
tion. Some previous work already targeted merging
provenance reranking and veracity prediction into
single step (Ma et al., 2019; Schlichtkrull et al.,
2021). Secondly, in open-domain setting, number
of relevant evidences can be significantly larger
than K, especially when there is a lot of repeated

1Discussion in Appendix C.
2For instance sentences, paragraphs, or larger text blocks.
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evidence. Thirdly, again in open-domain setting,
sometimes there is a both, supporting and refut-
ing evidence. The re-ranking systems often do not
distinguish whether evidence is relevant because it
supports or refutes the claim, and thus may select
the evidence from one group based on the in-built
biases.

To further strengthen persuasive effect of the ev-
idence, and understand the model’s reasoning pro-
cess, some of these systems are interpretable (Popat
et al., 2018; Liu et al., 2020; Krishna et al., 2021).
However, to our knowledge, the interpretability in
these systems was considered an useful trait, which
was evaluated only qualitatively.

To this extent we propose Claim-Dissector (CD),
a latent variable model which:

1. jointly ranks top-relevant, top-supporting and
top-refuting provenances and predicts veracity
of the claim in an interpretable way, where the
probability of the claim’s veracity is given
by the linear combination of per-provenance
probabilities,

2. is able to detect claims with conflicting evi-
dence (both supporting and refuting),

3. can provide unsupervisedly learned fine-
grained (sentence-level or token-level evi-
dence), while using only coarse-grained su-
pervision (on block-level or sentence-level re-
spectively),

4. can be parametrized from a spectrum of
language representation models (such as
RoBERTa or DeBERTaV3 (Liu et al., 2019;
He et al., 2021)).

Finally, we collect a 4-way annotated dataset
TLR-FEVER of per-token relevance annotations
to provide a quantitative evaluation of our system.

2 Model Description

We present a 2-stage system composed from the re-
triever and the verifier. The documents are ranked
via retriever. Each document is split into blocks.
The blocks from top ranking documents are passed
to verifier, and jointly judged. Our interpretable
CD verifier is capable of re-ranking documents for
any granularity of relevant provenance (e.g. doc-
ument, block, sentence, token). Jointly, the same
model predicts the claim’s veracity. The overall
schema of our approach is depicted in Figure 1.
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Figure 1: Diagram of Claim-Dissector’s workflow. Ab-
breviations S, R, IRR, NEI stand for support, refute, ir-
relevant, not-enough-information. MLP function from
the figure is defined by equation 1.

2.1 Retriever
Given a claim c ∈ C from the set of all possible
claims C and the corpus D = {d1, d2, ..., dn} com-
posed of documents di, the retriever produces a
ranking using ranking function rank : C ×D → R
that assigns a score to each document in the corpus.
In this work, we focus on the verifier; therefore we
take strong retriever from Jiang et al. (2021). This
retriever interleaves documents ranked via BM25
(Robertson and Zaragoza, 2009) and Wikipedia
API following Hanselowski et al. (2018), skipping
duplicate articles. Each document is then split
into non-overlapping blocks of size Lx, while re-
specting sentence boundaries3. Our verifier then
computes its prediction from top-K1 such blocks.
To keep up with similar approaches (Hanselowski
et al., 2018; Stammbach and Neumann, 2019), we
also experiment with expanding evidence with doc-
uments hyperlinked to the top retrieved articles.
We rank these documents according to the rank and
sequential order in the document they were hyper-
linked from. We then process these extra ranked
documents the same way as retrieved documents,
adding top-K2 blocks to the verifier’s input. As dis-
cussed more closely in Stammbach and Neumann
(2019), some relevant documents are impossible to
retrieve using just claim itself, as their relevance

3Every block contains as many sentences as can fit into Lx

tokens, considering verifier’s tokenization.



is conditioned on other relevant documents. How-
ever, we stress that such approaches also mimic the
way FEVER dataset was collected, and thus the
improvements of such approach on “more naturally
collected“ datasets might not be as significant, if
any.

2.2 Verifier

The verifier firstly processes each block indepen-
dently by language representation model (LRM)
and then aggregates cross-block information via
multi-headed attention (Vaswani et al., 2017), com-
puting matrix M . This matrix is used to com-
pute both, the probability of each provenance’s
relevance, and the probability of the claim’s verac-
ity. Furthermore the way the model is constructed
allows learning a linear relationship between these
probability spaces.

Formally given a claim c and K = K1 + K2

blocks, K input sequences xi for each block i are
constructed as

[CLS] <claim> c [SEP] <title> t

<passage> s1 <sentence> s2

<sentence>...s#<sentence> [SEP],

where [CLS] and [SEP] are transformer’s spe-
cial tokens used during the LRM pre-training
(Devlin et al., 2019). Each block is paired
with its article’s title t and split into sen-
tences s1, s2, ..., s#. Symbols t, s1, s2, ..., s# thus
each denote a sequence of tokens. We further intro-
duce new special tokens <claim>, <title>,
<passage>, <sentence> to separate differ-
ent input parts. Crucially, every sentence is ap-
pended a <sentence> token. Their respective
embeddings are trained from scratch. Each in-
put xi is then encoded via LRM Ei = LRM(xi) ∈
RLB×d, where LB is an input sequence length,
and d is LRM’s hidden dimensionality. Repre-
sentations for every block are then concatenated
into E = [E1;E2; ...;EK ] ∈ RL×d, where L is
the number of all tokens in input sequences from
all retrieved blocks. Then we index-select all rep-
resentations from E corresponding to positions
of sentence tokens in s1, s2, ..., s# into score ma-
trix Es ∈ RLe×d, where Le corresponds to number
of all tokens in all input sentences (without special
tokens). Similarly, we index-select all representa-
tions at the same positions as the <sentence> to-
kens at then input from E into matrix S ∈ RLS×d,
where LS � Le is the total number of sentences

in all inputs xi. The matrix M ∈ RLe×3 is then
given as

M = SLP(MHAtt(Es,S,S))W . (1)

The MHAtt operator is a multi-headed attention
with queries Es, and keys and values S. The SLP
operator is a single layer perceptron described
closely in Appendix A and W ∈ Rd×3 is a lin-
ear transformation, projecting resulting vectors to
desired number of classes (3 in case of FEVER).

To compute the per-provenance probabilities we
split the matrix M according to tokens belonging
into each provenance. For instance for sentence-
level provenance granularity we do split M =
[M s1,1;M s2,1; ...;M s#,K ] along dimension Le

into submatrix representations corresponding to
sentence s1 in block 1 up to last sentence s# in
block K. We then normalize each such matrix
of i-th provenance of j-th block as4:

Pi,j(w,y) =
expM i,j

w,y∑
w′

∑
y′ expM

i,j
w′,y′

. (2)

Note that w ∈ {1, 2, ..., |si,j |} is an token-index
in the (i,j)-th provenance and y ∈ {S,R, IRR} is
the class label. Then we marginalize over latent
variable w to obtain marginal log-probability per
provenance.

log Pi,j(y) = log
∑
w′

Pi,j(y,w′) (3)

Then loss LR is computed from the probabilities
of annotated label set A for a single claim5.

LR =
1

|A|
∑

y,(i,j)∈A

log Pi,j(y) (4)

In training, we use maximum likelihood to max-
imize the log-probability log P(y = y*);y∗ ∈
{S,R} based on the annotated label of the claim’s
veracity, and maximize y = IRR for irrelevant
provenances. As FEVER contains only annotation
of relevant sentences, we follow the heuristic of
Jiang et al. (2021) and sample irrelevant sentences
ranked between 50 and 200, in order to avoid min-
imizing loss for false negatives. In test-time, we
rank the provenance (i, j) according to its com-
bined probability of supporting or refuting rele-
vance scorei,j =

∑
y∈{S,R} P

i,j(y).

4Note that the distribution also depends on input se-
quences {xi}i∈{1,2,...,K}, but we omit this dependency for
brevity.

5If example has NEI veracity in FEVER, LR = 0.



Next, we compute probability of the claim’s ve-
racity y ∈ {S, R, NEI}. First notice that scores
in M are logits

M i,j
w,y = log(Ki,j P

i,j(w,y)). (5)

Therefore, we use an extra degree of freedom Ki,j

to compute a linear ensemble6 producing the final
probability

P(y) =

∑
i,j,wKi,j P

i,j(w,y)∑
y′
∑

i,j,wKi,j P
i,j(w,y′)

. (6)

Lastly, we bias model to focus only on some to-
kens in each provenance by enforcing an L2 penalty
over the scores in M by

L2 =
1

3Le
||M ||2F , (7)

where || · ||F denotes Frobenius norm. We show
empirically that this loss leads to significantly bet-
ter unsupervised token-level interpretability (sec-
tion 5). Therefore the final per-sample loss to max-
imize with hyperparameters λR, λ2 is

L = log P(y) + λRLR + λ2L2. (8)

2.3 Baseline
Apart from previous work, we propose a baseline
bridging the proposed system and the recent work
of Schlichtkrull et al. (2021). We normalize all
scores in M to compute joint probability across all
blocks

P(w,y) =
expMw,y∑

w′
∑

y′ expMw′,y′
. (9)

First, we marginalize out per-token probabilities in
each provenance si,j .

P(si,j ,y) =
∑

w′∈si,j

P(w′,y) (10)

Using this sentence probability formulation, the
loss is computed for every relevant provenance.

Lb0 =
1

|Ap|
∑

si,j ,y∈Ap

log P(si,j ,y) (11)

Secondly, unlike Schlichtkrull et al. (2021), we
interpolate loss Lb0 with loss

Lb1 = log P(y) = log
∑
si,j

P(si,j ,y) (12)

6Assuming y=IRR=NEI.

by computing their mean. Like CD, we use Lb1
loss to take advantage of examples from NEI class
for which we have no annotation Ap (and thus Lb0
is virtually set to 0). Unlike CD, the annotations Ap

in Lb0 contain only sentences where y ∈ {S,R}7.

In order to not penalize non-annotated false neg-
atives, we compute global distribution P in Lb0
during training only from representations of tokens
from positive and negative sentences in M . In test
time, we rank provenances according to scorei,j =∑

y∈{S,R} P(si,j ,y), and predict claim’s veracity
according to P(y) =

∑
si,j

P(si,j ,y). We also
considered different model parametrizations dis-
cussed in Appendix B.

2.4 Transferring Supervision to Lower
Language Granularity

The proposed model can benefit from annotation on
different granularity of the language. For example,
the provenance annotation can be done on docu-
ment, block, paragraph or token-level. In section 5,
we show despite the fact that model is trained on
higher granularity level, the model still shows mod-
erate performance of relevance prediction when
evaluated on lower-level granularity. We demon-
strate this with two experiments.

First, the model is trained with sentence-level
supervision and it is evaluated on a token-level an-
notation. For this we leave model as it is — remind-
ing that Gaussian prior over per-token probabilities
enforced by the loss L2 is crucial (see Table 5).

Secondly, we assume only block-level annotation
is available and we evaluate on sentence-level an-
notation. Here we slightly alter the model, making
it to rely more on its sentence-level representations.
In section 5, we show this simple alteration signifi-
cantly improves the performance at sentence-level.
Note that to compute block-level probability, the
block is the provenance, therefore the provenance
index can be dropped. The probability of the j-
th block bj is obtained by marginalizing out the
per-token (respectively per-sentence) probabilities.

7We observed that maximizing NEI class for irrelevant
sentences leads to inferior accuracy. This makes sense, since
it creates “tug-of-war“ dynamics between Lb0 and Lb1. The
former loss tries to allocate mass of joint space in NEI class,
since most documents are irrelevant, whereas the latter loss
tries to allocate the mass in the dimension of labelled veracity
class.



P(bj ,y) =
∑

si,j∈bj

P(si,j ,y) =∑
si,j∈bj

∑
w′∈si,j

P(w′,y)
(13)

In practice, we found it helpful to replace the
block-level probability P(bj ,y) with its lower-
bound P(si,j ,y) computed for 1 sentence sampled
from the relevant sentence likelihood.

P(bj ,y) ≈ P(si,j ,y); si,j ∼ P(si,j ,y ∈ {S,R})
(14)

Intuitively, making a single-sentence estimate
(SSE) forces model to rely more on its sentence-
level probabilities during training. In LR we then
maximize the probabilities of positives blocks com-
puted as in equation 14, and negative sentences8

computed (and normalized) on sentence level as in
equation 4.

2.4.1 Baseline for Token-level Rationales
Similarly to Shah et al. (2020); Schuster et al.
(2021), we train a masker — a model which learns
to replace least amount of token embeddings at
the Claim-Dissector’s input with a single learned
embedding in order to maximize the NEI class
probability. We compare the unsupervised ratio-
nales given by the masker with the unsupervisedly
learned rationales provided by the Claim-Dissector
on-the-fly. Our masker follows the same architec-
ture as Claim-Dissector. We provide an in-depth
description of our masker model and its implemen-
tation in Appendix D.

3 Related Work

Datasets. Previous work in supervised open-
domain fact-checking often focused on large
datasets with evidence available in Wikipedia such
as FEVER (Thorne et al., 2018), FEVER-KILT
(Petroni et al., 2021), FAVIQ (Park et al., 2022),
HoVer (Jiang et al., 2020) or TabFact (Chen et al.,
2020). We follow this line of work and selected
FEVER because of its sentence-level annotation, 3
levels of veracity (into S/R/NEI classes) and con-
trolled way of construction — verification should
not require world knowledge, everything should be
grounded on trusted, objective and factual evidence
from Wikipedia. In future revisions, we plan to
also validate our approach on HoVer.

8Indices of irrelevant sentences are mined automatically
(see section 2.1), therefore this supervision comes “for free“.

Open-Domain Fact-Checking (ODFC) Unlike
this work, most of the previous work includes 3-
stage systems which retrieve evidence, rerank each
document independently, and then make a verac-
ity decision from top-K documents (Thorne et al.,
2018; Nie et al., 2019; Zhong et al., 2020).

Jiang et al. (2021) particularly distinguished
the line of work which aggregates final decision
from independently computed per-sentence verac-
ity probabilities (Zhou et al., 2019; Soleimani et al.,
2020; Pradeep et al., 2021b, inter alia) and the
line of work where the top-relevant sentences are
judged together to compute the final veracity prob-
ability (Stammbach and Neumann, 2019; Pradeep
et al., 2021a, inter alia). Jiang et al. (2021) com-
pares similar system against these two assumptions,
showing that joint judgement of relevant evidence
is crucial when computing final veracity. We stress
that our system falls into joint judgement category.
Although the relevance is computed per-sentence,
these probabilities along with linear combination
coefficients are computed jointly, with model con-
ditioned on hundreds of input sentences.

To deal with multi-hop evidence (evidence
which is impossible to mark as relevant with-
out other evidence) Subramanian and Lee (2020);
Stammbach (2021) iteratively rerank evidence sen-
tences to find minimal evidence set, which is passed
to verifier. Our system jointly judges sentences
within block, and multi-headed attention layer prop-
agates cross-block information. Our results (sec-
tion 5) suggest our system is about on-par with
these iterative approaches, while requiring only sin-
gle forward computation.

Interpretability Popat et al. (2018); Liu et al.
(2020) both introduced systems with an inter-
pretable attention design, and they demonstrated
its ability to highlight important words via a case
study. In our work, we take a step further and
propose a principled way to evaluate our system
quantitatively. We note that Schuster et al. (2021)
proposed a very similar quantitative evaluation of
token-level rationales, for a data from dataset Vita-
minC. The dataset, constructed from factual revi-
sions on Wikipedia, assumed that the revised part
of facts is the most salient part of evidence. In con-
trast, we instruct annotators to manually annotate
terms important to their judgement. The Vitam-
inC dataset is not accompanied with the evidence
corpus, thus we deemed it as unsuitable for open-
domain knowledge processing.



Krishna et al. (2021) proposed a system which
parses evidence sentences into a natural logic-based
inferences (Angeli and Manning, 2014). These pro-
vide deterministic proof of claim’s veracity. Au-
thors verify the interpretability of the generated
proofs by asking humans to predict veracity ver-
dict from them. However, the model is evaluated
only on FEVER dataset and its derivatives, which
contain significant bias — the claims in this dataset
were created from fact through "mutations" accord-
ing to natural logic itself.

Joint Reranking and Veracity Prediction
Schlichtkrull et al. (2021) proposed a system simi-
lar to our work for fact-checking over tables. The
system computes a single joint probability space
for all considered evidence tables. The dataset
however contains only claims with true/false
outcome, typically supported by single table.
While our work started ahead of its publication, it
can be seen as an extension of this system.

4 Experimental Setup

We base our implementation of pre-trained lan-
guage representation models on Huggingface (Wolf
et al., 2019). Unless said otherwise, we em-
ploy DeBERTaV3 (He et al., 2021) as LRM. In
all experiments, we firstly pre-train model on
MNLI (Williams et al., 2018). While we ob-
served no significant improvement when using a
MNLI-pretrained checkpoint, we found that with-
out MNLI pretraining, our framework sometimes
converges to poor performance. We train model on
FEVER with minibatch size 64, learning rate 5e−6,
maximum block-length Lx = 500. We schedule
linear warmup of learning rate for first 100 steps
and then keep constant learning rate. We use Adam
with decoupled weight decay (Loshchilov and Hut-
ter, 2017) and clip gradient vectors to a maximal
norm of 1 (Pascanu et al., 2013). In all experi-
ments, the model is trained and evaluated in mixed-
precision. We keep λR = λ2 = 1. We use 8x
Nvidia A100 40GB GPUs for training. We val-
idate our model every 500 steps and select best
checkpoint according to FEVER-Score (see sub-
section 4.2). We have not used any principled way
to tune the hyperparameters.

To train model with SSE, we decrease the
strength of block-level supervised LR loss to λR =
0.7. We switch between vanilla objective and SSE
objective randomly on per-sample basis. Train-
ing starts with replace probability psse = 0. for

FEVER FEVERMH FEVERMHART

Train 145,449 12,958 (8,91%) 11,701 (8,04%)
Dev 19,998 1204/19998 (6,02%) 1059/19998 (5,30%)

Table 1: FEVER dataset and its subsets.

first 1, 000 steps. The probability is then linearly
increased up to psse = 0.95 on step 3, 000, after
which it is left constant.

4.1 Datasets
FEVER. We validate our approach on FEVER
(Thorne et al., 2018) and our newly collected
dataset of token-level rationales. FEVER is com-
posed from claims constructed from Wikipedia.
Each annotator was presented with an evidence
sentence, and first sentence of articles from hy-
perlinked terms. In FEVER, examples in devel-
opment set contain multi-way annotation of rele-
vant sentences (i.e., each annotator selected set of
sentences he considered relevant). To analyze per-
formance of our components on samples that need
multi-hop reasoning, we further create subsets of
training/development set:

• FEVERMH contains only examples where all
annotators agreed on that more than 1 sen-
tence is required for verification.

• FEVERMHART
contains only examples,

where all annotators agreed that multiple sen-
tences from different articles are required for
verification.

We include the subset statistics in Table 1.

TLR-FEVER To validate token-level rationales,
we collect our own dataset on random subset of val-
idation set (only considering examples with gold
sentence annotation). We collect 4-way annotated
set of token-level rationales. The annotators were
the colleagues with NLP background from our lab.
We instruct every annotator via written guidelines,
and then we had 1-on-1 meeting after annotating a
few samples, verifying that contents of the guide-
lines were understood correctly. We let annotators
annotate 100 samples, resolve reported errors man-
ually, obtaining 94 samples with fine-grained token-
level annotation. In guidelines, we simply instruct
annotators to highlight minimal part of text they
find important for supporting/refuting the claim.
There should be such part in every golden sentence
(unless annotation error happened). The complete
guidelines are available in Appendix F.

To establish performance of average annotator,
we compute the performance of each annotator



compared to other annotators on the dataset, and
then compute the average annotator performance.
We refer to this as human baseline lower-bound,
as each annotator was compared to 3 annotations,
while the system is compared to 4 annotations (thus
the performance of average annotator on 4 anno-
tations would be equal or better). We measure
performance via F1 metric. We will expand the
dataset size in future revisions.

4.2 Evaluation
Recall@Input (RaI). We evaluate retrieval w.r.t.
recall at model’s input while considering different
amount of K1+K2 blocks at the input, i.e. the score
hit counts iff any annotated evidence group was
matched in K1+K2 input blocks.

Accuracy (A). The proportion of correctly classi-
fied samples, disregarding the predicted evidence.

Recall@5 (R@5). The proportion of samples for
which any annotated evidence group is matched
within top-5 ranked sentences.

FEVER-Score (FS). The proportion of samples
for which (i) any annotated evidence group is
matched within top-5 ranked sentences, and (ii)
the correct class is predicted.

F1 Score measures unigram overlap between pre-
dicted tokens and reference tokens, disregarding
articles. Having multiple references, the maximum
F1 between prediction and any reference is con-
sidered per-sample. Our implementation closely
follows Rajpurkar et al. (2016).

In practice, both CD and masker model infer
continuous scores capturing relevance for every
token9. When evaluating F1, we select only tokens
with scores greater than threshold τ . We tune the
optimal threshold τ w.r.t. F1 on TLR-FEVER.

5 Results

We now present our results. We report results of
base-sized models based on 3-checkpoint average.
We train only a single large model.

Retrieval. We evaluate the retrieval method from
Jiang et al. (2021) and the proposed hyperlink
expansion method in Table 2. We focus on an-
alyzing the effect of hyperlink expansion, vary-
ing K2, while keeping K1 = 35 in most experi-
ments, which is setting similar to previous work
— Jiang et al. (2021) considers reranking top-200

9We consider mask-class logits as scores for masker.

K1+K2 FEVER FEVERMH FEVERMHART
#SaI

35+0 94.2 52.0 45.8 239.9
100+0 95.1 58.5 53.1 649.4
35+10 95.2 61.9 57.0 269.6
35+20 95.9 69.0 65.2 309.0
35+30 96.7 77.5 74.7 388.6
35+35 97.5 84.1 82.3 506.7
35+50 97.7 86.5 85.0 624.3
35+100 98.4 93.0 92.4 1008.8
100+100 98.6 93.4 92.7 1431.0

Table 2: Retrieval performance in RaI on FEVER dev
set and its subsets. #SaI denotes average number of
sentences at model’s input under corresponding K1 +
K2 setting.

System FS A R@5 #θ

D
ev

el
op

m
en

tS
et

TwoWingOS (Yin and Roth, 2018) 54.3 75.9 53.8 ?
HAN (Ma et al., 2019) 57.1 72.0 53.6 ?
UNC (Nie et al., 2019) 66.5 69.7 86.8 408M
HESM (Subramanian and Lee, 2020) 73.4 75.8 90.5 39M
KGAT[OR] (Liu et al., 2020) 76.1 78.3 94.4 465M
DREAM (Zhong et al., 2020) - 79.2 90.5 487M
T5 (Jiang et al., 2021) 77.8 81.3 90.5 5.7B
LF+DXL (Stammbach, 2021) - - 90.8 1.2B
LF2−iter+DXL (Stammbach, 2021) - - 93.6 1.2B
ProofVer (Krishna et al., 2021) 78.2 80.2 - 515M

Baselinejoint 75.2 79.8 90.0 187M
Claim-DissectorRoBERTa 74.6 78.6 90.4 127M
Claim-Dissector 76.2 79.5 91.5 187M
Claim-Dissector \w HE 76.9 79.8 93.0 187M
Claim-DissectorLARGE \w HE 78.0 80.8 93.3 439M
Claim-DissectorLARGE \w HE [OR] 78.9 81.2 94.7 439M

Te
st

Se
t

KGAT (Liu et al., 2020) 70.4 74.1 - 465M
DREAM (Zhong et al., 2020) 70.6 76.9 - 487M
HESM (Subramanian and Lee, 2020) 71.5 74.6 - 58M
ProofVer (Krishna et al., 2021) 74.4 79.3 - 515M
T5 (Jiang et al., 2021) 75.9 79.4 - 5.7B
LF2−iter+DXL (Stammbach, 2021) 76.8 79.2 - 1.2B

Claim-DissectorLARGE \w HE 76.5 79.3 - 439M

Table 3: Performance on development and test splits of
FEVER. #θ denotes number of parameters in the model.
Model names suffixed with [OR](as Oracle) inject miss-
ing golden evidence into its input. Model version with
hyperlink expansion is suffixed as (\w HE).

sentences. We provide additional evaluation of the
retrieval method with varying K1 in Appendix E.
We observe that settingK1+K2 = 35+10 already
outperforms retrieval without hyperlink expansion
and K1 = 100 blocks. Such observation is thus
consistent with previous work which used hyper-
link signal (Hanselowski et al., 2018; Stammbach
and Neumann, 2019).

Main Results. We compare the performance of
our system with previous work in Table 3. We note
that, apart from HAN (Ma et al., 2019), all previous
systems were considering two separate systems for
reranking and veracity prediction. Next we note
that only ProofVer system uses additional data. It
leverages rewritten-claim data for fact-correction



FEVER FEVERMH

System FS A R@5 FS A R@5
CDLARGE \w HE [OR] 78.9 81.2 94.7 47.1 76.8 57.4
CDLARGE \w HE 78.0 80.8 93.3 41.9 75.7 51.5
CD \w HE 76.9 79.8 93.0 38.1 74.1 48.3
CD \w HE \wo MH 76.5 79.5 92.7 38.4 75.5 47.7
Baseline 75.2 79.8 90.0 26.1 74.2 33.9
CD 76.2 79.5 91.5 26.3 68.9 35.5
CD \wo L2 76.0 79.6 91.5 28.8 74.7 35.9
CD \wo VC - - 91.9 - - 37.2
CD \wo RC - 79.9 - - 76.8 -

Table 4: Ablation Study.

paired with original FEVER claims (Thorne and
Vlachos, 2021).

We observe that (i) even our base-sized
RoBERTa model outperforms HESM on dev
data, which in turn outperformed KGAT and
DREAM in FS on test data, (ii) our base sized
DebertaV3-based model Claim-Dissector outper-
forms DREAM (Zhong et al., 2020) and even
KGAT with oracle inputs (Liu et al., 2020), (iii)
model version with hyperlink expansion (suffixed
\w HE) significantly improves the overall per-
formance, (iv) increasing size of the model to
LARGE improves mostly its accuracy, (v) Claim-
DissectorLARGE \w HE achieves better FEVER
score than T5-based approach (Jiang et al., 2021)
(with two 3B models) and better accuracy than
LongFormer+DebertaXL (Stammbach, 2021) and
ProofVer (Krishna et al., 2021), but it is not pareto
optimal to these previous SOTA. We still consider
this a strong feat, as our system was focusing on
modeling reranking and veracity prediction jointly
in an interpretable way.

Finally, we inject blocks with golden evidence
into inputs of Claim-DissectorLARGE \w HE at
random positions and measure its performance
(suffixed [OR]). We observe that items missed by
retrieval are not just noisy examples and are still
beneficial to the system performance.

Ablations. We ablate components of the Claim-
Dissector (CD) in Table 4. Firstly, we resort to
single-task training. We drop veracity classification
(VC) loss or relevance classification (RC) loss from
the training. We observe an overall trend — single-
task model performs better to multi-task model.

Next we analyze the effect of dropping the L2
loss from the total objective. We observe no signif-
icant difference on FEVER, but we observe large
drop in accuracy on FEVERMH . The experiments
show large variance (std ±2)10. We hypothesize

10Another set of 3 checkpoints had A 73.4 on FEVERMH .

System F1
Select All Tokens 52
Select Claim Overlaps 63
Masker 73
Claim-Dissector \wo L2 61
Claim-Dissector 75
Human Performance LB 85

Table 5: Token-level relevance.

Model FS A R@5
Full Supervision 76.2 79.5 91.5
Block Supervision 65.5 76.9 77.8
Block Supervision + SSE 69.7 78.1 83.0

Table 6: Sentence-level performance under different
kinds of supervision.

that while L2 loss doesn’t seem cause any damage
to performance on average, the model could be fo-
cusing on different dataset cues in each training
run. We seek to further investigate the phenomena
in future revisions of this work.

Further, we study the effect of hyperlink expan-
sion (HE) and the effect of multi-headed (MH)
attention layer. As expected, hyperlink expansion
dramatically increases performance on FEVERMH .
The multi-headed attention also brings marginal
improvements to results on FEVER. However, con-
trary to our expectations, the effect of MH layer on
FEVERMH is not significant.

Transferring sentence-level supervision to to-
ken-level performance. We evaluate the perfor-
mance of token-level rationales11 on our dataset
in Table 5. We considered two trivial baselines.
First was to select all tokens in golden evidences
(Select All Tokens). Second was to select only
tokens which overlap with claim tokens (Select
Claim Overlaps). As we have not done early stop-
ping for token-level relevance (but with FEVER
score), we report best out of 3 runs result for Claim-
Dissector. We found that our model with unsuper-
vised objective produces rationales equal or bet-
ter than the masker — a separate model trained
explicitly to identify tokens important to model’s
prediction. Furthermore, the results demonstrate
the importance of L2 objective. However the hu-
man performance lower-bound is still far beyond
the performance of our unsupervised approach.

11We visualized token-level rationales on 100 random dev
set examples at shorturl.at/beTY2.



Transferring block-level supervision to sen-
tence-level performance. The performance of our
model on the sentence-level provenances is evalu-
ated in Table 6. We notice that even our vanilla
Claim-Dissector trained with block supervision
reaches competitive recall@5 on sentence-level.
However, adding SSE leads to further improve-
ments both in recall, but also in accuracy. We hy-
pothesized that the recall will be improved, because
model with now focus on assigning high proba-
bility mass only to some sentences within block,
since high-entropy of the per-sentence distribution
would lead to poor loss performance. However, we
have not foreseen the damaging effect on accuracy,
which block-level supervision causes. Interestingly,
the accuracy without any provenance supervision
from Table 4 was increased.

Detection of examples with conflicting evidence.
Finally, we manually analyze whether we can take
advantage of model’s ability to distinguish between
provenance, which is relevant because it supports
the claim, and the provenance which is relevant
because it refutes the claim. To do so, we try to
automatically detect examples from the validation
set, which contain both, supporting and refuting ev-
idence (which we refer to as conflicting evidence).
We note that there were no examples with explicitly
annotated conflicting evidence in the training data.

We select all examples where model predicted
at least 0.9 probability for any supporting and
any refuting provenance. Formally we select ev-
ery example for which the following condition
holds: ∃a, b, x, y : Pa,b(y = S) > 0.9∧Px,y(y =
R) > 0.9. We found that out of 72 exam-
ples, 66%(48) we judged as indeed having a con-
flicting evidence12. We observed that about half
(25/48) of these examples had conflicting evidence
because of the entity ambiguity caused by open-
domain setting. For instance claim “Bones is a
movie“ was supported by sentence article “Bones
(2001 film)“ but also refuted by sentence from ar-
ticle “Bones (TV series)“ and “Bone“ (a rigid or-
gan).

6 Known Problems and Limitations

By manual analysis, we found that claim-dissector
suffers from overconfidence in blocks with at least
1 relevant provenance. Then it seeks to select more
relevant provenances inside, even when they are
not. We believe this is connected to how irrelevant

12Annotations are available at shorturl.at/qrtIP.

negatives are mined in FEVER — they originate
only from blocks without relevant provenances.

The system often struggles to recognize what
facts are refuting, and what are irrelevant (espe-
cially when applied out-of-domain). We demon-
strate this in a case study on downstream appli-
cation, where we replaced retrieval on Wikipedia
with news-media in test-time. We tried to verify
the claim "Weapons are being smuggled into Esto-
nia". Our system discovered article with facts about
"Weapons being smuggled into Somalia", and used
it as a main refuting evidence to predict REFUTE
veracity.

Lastly, CD is trained with evidence from
Wikipedia, and do not considers other factors im-
portant for relevance assessment in practice, such
as credibility of source, its trustworthiness, or its
narrative. This is the area of active research, as
human fact-checkers also need to deal with lies
(Uscinski and Butler, 2013).

7 Conclusion & Future Work

In this work, we proposed Claim-Dissector, an in-
terpretable probabilistic model for fact-checking
and fact-analysis. Our model jointly predicts the
supporting/refuting evidence and the claim’s ve-
racity. It achieves state-of-the-art results, while
providing three layers of interpretability. Firstly,
it identifies salient tokens important for the final
prediction. Secondly it allows disentangling rank-
ing of relevant provenances into ranking of sup-
porting evidence and ranking of refuting evidence.
This allows detecting conflicting evidence with-
out being exposed to such conflicting evidence
sets during training. Thirdly, it combines the per-
token relevance probabilities via linear combina-
tion into final veracity assessment. This allows to
understand, to what extent the relevance of each
token/sentence/block/document contributes to final
assessment. Conveniently, this allows to differenti-
ate between the concept of evidence relevance and
its contribution to the final assessment.

Finally, it was shown that a hierarchical structure
of our model allows making predictions on even
finer language granularity, than the granularity the
model was trained on. We believe the technique
we used is transferable beyond fact-checking.

In future revisions, we seek to extend our re-
sults to another dataset (possibly HoVer), increase
sample size of TLR-FEVER, and verify marginal
differences in our results with statistical tests.
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A Structure of Single-layer Perceptron

Given a vector x, the structure of single-layer per-
ceptron from equation 1 is the following:

SLP (x) = GELU(dp(W ′ lnorm(x))). (15)

The operator dp denotes the dropout (Srivastava
et al., 2014), W ′ is a trainable matrix, GELU is
the Gaussian Error Linear Unit (Hendrycks and
Gimpel, 2016) and lnorm is the layer normaliza-
tion (Ba et al., 2016).

B Experiments with Different Model
Parametrizations

Apart from parametrizations provided in the main
paper, we experimented with several different
parametrizations described below. We keep the
training details the same as for our baseline (sec-
tion 2.3). Starting off with a baseline system formu-
lation, we will consider replacingLb0 with different
loss functions.

Lb2 =
1

|A|
∑

si,j ,y∈A
log P(si,j ,y) (16)

With Lb2, the annotation set A contains both
relevant and irrelevant annotations. We found in
practice this does not work - recall@5 during train-
ing stays at 0. This makes sense since if annotation
exists, the final class is likely support or refute.
Drifting the probability mass towards NEI for irrel-
evant annotations is adversarial w.r.t. total veracity
probability.

Lb3 = log
∑

si,j ,y∈Ap

P(si,j ,y) (17)



FEVER FEVERMH

Model FS A R@5 FS A R@5
CD 76.2 79.5 91.5 26.3 68.9 35.5
Baseline 75.2 79.8 90.0 26.1 74.2 33.9
Lb3 76.0 79.0 91.2 20.2 71.8 26.3
Lb4 75.7 79.7 90.4 23.4 72.3 31.4

Table 7: Different model parametrizations.

Instead of maximizing the multinomial probability
distribution, Lb3 loss marginalizes over relevant
annotations.

Lb4 = log
∑

si,j∈Ap

∑
y

P(si,j ,y) (18)

Additionally to Lb3, Lb4 also marginalizes out the
class label y.

The results in Table 7 reveal only minor differ-
ences. Comparing Lb3 and Lb4, marginalizing out
label improves the accuracy, but damages the re-
call. Baseline parametrization achieves best accu-
racy but the worst recall. Claim-Dissector seems
to work the best in terms of FS, but the difference
to Lb3 is negligible, if any.

C The Continued Influence Effect:
Retractions Fail to Eliminate the
Influence of Misinformation

Lewandowsky et al. (2012) summarizes research
paradigm, which focuses on credible retractions in
neutral scenarios, in which people have no reason
to believe one version of the event over another. In
this paradigm, people are presented with a factious
report about an event unfolding over time. The
report contain a target piece of information (i.e. a
claim). For some readers, the claim is retracted,
whereas for readers in a control condition, no cor-
rection occurs. Then the readers are presented with
a questionnare to assess their understanding of the
event and the number of clear and uncontroverted
references to the claim’s veracity.

In particular, a stimulus narrative commonly
used within this paradigm involves a warehouse
fire, that is initially thought to have been caused by
gas cylinders and oil paints there were negligently
stored in a closet. A proportion of participants is
then presented with a retraction such as "the closet
was actually empty". A comprehension test fol-
lows, and number of references to the gas and paint
in response to indirection inference questions about
the event (e.g., "What caused the black smoke?")
is counted.

Research using this paradigm has consistently
found that retractions rarely, if ever, had the in-
tended effect of eliminating reliance on misinfor-
mation, even when people remember the retrac-
tion, when later asked. Seifert (2002) have exam-
ined whether clarifying the correction might reduce
the continued influence effect. The correction in
their studies was strengthened to include the phrase
"paint and gas were never on the premises". Re-
sults showed that this enhanced negation of the
presence of flammable materials backfired, making
people even more likely to rely on the misinforma-
tion in their responses. Some other additions to the
correction were found to mitigate to a degree, but
not eliminate, the continued influence effect. For
instance, when participants were given a rationale
about how misinformation originated, such as "a
truckers’ strike prevented the expected delivery of
the items", they were less likely to make references
to it. Even so, the influence of the misinforma-
tion could still be detected. The conclusion drawn
from studies on this phenomenon show that it is ex-
tremely difficult to return the beliefs to people who
have been exposed to misinformation to a baseline
similar to those of people who have never been ex-
posed to it. We recommend reading Lewandowsky
et al. (2012) for broader overview of the misinfor-
mation and its correction.

D Masker

Model Description. Our masker follows same
DeBERTaV3 architecture as Claim-Dissector. It
receives K1 blocks at its input, encoded the very
same way as for the Claim-Dissector. Instead of
computing matrix M— which contains three log-
its per evidence token, the masker predicts two
logits [li0, l

i
1] — corresponding to keep/mask proba-

bilities [pi0, p
i
1] for i-th token in evidence of every

block. The mask [mi
0,m

i
1] is then sampled for

every token from concrete distribution via Gumbel-
softmax (Jang et al., 2017). During training, i-th to-
ken embedding ei at the Claim-Dissector’s input e′i
is replaced with a linear combination of itself and a
learned mask-embedding em ∈ Rd, tuned with the
masker.

e′i = mi
0ei +mi

1em (19)

The masker is trained to maximize the Claim-
Dissector’s log-likehood of NEI class, while forc-
ing the mask to be sparse via L1 regularization.
Per-sample loss to maximize with sparsity strength



hyperparameter λS is given as

L = log P(y = NEI)− λS
Le

∑
i

|mi
0|. (20)

Training Details. We keep most hyperparameters
the same as for Claim-Dissector. The only differ-
ence is learning rate 2e−6, and an adaptive schedul-
ing on Gumbel-softmax temperature τ . Training
starts with temperature τ = 1 and after initial 100
steps, it is linearly decreasing towards τ = 0.1 at
step 700. Then we switch to hard Gumbel-softmax
— sampling 1-hot vectors in forward pass, while
computing gradients as we would use a soft sample
with τ = 0.1 at backward pass.

E Retrieval Performance

K1 Recall RecallMH RecallMHART
#SaI

10 90.4 40.1 33.0 68.8
20 93.4 48.0 41.5 132.9
30 94.1 51.3 45.0 196.8
35 94.2 52.0 45.8 239.9
50 94.5 54.3 48.4 325.4
100 95.1 58.5 53.1 649.4

Table 8: Retrieval performance.

An in-depth evaluation of retrieval method
adopted from Jiang et al. (2021) is available in
Table 8.

F Token-level Annotation Guidelines

Annotation Guidelines
Welcome to the “Pilot annotation phase“ and thank
you for your help!
How to start annotate
If you haven’t done so, simply click on "Start
Annotation" button, and the annotation will start.
Annotation process & Guidelines

• In pilot annotation, we are interested in anno-
tator’s disagreement on the task. So whatever
disambiguity you will face, do not contact the
organizers but judge it yourself.

• Your task is to annotate 100 samples. In each
case, you will be presented with list of sen-
tences divided by | character. The sentences
do not need to (and often do not) directly fol-
low each other in text. Be sure that in each
case you:

• read the claim (lower-right corner)

• read metadata - to understand the context, you
also have access to other metadata (lower-
right corner), such as

– titles - Wikipedia article names for every
sentence you are presented with, split
with character |,

– claim_label - Ground-truth judgment of
the claim’s veracity.

• highlight minimal part of text you find im-
portant for supporting/refuting the claim.
There should be such part in every sen-
tence (unless annotation error happened).
PLEASE DO NOT ANNOTATE ONLY
WHAT IS IMPORTANT IN THE FIRST
SENTENCE.

• Use "RELEVANT" annotation button high-
light the selected text spans.

• In some cases, you can find errors in the
ground-truth judgment, in other words, ei-
ther document is marked as supported and
it should be refuted according to your judg-
ment or vice-versa. If you notice so, please
annotate any part of the document with
CLAIM_ERROR annotation.

• In case you would like to comment on some
example, use comment button (message icon).
If the comment is example specific, please
provide specific example’s id (available in-
between metadata).

FAQ

• The example does not contain enough
information to decide whether it should be
supported or refuted. Should I label it as a
CLAIM_ERROR?
No. In such case, please annotate parts of the
input, which are at least partially supporting
or refuting the claim. Please add comment
to such examples. If there are no such
input parts, only then report the example as
CLAIM_ERROR.

That is it. Good luck!


