
TROPER
NOITA CI

N
U

M
MOC

P AID I

GENERALIZABLE AUTOMATIC
CLASSIFICATION OF SLEEP STAGES

Samuel Michel

Idiap-Com-02-2023

AUGUST 2023

Centre du Parc, Centre du Parc, Rue Marconi 19, CH - 1920 Martigny
T +41 27 721 77 11  F +41 27 721 77 12  info@idiap.ch  www.idiap.ch





Generalizable Automatic Classification

of Sleep Stages

Master Thesis
presented on June 18, 2023
to the Biosignal Processing Research Group
Idiap Research Institute
by

Samuel MICHEL

under the supervision of:
Dr. André Anjos, project supervisor
Flavio Tarsetti, company supervisor

Student number: 21-697-388
Martigny, IDIAP, 2023

Copyright © 2023 Idiap Research Institute





Acknowledgements

I am deeply grateful to Dr. André Anjos for his invaluable guidance, expertise, and unwavering

support as my master thesis supervisor. His mentorship has been instrumental in shaping the

direction of this research.

I would also like to extend my sincere thanks to Flavio Tarsetti, my company supervisor, for

his continuous technical support and valuable insights throughout the course of this thesis.

Additionally, I am grateful to Doctor Olivier Pallenca, a respected expert in our field, for his

valuable contributions and the wealth of knowledge he shared.

Lastly, I would like to express my appreciation to Prof. Manuel Günther and Gabriele Brunini

for their collaboration during this project.

S.M.

i





Abstract

The gold standard to diagnose sleep disorders is called polysomnography (PSG). A PSG con-

sists in sleeping one or several nights, at a hospital or a sleep center, while wearing different

sensors continuously measuring various temporal data (e.g. electroencephalograms, elec-

trocardiograms, electromiograms, oxymetry, respiration rate, etc.). These data are then used

by an expert to annotate the PSG (hypnograph) into the differente sleep phases (paradoxal

summation, light, moderate and deep sleep). The hypnograph is then used for sleep disorder

diagnosis.

The manual annotation process is affected by human limitations: it is time consuming, tedious,

not reliable, sensitive to the setup of the different clinics, and to motion noise. Indeed, each

sleep center defined his own setup for the PSG. Moreover, it happens that one data is lost due

to a motion of the patient during the night (noisy data). Regarding the reliability different

studies have shown that for the same PSG two experts may annotated differently.

The aim of this work is to investigate the possibility to automate the classification of PSG

into the different sleep phases using machine learning. The main concern will focus on the

capacity of such algorithms to be faster, and more reliable than manual scoring. To perform

this study, two follow-up questions will gravitate around the main scientific question. We

will focus on models which are robust to the setup of different clinics, noise and are fair to

different populations. One of the steps of our work is therefore to analyse the ability of an

automated classifier to manage data coming from different sleep centers.

We scoped this study to stateless models that do not take into account temporal context. We

investigated both hand-crafted and learnable feature extractors. In terms of intra-database

performance, our best model was the CNN Chambon model proposed by Chambon et al. in

their paper [1]. However, when evaluating generalization across different setups, the random

forest model with manually chosen features described in the same paper [1] emerged as the

best model.
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1 Introduction

Sleep remains a domain with ongoing research and many unanswered questions. The study

of sleep is a pretty young science as the first observation of brain activity during sleep was

realized in 1937 Loomis, Harvey, and Hobart [2]. Since then, extensive scientific research

has been conducted in this field, significantly advancing our understanding of sleep. These

studies also helped to improve comprehension in other fields like neurology, psychiatry, etc.

However, a lot of hypotheses are still under investigation and research continues as aspects of

sleep remain mysterious especially sleep disorders.

We are aware and sometimes experiment, that a lack of sleep affects many aspects of our life

as one of the sleep functions is the regulation of different systems in our body (temperature,

metabolism, memorization, etc). The amount of sleep we get every night has short-term

consequences for example on our humor, productivity, and energy, but it can also have long-

term impacts, especially on health.

According to an article by the Swiss Federal Statistical Office, a quarter of the Swiss popu-

lation suffers from sleeping disorders [3]. The article also explains the physical and mental

consequences of sleep disorders. Due to the number of sleep’s biological functions, a lack

of sleep is a risk factor for the development of physical diseases like diabetes and obesity

(Figure 1.1a). Mental health is not spared as sleep also plays a role in well-being and mental

balance. Sleep troubles can lead to mental unbalance such as depression or high mental

distress (Figure 1.1b).

The causes of sleep disorders can come from different sources. The most common are [4]:

• Sleep apnea is caused by interruptions in breathing during sleep, leading to awakenings.

The two main causes of sleep apnea are airway obstruction or a failure of the brain to

initiate the breathing process.

• Restless legs syndrome is characterized by uncomfortable leg movements or shaking

during sleep, which can cause awakenings or difficulties in falling asleep.

1



Chapter 1. Introduction

(a) Physical health regarding sleep problems (b) Mental health regarding sleep problems

Figure 1.1: Figure 1.1a illustrates the relationship between sleep disorders and the prevalence
of physical diseases such as hypertension, obesity, and diabetes. It demonstrates that as the
level of sleep disruption increases, the percentage of individuals affected by these diseases
also tends to increase. Similarly, Figure 1.1b presents data on mental health, specifically high
mental distress and depression. It reveals that the risk of experiencing mental imbalances
is higher among individuals with sleep disorders. The x-axis represents the percentage of
individuals suffering from the respective disease within the population experiencing sleep
problem. (Source [3]).

• Insomnia is defined as the difficulty to stay or/and fall asleep. The causes of insom-

nia are often linked to environmental conditions (stress, jet lag,...), lifestyle (alcohol,

nicotine,...), or mental issues (depression, trauma,...).

• Sleep behavior disorder has the effect of physically or vocally acting dreams while

asleep.

• People suffering of Narcolepsy experience excessive sleepiness during daytime. They

may fall asleep even while working.

Sleeping is an oscillation between different levels of depth [5]. Figure 1.2 shows an example of

the architecture of one-night sleep in a healthy individual. Typically, the night of a healthy

person is composed of three to six cycles that are a sequence of different levels of depth.

People suffering from sleep disruption have a different sleep architecture. By analyzing sleep

cycles, medical teams establish a diagnosis and possible treatments. The change of state of

falling asleep is behavioral and, therefore, can be recorded by simple observation. However, to

measure the depth of sleep, and thus the cycles, a medical exam is required.

The most common medical exam to diagnose the cause of sleep disorders is called polysomnog-

raphy [7] (PSG). A PSG records sleep depth and requires sleeping one or several nights, at a

hospital or a specialized clinic. During these nights, different sensors are disposed on the

patient’s body to measure various data. The most frequently used systems are an electroen-

cephalogram (EEG), which records the electrical activity of the brain, an electrooculogram

(EOG), to measure the electrical activity of the eyes, and an electromyogram (EMG) to detect

2



Figure 1.2: One-night sleep of a healthy person. Cycles of the different depth levels of sleep:
REM denotes paradoxical summation and N1, N2, N3 are respectively light, moderate, and
deep sleep. (Source [6])

muscle tone. Pulse-oximetry, airflow, and other health parameters may also be measured.

Figure 1.3 shows an example of a PSG setup and a sample of the curves for each measured data

that can be observed by the medical team. An important point to note is that the acquisition

of data is a process that often results in the production of noisy or imprecise data. For example,

a sensor may detach during the recording period, due to the sudden movement of the patient.

Figure 1.3: Example setup for a PSG medical exam, and a sample of the resulting curves for
the different data which are recorded. (Source [8])

Clinics performing PSG recording have their own preferences for recording patient data,

especially regarding the types of measured data, and how to position sensors. Figures 1.4a

and 1.4b show, for example, two possible positions for the EEG and EOG sensors.

The resulting PSG graph is then used by experts to build the the so-called hypnogram, of

sleep cycles, displaying different levels of sleep depth. To achieve this, experts are trained to

3



Chapter 1. Introduction

(a) Two possible setups for EEG sensors (b) Two possible setups for EOG sensors

Figure 1.4: Different positions for the various sensors are possible. (Source [9])

recognize characteristic patterns on the PSG, and then classify continuous data into discrete

phases. We will refer to this as the "annotation of sleep phases". An example of this work is

presented in Figure 1.5. Specific patterns of the PSG data (left side of the figure) are classified

into 5 phases: awake, paradoxical summation (REM), light (N1), moderate (N2), and deep

sleep (N3). The resulting hypnogram is then used by the medical team to diagnose sleep

disorders.

Figure 1.5: Hypnogram (right side) of one-night sleep of a healthy person. The hypnogram
is the interpretation of the PSG data (left side) by an expert, annotating the different sleep
phases. REM denotes paradoxical summation, and stages N1 to N3 respectively describe
light, moderate, and deep sleep. The characteristic waves (from the EEG) of every phase are
represented on the left. (Source [5])

Two main standard rules are used by healthcare professionals to perform the annotation of

sleep phases [5, 10]. The American Association of Sleep Medicine (AASM) method [11], and

4



the Rechtschaffen and Kales method [12].

1. The American Association of Sleep Medicine (AASM) [11] proposes to split the PSG data

in windows of 30 seconds. For each sequence, the professional assigns one of the five

following states: awake, REM (scientific term of paradoxical summation), and stages N1

to N3 (for light, moderate and deep sleep).

2. On the other hand, the process of the Rechtschaffen and Kales (R&K) [12] method is

to split the data either in windows of 20 or 30 seconds. For this technique, deep sleep

is subdivided into 2 phases: stages 3 and 4. Sleep cycles are then built using 6 phases:

awake, REM, and stages 1 to 4.

The first step of annotation is to distinguish the presence of rapid eye movement (REM) or

not (NREM), on the PSG. The REM phase is characterized by fast movement of the eyes under

closed eyelids, and a brain activity similar to that present when one is awake. On the other

hand, stages N1 to N3 (AASM) or stages 1 to 4 (R&K) are all part of a grand category named "Not

Rapid Eye Movement" (NREM), as fast eye movement stopped and brain activity has become

lower, as well as muscle tone. On the left side of Figure 1.5, the specific waves (electrical

brain activity from EEG) of every phase are represented. The waves are differentiated by

their amplitude and frequency. Technical specifications of each type of wave are detailed in

section 2.1. As an overview, Figure 1.5 shows that the N1 stage and REM stages contain theta

waves, but are distinguished by the presence or not of REM. Stage N2 is characterized by the

presence of abnormal wave shapes called spindles and K-complex. Deep sleep is marked by

the presence of delta waves (high amplitude and low frequency).

The manual annotation process is affected by human limitations: it is time-consuming,

tedious, not reliable, sensitive to the setup of different clinics, and to motion noise. Indeed, we

already exposed the problem link with the setup and noisy data. Regarding reliability, different

studies have shown that for the same PSG two experts may annotate differently. The authors

of [13] compared the annotations of two experts on 196 PSG. Their results show a level of

agreement of about 77% which is not very high, especially for a medical exam. This difficulty

of a high degree of agreement is in part due to similarity in certain waveforms.

In recent times, the advancement of automated systems for sleep phase annotation relies

heavily on artificial intelligence (AI) algorithms. Specifically, machine learning (ML) plays

a crucial role in developing computer-based algorithms using mathematical and statistical

models. These algorithms are favored for their adaptability and ability to make decisions inde-

pendently, without human intervention. The primary objective of employing such systems is

to automate repetitive tasks and assist humans in the decision-making process.

The temporal aspect of sleep has prompted the development of automated systems that utilize

tools such as artificial neural networks (ANN) specifically designed for handling sequential

data. Given that polysomnography (PSG) data is temporal and sequential in nature, recent

5



Chapter 1. Introduction

automatic sleep staging systems have incorporated these algorithms. Chapter 2 provides a

comprehensive overview of the current state of the field. When citing relevant works, the most

commonly employed ANN architectures in this domain are convolutional neural networks

(CNN) and recurrent neural networks (RNN) [14].

The aim of this work is to investigate the possibility to automate the classification of PSG into

the different sleep phases using ANN algorithms. The main concerns will focus on the capacity

of such algorithms to be faster, and more reliable than manual scoring. To perform this study,

two follow-up questions will gravitate around the main problem.

We will study algorithms that are robust to the setup of different clinics. Indeed, there is no

standard for the setup of PSGs, especially concerning the number of used sensors, and their

position. One of the cornerstones of our work will be to analyze the ability of an automated

classifier to manage data coming from different sleep centers. This, in turn, implies we are

looking for solutions that are robust to multiple factors: types of sensors deployed, quantity,

quality, and, finally, positioning during acquisition. Furthermore, we will search for algorithms

that are naturally robust to noisy and missing data, related to the nature of the exam.

6



2 State of the art

2.1 Annotation techniques and waveform

Manual annotation of sleep phases is based on criteria regarding wave shapes of PSG signals

(e.g. EEG, EOG, EMG), and is typically conducted in 30-seconds windows. The complete

process of annotation can be fairly technical. In this review, we focus on the most frequent

types of waves, namely the ones which are typical of different sleep stages. We refer to

Figure 1.5 for the location and depth of the various sleep phases:

• Alpha waves are observed on EEG and are characterized by a frequency between 8-13

Hz. Alpha waves are present when one is awake.

• Theta waves are observed on EEG, and begin during stage 1, they have a frequency

between 4-7 Hz.

• Delta waves are observed on EEG waves and are characteristic of stages 3 and 4. They

are also called "slow waves" as they have a frequency between 0.5-3 Hz, and a large

amplitude (≥ 75 µV).

• Spindles are a sequence of abnormal waveforms from 12 to 14 Hz lasting more than

0.5s. They usually occur during stage 2.

• K-complex are sharp negative waves followed by smooth positive waves, to be classified

as k-complex the duration of this event has to be longer than 0.5s.

To illustrate the wave shapes on polysomnography (PSG) recording, we present 30-second

windows (referred to as "epochs") of each sleep phase in Figures 2.1, 2.2, and 2.3. In each

figure, the following signals are represented: 1 EEG (yellow), 1 EOG (green), and 1 EMG (blue).

It is worth noting that not all the wave shapes described earlier are present in every sleep

phase, as observed in these figures. The typical characterization of each stage using the R&K

method is described below:

7



Chapter 2. State of the art

(a) 30s-window of a PSG labeled as "wake". (b) 30s-window of a PSG labeled as "REM".

Figure 2.1: The "Wake" label in Figure 2.1a is given due to the high variation on EEG (yellow)
and EOG (green). Tonus muscle from electromyography (EMG, light blue, bottom), also
presents high values indicating typical awake tension. On the right, at Figure 2.1b, one can, in
contrast, observe slower waves on EEG (yellow), REM on EOG (green), and EMG (light blue) is
at its lowest value, indicating a relaxed state. These signals come from the EDF file SC4001E0
of the Sleep-EDF dataset and are displayed using EDFBrowser software.

(a) 30s-window of a PSG labeled as "Stage 1". (b) 30s-window of a PSG labeled as "Stage 2"

Figure 2.2: Figure 2.2a shows a mix of Alpha and Theta waves on EEG (yellow). The variation
in EOG is less frequent. Muscle tonus (observed from the EMG signal, light blue) starts to
decrease in comparison to wake phase values. On the right-hand side, Stage 2 (Figure 2.2b)
is characterized by the presence of Spindles and K-complex waves on EEG, a rather stable
EOG signal, and less muscle tonus observed on EMG. These signals come from the EDF file
SC4001E0 of the Sleep-EDF dataset and are displayed using EDFBrowser software.

8



2.1 Annotation techniques and waveform

• The Wake (Figure 2.1a) phase is characterized by the presence of Alpha waves on the

EEG, REM on the EOG, and (muscle) activity on the EMG.

• REM (Figure 2.1b) is associated with theta or alpha waves on the EEG, REM on the EOG

and the value of the EMG signal is at its lowest level.

• During Stage 1 (Figure 2.2a) the amount of Alpha waves decreases as Theta waves begin

to take place on the EEG. The amplitude of EOG, and muscle movement measured via

the EMG begin to decrease as well.

• Stage 2 (Figure 2.2b) is distinguished by the presence of Spindles and K-complex on the

EEG. Alpha waves are not present anymore. The variation in the EOG and EMG are rare.

• Stage 3 (Figure 2.3a) is marked by a mix of Theta and Delta waves on the EEG. The Delta

waves are present between 20 and 50% of the time. There is no variation in the EOG,

and muscle activity (measured via EMG) is low.

• Stage 4 (Figure 2.3b) is characterized by a mix of Theta and Delta waves on the EEG.

Delta waves are present more than 50% of the time. There is no variation in the EOG,

and muscle activity (EMG) is low.

Description of AASM sleep states can be inferred from this description. The most significant

change in AASM labeling rules concerns the combination of Stages 3 and 4 in one single state,

called "N3". All other aspects are similar.

(a) 30s-window of a PSG labeled as "Stage 3" (b) 30s-window of a PSG labeled as "Stage 4"

Figure 2.3: We observe at Stage 3’s graph (Figure 2.3a), Delta waves appearing on the EEG (less
than 50% of the time), the absence of information on EOG. Muscle tone (captured from EOG)
is at a low value. For "Stage 4" (Figure 2.3b), the characterization is similar, however, Delta
waves are present more than 50 % of the time on the EEG signal. These signals come from the
EDF file SC4001E0 of the Sleep-EDF dataset and are displayed using EDFBrowser software.
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2.2 Manual annotation limitations

The two primary metrics used to assess the level of agreement between two scorers for

sleep stage classification are Cohen’s Kappa and the intra-class correlation coefficient (ICC)

(See Raadt et al. [15] and Koo and Li [16] for more information). Additional indicators, such as

F1 and Fleiss Kappa, also exist, but they are less commonly found in the literature.

Cohen’s kappa indicator is relevant to compare categorical variables, which in this case can

be used to compare the annotation of both scorers for every 30s-window. The evaluation of

this measure gives a result between 0 and 1, that can be compared to a scale (Table 2.1) on the

degree of agreement.

Cohen’s kappa

Cohen’s kappa value level of agreement

0-0.20 slight

0.21-0.40 fair

0.61-0.80 moderate

0.81-1 almost perfect

ICC

ICC value level of agreement

0-0.5 poor

0.51-0.75 moderate

0.76-0.90 good

0.91-1 excellent

Table 2.1: Interpretation of the level of agreement between two scorers for Cohen’s kappa and
ICC values.

On the other hand, the ICC is used to measure the degree of agreement for continuous

quantitative variables. To transform epoch data to continuous variables, the time of every

phase is considered. For example, for both technicians, the number of epochs annotated

as stage 1 is summed up, and multiplied by the amount of time passed until that epoch.

Then, both results are compared. Like with Cohen’s Kappa, the result of the evaluation of this

measure lies in the range [0,1]. The scale of agreement, however, is defined differently (see

Table 2.1).

Several studies have shown the difficulty for different annotators to get a high level of agree-

ment while classifying sleep stages on the same PSG [13, 17–32]. The majority of these studies

analyze the inter-rater reliability, some others measure the intra-rater reliability. Inter-rater

reliability studies evaluate the level of agreement between two experts scoring the same PSG.

The intra-rater studies analyze the ability of single annotators to repeat their scoring.

Whitney et al. [24] analyzed the intra-rater reliability and measured an overall κ, ranging from

0.81 to 0.87. Their study involved three technicians scoring 20 PSGs using the R&K method.

Although this study had a small sample size of PSGs and technicians, it stands out as one of
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the rare studies in the literature where scorers had to label the same PSG twice. It is interesting

to note the intra-rater variability and its dependence on the stage being annotated.

Danker-Hopfe et al. [13] measured an overall inter-rater Cohen’s Kappa of κ = 0.6816 between

8 sleep centers. This study is important because of the sheer number of technicians involved,

and the number of PSGs annotated. Authors compared the score of ninety-six PSGs manually

scored by sixteen experts with the R&K method. The overall inter-score was computed consid-

ering five stages: NREM1, NREM2, SWS, REM, and Wake. It fell to κ = 0.6534 when NREM3

and NREM4 were treated separately.

In 2007, a literature review was performed on the inter-rater reliability which lead to the

proposition of current AASM annotation rules with the aim to increase the level of agreement

between experts [31]. However, the authors of the review concluded that: "No visual-based

scoring system will ever be perfect, as all methods are limited by the physiology of the human

eye and visual cortex, individual differences in scoring experience, and the ability to detect

events viewed using a 30-second epoch."1

A more recent work by Younes et al. [17] showed that the use of AASM method may increase

the global scoring reliability as also showed in the paper of Danker-Hopfe et al. [29] (overall κ

= 0.76). However, for some stages, the agreement remains low. They measured the inter-rater

reliability of 10 technicians on 70 PSGs annotated with the AASM method. On average they

got the following ICC for each state: awake = 0.84 (0.70-0.96), N1 = 0.69 (0.30-0.86), N2 = 0.65

(0.37-0.86), N3 = 0.63 (0.18-0.90), and REM = 0.75 (0.58-0.89).

Most studies arrived at the conclusion that the manual annotation of the sleep stages is

not reliable. The AASM committee went a step further by claiming that no visual scoring

techniques will ever get a high agreement.

2.3 Comparison of manual and automated scoring

With the arrival of computer-based scoring techniques (fully automated or computer-assisted),

research was performed to compare the inter-rater reliability of manual vs. computer-based

scoring. A review by Penzel et al. [33] from 2013, analyzed the result of 119 publications on

the subject and concluded that automatic sleep staging system is still at the beginning of its

development and can, therefore, be improved.

2.4 Computer-Assisted Scoring

First algorithms developed to perform automatic sleep stage scoring used more classic ML

techniques [14]. All Machine Learning (ML) algorithms follow a similar workflow which is

based on the extraction of information (features) in the data. The pipeline of these kinds of

1Silber et al. [31], p. 129
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algorithms can be described by the following steps:

• Data preprocessing: prepares the data to be classified by rescaling, transforming it. This

phase is also useful to detect noise or abnormal data.

• Feature extraction: This step involves extracting relevant information from the raw

data. The process can be linear or non-linear. Popular techniques include time domain

analysis, frequency domain analysis, and wavelet transform.

• Feature selection or dimensionality reduction: reduces the complexity of the problem

by choosing the most relevant features and removing the ones which have less impact.

A common technique is called principal component analysis (PCA).

• A model is then trained and tested to perform the classification.

The emergence of deep model architectures, which have demonstrated superior performance

compared to classical machine learning methods, has significantly influenced various do-

mains. Researchers have explored the application of these models in sleep stage classification

as well. One such model is the convolutional neural network (CNN). The key distinction from

traditional models lies in the fact that the CNN learns the extracted features autonomously,

rather than relying on a manual feature engineering process. A review of these algorithms

applied to sleep stage classification was conducted by Fiorillo et al. [14], where the majority

of the algorithms utilized CNN and RNN (Recurrent Neural Networks) architectures. These

models commonly employed various signals derived from PSG. The authors of the article

claimed that the future of these models in sleep staging is promising but requires further

research and development.

In the next section, we will categorize sleep-scoring algorithms into two groups: stateful and

stateless algorithms. Stateless algorithms lack temporal memory, meaning they are unable to

consider the preceding or succeeding epochs to derive more accurate labels for the current

epoch. On the other hand, stateful algorithms, as the name suggests, possess the capability to

infer sleep states by considering the sequence of epochs, thereby preserving past and future

memory.

2.4.1 Stateless algorithms

A paper of Boostani, Karimzadeh, and Nami [34] compared the classification of stateless

algorithms only based on EEG signals. One of the algorithms in this paper was developed by

Fraiwan [35] and is based on the random forest ML model. To realize this work they only used

a single EEG channel. For the preprocessing step, they did not use any particular method other

than normalizing and filtering the signal (baseline drift). The time-series signal is then split

into 30s windows. They decided to use hybrid methods of feature extraction which contains

two consecutive analysis:
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• A time-frequency analyzer which is a tool to compute time-frequency transform of

time series. In this paper they implemented three different tools to compare them:

Hilbert–Huang Transform, continuous Wavelet transform, and Choi–Williams distribu-

tion.

• Entropy Calculus which analyses the 2D time-frequency structure to detect the presence

of wave shapes described in Section 2.1. They extract seven features because they

consider two additional wave types (Beta 1 and 2). The calculation of entropy was done

using Renyi’s method.

Finally, with the seven features extracted, authors were able to train a Random Forest model

using Bootstrapping. They fixed the number of trees at 10 and the number of features per tree

at 4. The training and testing were done on 16 PSGs. They got a Kappa coefficient of 0.76 when

using the continuous wavelet transform.

Liang et al. [36] proposed an algorithm utilizing a linear classifier machine learning model.

The signal was preprocessed using an 8th-order filter. The processed signal was then used

in two different ways. Firstly, a multi-scale entropy calculation was performed to extract

features from the signal. Secondly, the signal was passed through an 8th-order filter again to

extract theta waves. The resulting coefficients were analyzed using an auto-regressive model.

The purpose of this second feature extraction, focused on theta waves, was to improve the

classification of the N1-stage, which is known to be challenging to identify. A linear classifier

was trained and tested using these extracted features. Additionally, eleven manually designed

rules were used to refine the final result. The algorithm achieved an overall Kappa coefficient

of 0.81 on the Physionet Public Database.

In 2018, Chambon et al. [1] developed a small CNN architecture, as described in their study [1].

The architecture incorporated a CNN layer to perform independent component analysis [37],

a linear spatial filtering technique. The model also included a series of CNN and max-pooling

layers to extract spectral features from the signals. Subsequently, class probabilities were

computed using a dense layer followed by a softmax activation function. The researchers

demonstrated that increasing the number of channels and incorporating multi-modal signals

such as EEG, EOG, and EMG improved the balanced accuracy of the model. To compare their

results, they employed a gradient boosting model that utilized manually chosen extracted

features based on an article by Lajnef et al. [38]. Both models were trained and tested on the

MASS dataset, specifically focusing on the SS3 subset.

A deeper 1D-CNN network was introduced by Satapathy and Loganathan [39]. The architec-

ture consists of nine convolution blocks, each containing a 1D-convolution layer, a batch

normalization layer, a ReLU activation layer, and a max-pooling layer. The model concludes

with two dense layers and a softmax activation layer. Similar to previous works, the researchers

employed multi-modal channels and achieved an accuracy of approximately 99% on their test

set. It is noteworthy that their experiments were conducted using the ISRUC-Sleep dataset.
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However, this remarkable accuracy is surprising considering that no other paper, even those

exploring deeper models, has achieved such levels of accuracy. The model may be overfitted

as they trained and tested the model using only five patients.

2.4.2 Stateful algorithms

Most recent stateful algorithms are recursive algorithms, often based on recurrent neural

network architectures (RNNs). These RNN algorithms typically operate directly on raw data,

without the need for manual feature extraction, and are capable of processing large amounts

of data. One common approach is to combine CNN layers with RNN layers. CNN networks are

used to create an embedding representation, while RNNs are able to model temporal context.

Recently, researchers have started exploring the application of transformer models, following

the work of Vaswani et al. [40], in sleep stage classification. For example, Eldele et al. [41] have

begun investigating the use of transformer models in this context.

The "DeepSleepNet" model, proposed by Supratak et al. [42], consists of two CNN networks

to extract time-invariant features. The resulting feature vectors from these networks are

concatenated and fed into two bidirectional LSTM layers to model the sleep sequence and

infer transition rules between epochs. Through 31-fold cross-validation using the MASS

dataset, they achieved a Cohen’s Kappa of 0.8. The use of two CNN networks aims to capture

different types of features, both temporal and spectral.

A similar architecture was designed by Biswal et al. [43], but they incorporated a spectrogram

representation as a preprocessing step. The spectrogram of each channel is passed through

two 1D-CNN blocks with different sizes. The features from all input channels are then con-

catenated and fed into a residual network composed of 16 convolutional blocks with 4 skip

connections. The output of the residual network is used as input for an RNN. Notably, this

work included cross-dataset analysis, where training was performed on the Massachusetts

General Hospital Sleep Laboratory dataset and testing was conducted on the Sleep Heart

Health Study dataset using 2 EEG channels. In this configuration, they achieved a Cohen’s

Kappa of 0.73.

Malafeev et al. [10] focused on generalizing from healthy sleep data to patient sleep data. They

explored four models: two feature-based models (manually chosen features) using a random

forest classifier combined with an HMM and an LSTM, and two models that directly processed

raw data using a combination of CNNs for feature extraction and LSTMs to incorporate

temporal context. Through intra-database analysis, training, validating, and testing on healthy

data, they obtained an overall Cohen’s Kappa of 0.8 for all models. However, they observed

lower results when training and validating with healthy data and testing on patient data.
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2.5 Datasets

To develop automatic algorithms for sleep stage classification there must be annotated PSG

data. Different datasets are available from the literature. Most popular databases are listed in

Table A.3. There exists a lot of PSG data that are publicly available, which is an interesting point

for reproducibility and comparison to previous work. More details on the specific datasets

selected for this work are given in the next chapter.

2.6 Scope of This Work

Only few papers actually studied generalization across different setups [10, 43, 44] by perform-

ing cross-database analysis. We decided to carry out this work in this direction by designing

protocols of evaluation (See Section 3.2.6) based on the generalization across setups, by

training and evaluating our models on different datasets.

We decided to scope this work to stateless algorithms by making the hypothesis that stateless

architectures are more robust to manual annotation and will be less biased toward different

setups and populations.
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3 Methods and Data

3.1 Data

3.1.1 EDF Datasets

The EDF dataset consists of two subsets recorded in different years and under different

conditions:

• ST-EDF subset: This subset was registered in 1994 under medical conditions. It includes

two nights’ PSG recordings from 22 individuals, one with temazepam intake and the

other with a placebo intake.

• SC-EDF subset: This subset was obtained between 1987 and 1991. It comprises two

20-hour PSG recordings from 78 individuals. The recordings were performed using a

modified walkman while one was pursuing normal activities.

Due to the differences in the methodology used to record the PSGs, we treat both subsets as

two distinct datasets.

3.1.2 MASS Datasets

The MASS dataset contains five subsets (SS1 to SS5). For this study, we specifically worked with

the third subset, SS3, as it is typically used in the literature [1, 42]. SS3 contains a substantial

number of PSGs (62 recordings) and all are healthy patients.

Our choice of datasets was guided by two main criteria: reproducibility and alignment with

existing literature. Consequently, we selected the Sleep-EDF and MASS datasets for our study.

Both datasets are publicly available, with the caveat that research ethics board approval is

required for accessing the MASS dataset. These datasets have been utilized in various previous

works, including those by Chambon et al. [1], Supratak et al. [42], Roy et al. [45], Perslev et al.

[46], Perslev [47], and Tsinalis, Matthews, and Guo [48].
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Table 3.1: Information about the number of subjects, their age, if they are sick or healthy and
the method used to annotate the PSG for the different datasets selected for this work.

Datasets Number of PSG
Age

(range)
Subjects

Annotation
(method)

ST-EDF
(Sleep-EDF)

44 18-79 22 healthy R&K

SC-EDF
(Sleep-EDF)

153 25-101 78 healthy R&K

SS3-MASS
(MASS)

62 20-69 62 healthy AASM

Table 3.1 offers general information about the datasets used in our study. It includes details

such as the number of PSG recordings, the age range of subjects, their health condition, and

the annotation method employed to label the PSGs. For this study, we made the choice to

work exclusively with healthy patients. This decision ensures that our analysis focuses on a

homogeneous group, facilitating clearer insights into the sleep patterns and characteristics of

healthy individuals. Additionally, we observe variations in the annotation method across the

different datasets.

Additionally, Table 3.2 describes the setup of each dataset used to perform the PSGs. It includes

the number of channels for EEG, EOG, EMG, and a list of any additional sensors utilized. By

examining this table, we can readily observe the differences in configurations across the

various datasets. Another aspect that stands out from the table is the variation in sampling

rates used in the recordings. The sampling rate is an essential factor as it directly impacts the

temporal resolution of the data.

To assess the generalization of our models across different setups, we aimed to use datasets

with diverse configurations. Figure 3.1 illustrates the EEG channel configuration for the

selected datasets. While EDF-ST and EDF-SC share the same channels, only three channels

are common between MASS (SS3) and EDF (ST and SC). Hence, the chosen datasets fulfill our

requirements for testing our hypothesis.
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Table 3.2: Information about the setup of the different sensors used while recording the PSGs
for each dataset. In parenthesis it is specified the sampling frequency of the channels

Datasets EEGh EOG EMG Other channels

ST-EDF
(Sleep-EDF)

3 channels
(100)

1 channel (100) 1 channel (100) EMb

SC-EDF
(Sleep-EDF)

3 channels
(100)

1 channel (100) 1 channel (1) RSc,RTd,EMb

SS3 (Mass)
20 channelse

(256)
2 channels

(256)
3 channels

(256)
ECG

a Fpz-Cz, Pz-Oz (Bipolar channels)
b Event marker
c Respiratory signal
d Rectal temperature
e C3, C4, Cz, F3, F4, F7, F8, O1, O2, P3, P4, Pz, T3, T4, T5, T6, Fz, Fp1, Fp2, Oz (referential

channels, reference = LER)

          

  

  

  

  

  

    

  

      

    

    

    

     

      

Fpz

Oz

LER

EDF (ST and SC)

EEG channels dataset setup

MASS (SS3)

Common SS3/ST/SC

Figure 3.1: EEG channel configuration for the selected datasets.
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3.2 Methods

Machine learning problems often follow a common workflow. An overview of this pipeline can

be seen in Figure 3.2. The following sections described the different choices and hypotheses

we made at each step of this workflow and which constitute our methodology of work. To make

this work proceed further and for reproducibility, we developed the different parts described

in the previous sections in a Python package named sleepless1.

Raw data Preprocessing Feature extraction Model Analysis

Figure 3.2: Generic machine learning workflow.

Sleepless is a Python package crafted around the principles of reproducibility and machine

learning. Its core functionalities are centered on the analysis of sleep data, particularly

polysomnography and corresponding labels obtained from various datasets. The package pro-

vides encapsulated modules that enable the loading of sleep data, the training and evaluation

of machine learning models, and the provision of tools for result analysis.

One of the package’s primary strengths lies in its ability to facilitate the training and evaluation

of machine learning models using frameworks such as Scikit-learn [49] and PyTorch [50].

These models are specifically tailored to classify different sleep phases, allowing users to gain

valuable insights into sleep patterns and associated phenomena.

Beyond the training and evaluation of machine learning models, sleepless offers sophisticated

tools for in-depth result analysis. Researchers can explore the outcomes of their models,

gaining a deeper understanding of the classification performance and potential areas for

improvement.

To maintain the package’s reliability and robustness, sleepless incorporates continuous inte-

gration and comprehensive testing protocols. These measures ensure that the functionality

remains intact across different environments, minimizing the risk of errors or inconsistencies.

To streamline collaboration and version control during development, we leveraged Git and

hosted our repository on GitLab. This enabled seamless code management, allowing multiple

contributors to work together efficiently.

Additionally, to enhance the usability and accessibility of Sleepless, we provided detailed

documentation on how to use the package effectively. This documentation serves as a valuable

resource for users, guiding them through the functionalities and implementation details.

Furthermore, to simplify the installation and distribution of the package, we utilized Conda [51]

packaging. Conda allowed users to easily install sleepless and manage its dependencies.

1https://pypi.org/project/sleepless/

20



3.2 Methods

Figure 3.3 illustrates the architecture of Sleepless, comprising encapsulated modules and a

command-line application for launching scripts to conduct experiments.

ENGINE

SS3-
MASS

SC-
EDF

Preprocessing

Preprocessing

ST-EDF
Preprocessing

Transformer/
Features
Extraction

Model ProbabilitiesTrain Predict Figures, TablesAnalyse

Train (training,
validation)

Test (test, all
other sets) 

Trainer Predictor
DATA

SCRIPTS

Experiment (CLI) 

Options (config files):

- Model/ Parameters (Model,
Training)

- Protocol

MODELS

Sleepless module

Figure 3.3: Architecture of the sleepless package.

3.2.1 Raw Data Loading

Each PSG comprises three essential components: a raw signal EDF file, an EDF file containing

expert annotations of the PSG, and metadata related to the patient, such as age and gender.

The loading of these files was facilitated using the MNE-Python package [52, 53], which offers

convenient functions for handling EDF files.

To create the three subsets of the datasets (train, validation, and test), we employed a random

split approach. The resulting splits were stored as JSON files within the package to ensure

reproducibility, making it possible for others to obtain the same subsets for their experiments.

3.2.2 Preprocessing

Label Fusion

Label fusion allows us to effectively manage datasets that might have variations in their

annotation rules. For our work, we opted to adopt the AASM method as the standard.

To achieve label fusion, we combined the S3 and S4 phases of the R&K annotation method and

mapped them to the N3 phase of the AASM annotation rule, following the mapping presented

in Table 3.3. This process assumes a uniform epoch length of 30 seconds across all datasets.
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Label Fusion

AASM Labels R&K Labels

Wake Wake

REM REM

N1 S1

N2 S2

N3 S3 and S4

Table 3.3: Label fusion technique to handle dataset with different annotation method.

Filtering

Following prior works [1, 39, 54, 55], we decided to apply a frequency filter to our data. The

frequencies of interest are distributed between 0.3 Hz and 30 Hz, so we chose to use a band-

pass filter to selectively retain this specific frequency range.

In signal processing applications, two types of digital filters exist: Finite Impulse Response

(FIR) and Infinite Impulse Response (IIR). Both types have different characteristics concerning

stability, latency, computation cost, and linearity of phases. For our purposes, we opted for

FIR filters, as they are widely used in the literature [1, 39, 54, 55]. Notably, we computed the

filter forward and backward to create a zero-phase filter, thereby avoiding any signal delays.

Powerline noise can often affect the raw data recorded by the electrodes. A common solution

to mitigate this noise is to use a notch filter, an Infinite Impulse Response (IIR) band-stop

filter designed to target specific frequency ranges. Powerline noise is typically present at

frequencies near 50 Hz (in Europe) or 60 Hz (in North America). However, in our case, we

anticipate that a notch filter will not be necessary. This is because we have already applied a

band-pass filter to all signals, restricting the frequency range to 0.3 Hz to 30 Hz, effectively

excluding the powerline noise frequencies. To confirm this hypothesis, we conducted tests on

the data. It is also important to note that the notch filter is not needed for the EDF datasets

since the sampling rate was 100 Hz. According to the Nyquist theorem, the highest frequency

that can be recorded is half of the sampling rate (50 Hz in this case), and thus, powerline noise

at 50 Hz is inherently filtered out.

We conducted a comparison between the implementations of two packages, MNE-Python [52,

53] and Scipy [56], using both EDF and MASS datasets. To perform the comparison, we selected

two EEG channels from a file in the EDF-SC and MASS dataset. We then plotted the Power

Spectral Density (PSD) of these channels before and after applying the filter in both packages.
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Additionally, we visualized the frequency and phase response for each implementation.

For both implementations, we designed a Finite Impulse Response (FIR) pass-band filter with

a frequency range between 0.3 Hz and 30 Hz. In Figure 3.4a, we presented the PSD of the

two EEG channels before and after applying the filtering process. Simultaneously, Figure 3.4b

illustrates the magnitude and phase response of the filters used. It is worth noting that we

implemented a zero-phase filter by applying the filter both forward and backward. In both

Figures 3.4, we observe that the cutoff frequency of the Scipy filter (blue curves) is closer to 30

Hz compared to the MNE-Python filter. In both cases (red and blue curves), the signal remains

unaltered between 0.3 Hz and 30 Hz, as evidenced by the overlap with the signal without any

filtering (black curves).
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Figure 3.4: Figure 3.4a illustrates the PSD of 2 EEG channels recorded from the ST7131J0
subject. The black curve represents the PSD without any filtering, while the red curve rep-
resents the PSD after applying a zero-phase pass-band filter using the MNE-Python library
implementation. Additionally, the blue curve represents the PSD after applying a zero-phase
pass-band filter using the Scipy package. In Figure 3.4b, we present the magnitude and phase
responses of the filters from both the MNE-Python and Scipy implementations.

We replicated the same process with a PSG from the MASS dataset, and we extended the

analysis to include notch filtering to verify the assumption made in Section 3.2.2 (i.e., no notch

filter is needed). Figure 3.5a presents the results, which are similar to those observed for the

EDF-SC PSG. The signals remain unchanged within the pass-band frequency range, and the

cut-off frequency of the Scipy filter is closer to 30 Hz, aligning with our previous observations.

Regarding the notch filter implementation, we observed that it is indeed unnecessary. The

PSD of the signal filtered with and without the notch filter is entirely superposed (yellow and

blue lines). This further confirms that the band-pass filtering alone successfully eliminates

the powerline noise frequencies, rendering the notch filter useless in this case.
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Figure 3.5: The Figure 3.5a displays the PSD of 2 EEG channels recorded from the 01-03-
0001 subject. The black curve represents the PSD without any filtering, while the red curve
represents the PSD after applying a zero-phase pass-band filter using the MNE-Python library
implementation. Similarly, the blue curve represents the PSD after applying a zero-phase
pass-band filter using the Scipy package. In addition, the green curve shows the PSD after
applying a notch filter to the raw signal. The yellow curve represents a combination of the
Scipy pass-band filter and the notch filter, and the purple curve represents a combination of
the MNE-Python pass-band filter and the notch filter. In Figure 3.5b, we present the magnitude
and phase responses for the different filters.

Channel Interpolation

The objective of channel interpolation is to estimate the electrical potential at a specific loca-

tion on the scalp where no electrode was present to record it. Although various interpolation

techniques are available, we opted to utilize the nearest neighbor interpolation method. While

it may not be considered the most advanced interpolation technique according to Perrin et al.

[57], it remains popular due to its ease of implementation and continued use in commercial

software and toolboxes, as mentioned by Svantesson et al. [58].

We chose this method to ensure the comparison of the same channel across all datasets. Since

the MASS dataset lacked recording from the Fpz location (Figure 3.1), we employed nearest

neighbor interpolation using the Fp1 and Fp2 locations to estimate the electrical potential at

Fpz.

V (x, y) =
∑k

i=1 vi d n
i∑k

i=1 d n
i

(3.1)

where:

• (x,y) is the location we want to interpolate the electrical potential of
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• vi the electrical potential of the i th neighbour electrode

• di the distance between (x,y) and (xi , yi ) the location of the i th neighbour electrode

The general nearest neighbors interpolation formula for k neighbors and of order n is de-

scribed by Equation 3.1. As we used only 2 neighbors and given their equidistance, the

equation simply becomes the mean of both electrical potentials.

Crop Wake Time

The PSGs of the EDF-SC dataset were recorded for periods exceeding 20 hours. However,

the majority of this time captures the participant when they were not sleeping, which is less

relevant for our specific goal of classifying sleep stages. To prevent any biases in the model,

we applied a cropping process to retain only the sleep periods. We kept a portion of the wake

time before and after the sleep period, extending it to 30 minutes on either side.

Bipolar Reference Computation

There are various methods to record the electrical potential for EEG channels. One common

approach is to record all electrodes with respect to a common reference, such as the Linked

Ears Reference (LER), as depicted in Figure 3.1. Another method involves using bipolar

electrodes, which was employed in the EDF datasets. In this case, the electrical potential

between two locations on the scalp (e.g., Fpz-Cz, Pz-Oz) is recorded.

The goal of bipolar reference computation is to estimate the electrical potential of brain

activity between two recorded electrodes. For instance, if T4 and T3 electrodes were recorded

with a LER reference, and we wish to determine the potential between T4 and T3, we can

compute it through bipolar reference computation. In this scenario, it simply involves taking

the difference between both electrodes, considering the common reference.

Since the EDF datasets were recorded with bipolar electrodes, and the MASS dataset used the

LER reference, we applied the bipolar reference computation technique to the MASS dataset.

This allows us to obtain the same bipolar electrode configuration as the one present in the

EDF datasets, enabling consistent and comparable analysis across the different datasets.

Re-sampling

The different datasets used in our study do not have the same sampling rate. While this

variation may not pose a problem when manually extracting features from the data, it becomes

an issue when working with a CNN since the filter sizes in the network must be defined with

respect to the sampling rate.

To enable the use of different datasets on the same CNN model and ensure consistency in
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the analysis, we aimed to establish a common sampling rate. Considering that the relevant

frequency range of interest lies between 0.3 Hz and 30 Hz, we made the decision to work with

a sampling rate of 100 Hz. By resampling the MASS dataset to 100 Hz, we harmonized the

sampling rate across all datasets.

3.2.3 Features Extraction

The extracted features used in our work can be selected through manual engineering, where

we choose the most relevant ones, or learned automatically using a CNN.

Table 3.4: List of features we worked with; Note: x represents a time-series of N samples, x̄
represents the mean of the data, B the number of bin in the PSD and faand fb the range of the
frequency bands

Name Formula Type of Features

Mean 1
N

∑N
i=1 x(i ) Temporal

Variance 1
N−1

∑N
i=1(x(i )− x̄)2 Temporal

Skewness
1
N

∑N
i=1(x(i )−x̄)3(

1
N−1

∑N
i=1(x(i )−x̄)2

)3/2 Temporal

Kurtosis
1
N

∑N
i=1(x(i )−x̄)4(

1
N−1

∑N
i=1(x(i )−x̄)2

)2 Temporal

75% Quantile 75th percentile of the data Temporal

Total Powera
∑ fb

k= fa
PSD[ f ]

fb− fa
Frequency

Relative Powera

∑ fb
k= fa

PSD[ f ]∑
f PSD[ f ]

fb− fa
Frequency

Relative Power Ratiob δ
θ , δα , δσ , δβ , θα , θσ , θβ , ασ , αβ , σβ Frequency

Spectral Entropyc − 1
log2(B)

∑B
f =1 P ( f ) log(P ( f )) Entropy

a We worked with 5 bands with the following frequency ranges: δ [0.5, 4.5], θ [4.5, 8.5], α [8.5,
11.5], σ [11.5, 15.5], β [15.5, 30]

b Ratio of the relative power value of each bands in all 10 possible combinations
c P ( f ) is the relative power value at frequency f

Our feature set consists of three types: time domain features, frequency domain features, and

non-linear features (entropy), as detailed in Table 3.4. Utilizing different types of features is

beneficial as they offer complementary information. Temporal features provide statistical

descriptions of the signal, capturing information about temporal variations. Spectral features
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enhance periodic patterns, while entropy features measure signal complexity and purity.

In addition to hand-crafted features, we also employed CNNs for learned feature extraction.

The principle of a simple CNN architecture is depicted in Figure 3.6. CNNs are highly effective

in signal processing, as they utilize convolutional layers to apply a series of filters to the input

signal, extracting relevant features through convolution. Each filter is designed to detect

specific patterns, and their weights are learned during the training process.

Figure 3.6: Example of CNN architecture, which is a stacking of Convolutional layers with
ReLu activation and max-pooling layers. (Source [59])

The convolution layers are typically followed by non-linear activation functions, such as ReLu

(Rectified Linear Unit). The presence of these activation functions is crucial to enable the

model to capture non-linear features present in the data. By stacking convolution and activa-

tion layers, CNNs can simultaneously identify various features at different levels of abstraction,

creating feature maps. To reduce the dimensionality of the feature maps and extract the

most relevant information, CNNs often incorporate max pooling. This downsampling process

reduces computational complexity while preserving essential information.

It is important to note that in our case, the CNN network and the classifier are combined as an

end-to-end model to ensure back-propagation through both the CNN and the classification

part during model training.
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3.2.4 Models

We used two types of models to classify our features, models based on decision-tree theory and

multi-layer perceptron (MLP). In the machine learning workflow, the model follows different

steps which are directly connected to the way we split our data (train/validation/test):

• Training is the process through which an optimization algorithm tunes the internal

parameters and weights of the model to minimize the loss function using the training

set. The loss function is a mathematical function that measures the performance of the

model according to the predictions of the model and actual values.

• Validation is used to perform grid-search or other techniques to find the best hyper-

parameters, which are parameters not internal to the model but still affect its perfor-

mance (e.g. learning rate). To choose the right hyper-parameters, the model is evaluated

on the validation set.

• During Evaluation, all parameters of the model are now fixed, and its performance is

reported using the test set.

To perform experiments, we implemented in our package 4 state-of-the-art algorithms, 2 are

hand-craft features based and 2 use CNN to extract features.

The hand-craft features based models and their scripts to train and evaluate the model have

been implemented with the Scikit-learn library [49]. The feature extraction process was

implemented in part with the MNE-Python package [52, 53]. The models using CNN and their

scripts to train and evaluate the model have been implemented with the PyTorch library [50].

MNE-Python [1, 52, 53] Tutorial With Random Forest Classifier

Firstly, we developed the algorithms part described in the documentation of the MNE-Python

library [1, 52, 53]. This implementation represents a simplified version of the one described in

Section 3.2.4. In this approach, we utilized only the relative power of PSD in 5 frequency bands,

as outlined in Table 3.4, resulting in 5 features per channel. Following the feature extraction

process, we employed a random forest model to classify the samples. A grid search was

performed to identify the optimal hyper-parameters for the model. These hyper-parameters

are described in 4.1.2.

Chambon CNN [1]

The model described in the paper by Chambon et al. [1] is an end-to-end network composed

of a CNN to extract features and a classifier. The model was built to handle both multivariate

channels and multi-modal channels.
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Input (B,C,T) 

unsqueeze
(B,1,C,T) 

Conv2d (B,C,1,T)
kernel size: (C,1)

stride: (1,1)

Permute (B,1,C,T)

Conv2d (B,8,C,T)
kernel size: (1,50)

stride: (1,1)

MaxPool2d
(B,8,C,T//12)

kernel size: (1,12)
stride: (1,12)

Conv2d (B,8,C,T)
kernel size: (1,50)

stride: (1,1)

MaxPool2d
(B,8,C,T//144)

kernel size: (1,12)
stride: (1,12)

Flatten
(B,8*C*T//144)

Dropout

Linear (B,5)

Output (B,5) 

Softmax

ReLu

ReLu

Figure 3.7: Architecture of the model from Chambon et al. [1] paper. The figure contains the
names and the output shape of the different layers. B represents the batch size, C the number
of channels, and T the number of data points.

The architecture of the model, as shown in Figure 3.7, consists of three parts:

1. A first 2D-convolutional layer is applied to the channels to perform linear filtering this

technique is similar to performing Independent Component Analysis (ICA) [60].

2. Then, two blocks are stacked, each composed of 1 2D-convolutional layer with a ReLU

activation function and a max-pooling layer, to extract the spectral features.

3. Finally, a dropout layer is utilized to avoid overfitting.

The classifier is composed of 1 dense layer and one softmax activation function. The dense

layer represents a fully connected layer of a Multi-Layer Perceptron (MLP) where the neurons

are fully interconnected. The model has a total of 6,033 parameters. For training, we employed

the weighted cross-entropy loss and the Adam optimizer algorithm.
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Chambon Hand-Craft Features [1] With Gradient Boosting Classifier

In the same paper by Chambon et al. [1], a comparison was made between the CNN model

and a hand-crafted feature-based algorithm. This hand-crafted approach employed all the

features described in Table 3.4, resulting in a total of 26 features per channel.

For classification, the authors implemented a gradient boosting model using the XGBoost

package [61]. A grid search was employed to determine the best hyper-parameters for this

model. These hyper-parameters are described in 4.1.2.

Satapathy Nine Layers CNN [39]

Similar to the Chambon CNN, the Satapathy Nine Layers CNN is an end-to-end model com-

prising a CNN for feature extraction and a classifier. This model is capable of handling both

multi-variate and multi-modal channels.

Input (B,C,T) 

Conv1d (B,16,T//4)
kernel size: 8

stride: 4

BatchNorm1d 

MaxPool1d
(B,16,T//8)

kernel size: 2
stride:  2

CNN Block X7
(B,64,1)

Flatten (B,64)

Linear (B,100)

ReLU

Linear (B,5)

Output (B,5) 

Softmax

ReLU

Conv1d (B,32,T//8)
kernel size: 3

stride: 1

BatchNorm1d 

MaxPool1d
(B,32,T//16)

kernel size: 2
stride: 2

ReLU

CNN
Block

Conv1d 
# filters: 64

kernel size: 3
stride: 1

BatchNorm1d 

MaxPool1d
kernel size: 2

stride: 2

ReLU

Figure 3.8: Architecture of the CNN model from the Satapathy and Loganathan [39] paper. The
figure contains the names and the output shape of the different layers. B represents the batch
size, C the number of channels, and T the number of data points.
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The architecture of the model is shown in Figure 3.8. The feature extraction part consists of

nine convolution blocks. Each block includes a 1D-convolutional layer, a batch normalization

layer, and a ReLU activation layer. The convolutional layers in each block have different filter

sizes to capture different information. Each block is followed by a max-pooling layer to reduce

the spatial dimensions of the features. The classifier is composed of 2 dense layers, with the

first layer followed by a ReLU activation function and the second layer by a Softmax activation

function. The model has a total of 90,285 parameters. For training, we employed the weighted

cross-entropy loss and the Adam optimizer algorithm.

3.2.5 Metrics

Metrics are an important topic in machine learning as they are directly related to the goals we

are trying to achieve or the hypotheses we are testing. Different metrics are often reported,

but there is a need for a main metric that will allow us to compare different systems, while

secondary metrics are reported to facilitate comparisons with the existing literature.

Table 3.5: Number and percentage for each class of labels and for each dataset

Dataset Wake Stage 1 Stage 2 Stage 3 REM Total

SC-EDF

(cropped)

66232

(34%)

21522

(11%)

69132

(35%)

13039

(7%)

25835

(13%)
195760

ST-EDF
4506

(11%)
3653 (9%)

19851

(46%)

13039

(15%)

25835

(19%)
42774

SS3-MASS
6442

(11%)
4839 (8%)

29802

(50%)

7653

(13%)

10581

(18%)
59317

The machine learning problem we are dealing with is an imbalanced problem due to the

nature of sleep. Specifically, the N2 phase is more prevalent than the others in a healthy person

as shown in Table 3.5. This characteristic has led us to choose the balanced accuracy as the

main metric. By using this metric, we make the assumption that it will prevent the model from

overfitting to the most frequent class and thus enable better generalization. Additionally, we

report accuracy and Cohen’s Kappa to facilitate comparisons with the existing literature.

Before defining all these metrics, let’s first define some terms related to a binary classification

problem. We will then extend them to a multi-class classification problem 2:

2Refer to Grandini, Bagli, and Visani [62] for examples and more detailed explanations on multi-class metrics

31



Chapter 3. Methods and Data

• True Positive (TP): The output is a TP if the predicted value and the true value are both

positive.

• True Negative (TN): The output is a TN if the predicted value and the true value are both

negative.

• False Positive (FP): The output is an FP if the predicted value is positive, but the true

value is actually negative.

• False Negative (FN): The output is an FN if the predicted value is negative, but the true

value is actually positive.

(a) Example of a confusion matrix for a binary clas-
sification problem. (Source [63])

(b) Example of a confusion matrix for a multi-class
classification problem. (Source [64])

Figure 3.9: Figure 3.9a shows an example of a confusion matrix for a binary classification
problem, where the task is to estimate if an individual is sick or not. Figure 3.9b shows the
distribution of TP, TN, FP, and FN for the ck class in a multi-class classification problem.

An example of binary classification problem outputs can be seen in Figure 3.9a. To extend

TP, TN, FP, and FN to multi-class, we use the one-vs-all classification solution. This means

computing N binary classifications for an N-class classification problem. Figure 3.9b shows

an example of this process for the ck class, considering ck as positive and all other classes as

negatives. By following this principle for all classes, we build the multi-class confusion matrix.

Accuracy

The accuracy of a model is a measure of its ability to make correct predictions. For a confusion

matrix M of an N-class classification problem, the accuracy is defined by Equation 3.2.

Accuracy =
∑N

i T Pi

t
(3.2)

where:
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• t =∑N
i

∑N
j Mi j , the total number of elements in the matrix M .

Balanced Accuracy

The balanced accuracy for a multi-class problem is simply the average of the recall of each

class, which gives Equation 3.3 for an N-class classification problem. The recall is the accuracy

score for each class respectively. From the confusion matrix, it means to take, for each class,

the diagonal element (TP) and divide it by the sum of all elements in the row.

Balanced Accuracy =
∑N

i
T Pi

T Pi+F Ni

N
(3.3)

Cohen’s Kappa

Cohen’s Kappa is a metric used to compute the inter-rater agreement between two scorers,

as explained in Section 2.2. For a confusion matrix M of an N-class classification problem,

Cohen’s Kappa follows Equation 3.4.

Cohen’s Kappa =
∑N

i=1 T Pi × t −∑N
c

∑N
i Mci ×∑N

i Mi c

t 2 −∑N
c

∑N
i Mci ×∑N

i Mi c
(3.4)

where:

• t =∑N
i

∑N
j Mi j , the total number of elements in the matrix M .

•
∑N

i Mci is the sum of predictions for the class c (sum of column elements).

•
∑N

i Mi c is the sum of positive true cases for the class c (sum of row elements).

3.2.6 Evaluation Protocol

Following our goal of testing the generalization capacity across datasets of our models,we

developed three different protocols described in Table 3.6, where for each one, one dataset is

used for training, and the other ones are used for cross-dataset analysis.

Each dataset is composed of three subsets (train/validation/test). while running, we reported

the balanced accuracy (our metric) for each subset of each dataset to perform analysis. How-

ever, to compare the different models in our experiments, we need a way to aggregate the

results of each subset to get a unique score.

To achieve this, we designed the evaluation protocol as shown in Figure 3.10. As we are

interested in cross-dataset results, we aggregated only the datasets that have not been used in
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Table 3.6: Dataset composition of the different protocols and what they have been used for
(train/validation or test) as well as the preprocessing techniques which have been applied to
each dataset.

Protocol ST-EDF (Sleep-EDF) SC-EDF (Sleep-EDF) SS3 (MASS)

EDF-MASSA Traina Testa Testb

EDF-MASSD Testa Testa Trainb

EDF-MASSE Testa Trainc Testb

a Filtering, Label Fusion
b Filtering, Channel Fusion, Bipolar Reference Computation, Re-sampling
c Filtering, Label Fusion, Crop Wake Time
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Figure 3.10: Evaluation protocol for EDF-MASSA protocol
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the training process. We combined the training and validation subsets to compute a validation

cross-dataset balanced accuracy score, and the test subsets were used to calculate a test

cross-dataset balanced accuracy score.

Weighted average =
∑

i Balanced Accuracyi ×wi∑
i wi

(3.5)

where:

• wi is the number of 30s-windows in the i th subset.

• Balanced Accuracyi is the balanced accuracy score of the i th subset.

To aggregate the balanced accuracy of the different subsets, we used the weighted average

described by Equation 3.5.

While performing an experiment, the best model will be the one with the highest validation

cross-dataset balanced accuracy score, and the test cross-dataset balanced accuracy score will

be reported.

3.2.7 Fusion of multi-modal data

Multi-modal fusion is a technique used within machine learning to combine information from

different modalities or sources. There are different ways of fusing multivariate or multi-modal

data, and this fusion can be performed at various stages in the machine learning pipeline.

The objective of multi-modal fusion is to create a more comprehensive representation by

leveraging complementary information available from various sources

Figure 3.11 illustrates the working flow of the three fusion methods utilized in this study: early,

mid, and late fusion. Early fusion is a data-level fusion method that involves stacking the

input data together. Mid fusion, on the other hand, is a feature fusion method where the

feature vectors are concatenated to combine the information. Lastly, late fusion is a decision

fusion method, which is achieved by performing a weighted sum of the predictions from each

classifier.
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Data (modality 1)
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Figure 3.11: Different methods of fusion for multi-modality data. Pipeline 1 fuses the raw data,
the second pipeline fuses the extracted features, and the last pipeline fuses the classification
predictions. (Inspired from [65])
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Throughout this work, we conducted several experiments on our models, and in this section,

we present eight of these experiments. Table A.2 provides the naming convention and com-

mand line for reproducing the experiments with the sleepless package using the hand-crafted

feature extraction model, while Table A.1 provides the same information for the CNN model.

4.1 Experimental Setup

4.1.1 Channels

As explained in the previous Section 3, initially, we decided to work with similar channels.

Since the SC-EDF and ST-EDF datasets share two channels (Fpz-Cz and Pz-Oz), we computed

these two channels for the SS3-MASS dataset. We achieved this by interpolating Fpz with Fp1

and Fp2. Subsequently, we calculated a bipolar reference between the interpolated channel

Fpz-LER and Cz-LER to get Fpz-Cz, as well as between Pz-LER and Oz-LER to obtain Pz-Oz.

A similar operation was performed for the other modalities (EOG, EMG) of the SS3-MASS

dataset. Computation of bipolar reference for the EOG and average combination of channels

for the EMG.

4.1.2 Grid-Search

For classic machine learning algorithms like random forest and gradient boosting, we per-

formed hyperparameter selection using grid search.

In the case of the random forest model, we optimized the following hyperparameters:

• Number of estimators: [100, 200, 300]

• Maximum depth: [4, 6, 8, 10]
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• Criterion: [’gini’, ’entropy’, ’log_loss’]

• Bootstrap: [True, False]

• Class weight: [’balanced’, None]

Similarly, for the gradient boosting model, we selected the following hyperparameters:

• Learning rate: [10e-4, 10e-3, 10e-2]

• Minimum child weight: [2, 4, 6, 8, 10]

• Maximum depth: [2, 4, 6, 8, 10]

• Alpha: [0, 0.5, 1]

• Column sampling by level: [0.5, 0.75, 1]

By systematically evaluating the performance of the models with different combinations of

these hyperparameters through grid search, we aim to identify the optimal set of hyperpa-

rameters that maximize the models’ balanced accuracy. This process was performed with the

training and validation intra-dataset.

In the case of a neural network model, the validation set is used to choose the optimal model

and assess the quality of the training process through learning curves.

4.2 Experiment 1: Gradient boosting versus random forest

In this first experiment, we decided to compute the results of our MNE baseline described in

Section 3.2.4 with 2 EEG channels Fpz-Cz and Pz-Oz. The method used to fuse information is

the mid fusion technique described in Section 3.2.7. Additionally, we replaced the random

forest with a gradient boosting model for comparison.

The objective of this experiment was to assess and compare the classification performance of

the gradient boosting model against the random forest model. We anticipated that gradient

boosting, known for its ability to mitigate overfitting and enhance generalization, would

outperform the random forest algorithm.

For each experiment, we conducted an intra-database analysis of each model to assess the

quality of the training process. As an example, we analyzed the random forest model trained on

the SC-EDF dataset (EDF-MASS-E). Through a grid search, we identified the following chosen

parameters: number of estimators: 100, maximum depth: 10, criterion: entropy, bootstrap:

True, class weight: balanced.
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4.2 Experiment 1: Gradient boosting versus random forest

Subset Train Validation Test

Balanced accuracy 0.72 0.73 0.68

Table 4.1: Experiment 1: Intra-dataset balanced accuracy score for the random forest model
trained on the SC-EDF dataset.

Considering our evaluation metric, which is the balanced accuracy, it is appropriate to set the

class weight parameter to ’balanced’ due to the dataset’s imbalance. Furthermore, since the

maximum depth parameter reached the highest possible value, we needed to verify that the

model did not suffer from overfitting. In the random forest model, a high value of maximum

depth often indicates a potential overfitting issue.

Table 4.1 displays the intra-dataset balanced accuracy scores. We observe that the validation

set score is slightly higher than the training score, which confirms that the model did not

overfit. This observation is further supported by the test set score, which is also very close to

the training and validation scores.

Figure 4.1 illustrates the results of our experiment, for our three protocols. We can observe

that our hypothesis is not confirmed as for the three protocols the random forest model gets a

better validation score.
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Figure 4.1: Validation and test aggregated balanced accuracy for random forest and gradi-
ent boosting model with the MNE baseline feature extraction algorithm. The results were
computed for 3 protocols EDF-MASS-A, EDF-MASS-D, and EDF-MASS-E where the models
were trained respectively on ST-EDF, SC-EDF, and SS3-MASS datasets. Two EEG channels,
specifically Fpz-Cz and Pz-Oz, were used as input for the models.
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4.3 Experiment 2: What is the effect of increasing the number of features?

4.3 Experiment 2: What is the effect of increasing the number of

features?

To analyze the effect of increasing the number of features, we compared three models. The

first model was a random forest with 5 features extracted (MNE baseline) per channel, which

was determined as the best model in the previous experiment. The second model was a

gradient boosting model with 26 features extracted (Chambon hand-Craft features baseline)

per channel. Additionally, based on the results of the previous experiments, we implemented

a random forest model using the features extracted from the Chambon hand-Craft features

baseline. All of these results were computed using 2 EEG channels.

Subset Train Validation Test

Balanced accuracy 0.84 0.85 0.68

Chambon et al. [1] Balanced accuracy N/A N/A 0.7

Table 4.2: Experiment 2: Intra-dataset balanced accuracy score for the gradient boosting
model trained on the ST-EDF dataset.

If we examine the intra-database results of the gradient boosting model with the Chambon

feature extractor algorithm presented in Table 4.2 for the EDF-MASS-A protocol, we can

observe the training quality of the model. This is evident from the close proximity of the

training and validation scores. However, there may be slight overfitting, as indicated by the

performance gap between the validation and test sets.

In their paper, Chambon et al. [1] achieved a balanced accuracy of approximately 70% for 2 EEG

channels on their test set using gradient boosting. This result is comparable to our obtained

balanced accuracy of 68% for the EDF-MASS-A protocol which validates our implementation.

From Figure 4.2, we can draw two conclusions. Firstly, it confirms the findings of the first ex-

periment that the random forest model outperforms the gradient boosting model for all three

protocols. Secondly, we observed that the Chambon feature extraction algorithm achieved

higher validation aggregated balanced accuracy scores for all protocols. This result was ex-

pected because the Chambon features include a wider range of information, such as frequency,

temporal, and entropy, whereas the MNE features are limited to frequency information only.

Therefore, the Chambon features bring complementary and wider information, leading to

improved performance.
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Figure 4.2: Validation and test aggregated balanced accuracy for random forest, gradient
boosting model with the Chambon baseline feature extraction algorithm and for random
forest model with the MNE baseline feature extraction algorithm. The results were computed
for 3 protocols EDF-MASS-A, EDF-MASS-D, and EDF-MASS-E where the models were trained
respectively on ST-EDF, SC-EDF, and SS3-MASS datasets. Two EEG channels, specifically
Fpz-Cz and Pz-Oz, were used as input for the models.
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4.4 Experiment 3: What is the influence of the location and the number of EEG channels?

4.4 Experiment 3: What is the influence of the location and the num-

ber of EEG channels?

To conduct this experiment, we selected the best algorithm from previous experiments, which

is the random forest with the Chambon baseline feature extraction method using 2 EEG

channels. Additionally, we computed the results for the same model and feature extraction

algorithm, but for each channel separately: Fpz-Cz and Pz-Oz.
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Figure 4.3: Validation and test aggregated balanced accuracy for random forest with the
Chambon baseline feature extraction algorithm. The results were computed for 3 protocols
EDF-MASS-A, EDF-MASS-D, EDF-MASS-E where the models were trained respectively on
ST-EDF, SC-EDF and SS3-MASS datasets. Three models were trained: one on both Fpz-Cz and
Pz-Oz channels, one on Fpz-Cz channel only, and one on Pz-Oz channel only.

The Figure 4.3 demonstrates that the model computed with 2 EEG channels as input outper-

forms the models using individual channels for all three protocols. It is evident that not all

channels contribute equally to the classification of sleep stages. Specifically, the Pz-Cz channel

seems to contain more relevant information for sleep stage classification compared to the

Fpz-Cz channel. However, the utilization of both channels appears to provide complementary

information, resulting in an increase ranging between 3 and 7% in the validation aggregated

balanced accuracy for the model incorporating both channels.
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4.5 Experiment 4: Which modality brings the more information?

For this experiment, our aim was to analyze the classification scores obtained for each individ-

ual modality. We specifically selected EEG, EOG, and EMG as the modalities for this study. we

employed the same Chambon feature extraction algorithm along with a random forest model

for all modalities.
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Figure 4.4: Validation and test aggregated balanced accuracy for random forest with the
Chambon baseline feature extraction algorithm. The results were computed for 3 protocols
EDF-MASS-A, EDF-MASS-D, EDF-MASS-E where the models were trained respectively on
ST-EDF, SC-EDF and SS3-MASS datasets. Three models were trained: one on both Fpz-Cz and
Pz-Oz channels, one on the EOG channel, and one on the EMG channel.

Figure 4.4 demonstrates that the models trained on the EEG channels exhibit higher accuracy

across all three protocols. The models trained on the EOG modality ranked second and

achieved nearly 60% aggregated balanced accuracy, except for the EDF-MASS-D protocol. It

appears that the EDF-MASS-D protocol has lower generalization capabilities compared to

the other protocols for this particular modality. Additionally, it is worth noting that the EMG

modality did not exhibit any generalization capacity, as indicated by its aggregated balanced

accuracy of 20% across all protocols.
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4.6 Experiment 5: Is mid fusion of modalities improve performance?

4.6 Experiment 5: Is mid fusion of modalities improve performance?

We decided to analyze the impact of fusing modalities using a mid fusion method, specifically

by concatenating the features extracted by the feature extractor algorithm. Building upon the

previous experiment, we employed a random forest model with a Chambon feature extractor

algorithm. We performed the following fusion combinations: EEG + EOG, EEG + EMG, EEG +

EOG + EMG. We compared the results of these fusion combinations with the model that solely

utilized EEG, which was the best-performing model we obtained thus far.
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Figure 4.5: The aggregated balanced accuracy for validation and test sets was computed using
the random forest algorithm with the Chambon baseline feature extraction algorithm. The
results were obtained for three protocols: EDF-MASS-A, EDF-MASS-D, and EDF-MASS-E.
The models were trained on the ST-EDF, SC-EDF, and SS3-MASS datasets, respectively. Four
models were trained: one using both Fpz-Cz and Pz-Oz channels, one using a mid fusion of
EEG + EOG channels, one using a mid fusion of EEG + EMG channels, and one using a mid
fusion of EEG + EMG + EOG channels.

Figure 4.5 illustrates that, across all three protocols, the mid fusion combination of EEG +

EOG demonstrates a higher aggregated balanced accuracy compared to using EEG alone.

Furthermore, the inclusion of the EMG modality reduces the generalization capacity of the

model. This observation aligns with the findings from Experiment 5, where the EMG modality

exhibited no generalization capacity and instead introduced noisy information for the clas-
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sifier. Hence, it can be inferred that incorporating the EMG modality does not contribute

beneficial information for classification and may even degrade the performance of the model.

Figure 4.6: The different confusion matrices illustrate the classification results of a random
forest model that solely uses the EMG channel. The top section displays the outcomes for
the train (left) and test (right) subsets of the ST-EDF dataset, while the bottom section shows
the cross-dataset confusion matrices for the train subsets of the EDF-SC (left) and MASS-SS3
(right) datasets.

One conceivable hypothesis to account for the suboptimal outcomes observed within the

EMG modality pertains to a deficiency in generalization capability. This phenomenon is

notably exemplified through the visualization presented in Figure 4.6. The depicted confusion

matrices are a product of employing a random forest model exclusively trained on the EMG

channel, and they serve as a representation of this observed trend. While these results are

anchored in the context of the EDF-MASS-A protocol, comparable trends manifest across

diverse protocols.

By closely examining the depicted figure and scrutinizing the train and test subsets, we discern

that the model has the capacity to learn patterns from the EMG channel. The outcomes in the

test subsets, although not optimal (some sleep stages under 50% of accuracy), manifest the

model’s ability to effectively classify certain sleep stages, notably stages W (Wake) and REM

(Rapid Eye Movement), albeit with a degree of limited precision.
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4.7 Experiment 6: Is late fusion better than mid fusion?

Upon meticulous examination of the lowermost confusion matrices presented in Figure 4.6,

specifically those pertaining to the edf sc and masss ss3 train subsets, a pronounced deficiency

in generalization becomes conspicuously manifest. It is crucial to emphasize that the model

under consideration was exclusively trained on edf st datasets.

The deficiency in generalization could potentially be attributed to the inherent nature of

utilizing EMG signals for sleep stage classification. The classification process reliant on EMG

involves interpreting the absolute level of muscle tonus, which could inherently vary across

different experimental setups and datasets.

4.7 Experiment 6: Is late fusion better than mid fusion?

In this experiment, we compared the best results from Experiment 5 (mid fusion) with a

late fusion technique for the same combination of modality EEG + EOG. We performed the

weighted sum of predictions as described in Equation 4.1, and conducted the experiment for

10 values of α ranging between 0 and 1, evenly spaced.

Late Fusion Prediction =α ·Pr edi ct i onEEG + (1−α) ·Pr edi ct i onEOG (4.1)

Where:

• Pr edi ct i onEEG are the predictions from the model rf chambon 2eeg

• Pr edi ct i onEOG are the predictions from rf chambon 1eog

Figure 4.7 illustrates that the mid fusion technique achieved a higher score than the late fusion

method. Across all three protocols, increasing the parameter α, which gives more weight to

the classifier trained solely on EEG, improved the performance until an alpha value of 0.6.

However, beyond an alpha of 0.6, the performance started to decrease.
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Figure 4.7: The validation and test aggregated balanced accuracy for the random forest algo-
rithm with the Chambon baseline feature extraction algorithm was computed for the protocol
EDF-MASS-E. The models were trained on the SC-EDF dataset. One model was trained using
a mid fusion of EEG + EOG channels. Additionally, a weighting sum (late fusion) approach was
employed to combine the predictions of a model trained solely on EEG and a model trained
solely on EOG, using different alpha values. The parameter alpha determines the weight given
to the model trained on EEG channels, with increasing alpha resulting in a higher weight for
the EEG model in the fusion process.
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4.8 Experiment 7: Is a learnable feature extraction model better than a manually chosen
feature algorithm?

4.8 Experiment 7: Is a learnable feature extraction model better

than a manually chosen feature algorithm?

We subsequently opted to explore models with a learnable feature extraction layer, such as

CNN, and compare their results with the random forest model using the Chambon feature

extractor algorithm. For this experiment, we computed the results for the Chambon CNN

model, described in Section 3.2.4. Building upon the previous experiments, we trained the

CNN model using both EEG and EOG channels, employing an early fusion method (signal

stacking) to combine the input data.
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Figure 4.8: Learning curves over epochs for the Chambon CNN model trained and validated
on the SS3-MASS dataset.

Figure 4.8 displays the learning curves of the CNN model trained on the EDF-MASS-D protocol.

The figure indicates that both the validation and training curves have reached a plateau,

suggesting that the model has converged. However, there is a noticeable gap between the

training and validation curves, which typically indicates overfitting. It is important to note that

since the validation curve does not increase further towards the end of training, it suggests

that the overfitting is minimal.

In their paper, Chambon et al. [1] achieved a balanced accuracy of 80% on their test set using
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Subset Train Validation Test

Our Balanced accuracy 0.82 0.75 0.79

Chambon et al. [1] Balanced accuracy N/A N/A 0.8

Table 4.3: Experiment 7: Intra-dataset balanced accuracy score for the Chambon CNN model
trained on the SS3-MASS dataset.
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Test

Figure 4.9: The validation and test aggregated balanced accuracy were computed for the
random forest model utilizing the Chambon baseline feature extraction algorithm and for
the Chambon CNN model for three protocols: EDF-MASS-A, EDF-MASS-D, and EDF-MASS-
E. The models were trained on the ST-EDF, SC-EDF, and SS3-MASS datasets, respectively.
Both models were trained using a combination of EEG + EOG channels. However, the CNN
model employed an early fusion method, while the random forest model utilized a mid fusion
technique.
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4.9 Experiment 8: Does an increase in the number of parameters increases the balanced
accuracy?

their CNN model, which was trained on a combination of EEG and EOF channels. Table 4.3

presents the results of our CNN model trained on the SS3-MASS dataset. It can be observed

that our model obtained a similar balanced accuracy score of 79% on the test set.

Figure 4.9 demonstrates that the aggregated balanced accuracy of the CNN models is slightly

lower compared to the random forest model using hand-crafted features. Although the differ-

ence is relatively small, ranging from 1-4%, the random forest with Chambon feature extractor

algorithm is still the better model for each protocol.

4.9 Experiment 8: Does an increase in the number of parameters

increases the balanced accuracy?

In this experiment, we computed the results for the model from the paper by Satapathy and

Loganathan [39]. The aim of this experiment is to analyze the effect of increasing the number

of parameters on generalization. Specifically, the Chambon CNN model used in our study

has only 6,033 parameters, whereas the nine-layer CNN described in Section 3.2.4 has 90,285

parameters.

Subset Train Validation Test

Our Accuracy 0.77 0.74 0.71

Satapathy and Loganathan [39] Accuracy 0.98 N/A 0.98

Table 4.4: Experiment 8: Intra-dataset accuracy score for the Satapathy CNN model trained on
the SC-EDF dataset.

Looking at Table 4.4, we can compare our accuracy score with the score obtained in the

paper [39]. On their test set, they achieved an accuracy of 98% with only one EEG channel,

whereas we obtained an accuracy of 71% with a combination of EEG+EOG channels on our

test set. Based on these results, we could estimate that the model was underfit and could be

trained further. However, examining the learning curve in Figure 4.10, we observe that while

the training curves continue to decrease at the end of training, the validation curves have

already reached a plateau. This indicates that further training would overfit the model.

Another reason to explain the difference in results is that our protocol did not contain enough

samples to train a model with that many parameters. However, in [39], they used only 2,625

30-second windows to train their model, whereas we used 122,278 30-second windows for

training. We were then unable to reproduce comparable results.

Figure 4.11 demonstrates that for our three protocols, increasing the number of parameters

decreases the aggregated balanced accuracy score. The Chambon CNN model achieved a

higher aggregated balanced accuracy, ranging between 4-5
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Figure 4.10: Learning curves over epochs for the Chambon CNN model trained and validated
on the SC-EDF dataset.
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4.9 Experiment 8: Does an increase in the number of parameters increases the balanced
accuracy?
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Figure 4.11: The validation and test aggregated balanced accuracy were computed for the
random forest model utilizing the Chambon baseline CNN model and for the Satapathy CNN
model for three protocols: EDF-MASS-A, EDF-MASS-D, and EDF-MASS-E. The models were
trained on the ST-EDF, SC-EDF, and SS3-MASS datasets, respectively. Both models were trained
using a combination of EEG + EOG channels. However, the CNN model employed an early
fusion method, while the random forest model utilized a mid fusion technique.
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Conclusion

From all our experiments, we can draw the conclusion that the random forest model with the

Chambon hand-crafted feature extractor for a combination of EEG+EOG channels achieved

the highest validation aggregated balanced accuracy. This indicates that this model has better

generalization across different setups.

We initially expected that a learnable feature extractor model would outperform this baseline,

as has been observed in various fields of machine learning. However, considering our specific

experimental setups and evaluation protocol, we did not surpass the performance of the

random forest model with hand-crafted features.

From the results of these experiments, we compared the performance of our best model with

the human inter-rater Cohen’s Kappa. Our model achieved a Cohen’s Kappa on the intra-

database test set ranging from 0.67 to 0.72, depending on the protocols. Our model did not

surpass the inter-rater score of humans, which was reported to be a Cohen’s Kappa of 0.76 [29].

The failure to outperform the random forest model with CNN models and to surpass the

inter-rater score of humans may be attributed to the evaluation protocols we designed and

the metrics we decided to work with. Investigating these two aspects could provide valuable

insights for further advancement of this work.

Further investigation can be conducted in the field of stateful algorithms. Addressing the

intricate classification of sleep stage 1, tied to transition rules, presents a promising avenue

for enhancement. Similarly, refining the classification of sleep stage 2, which is notably

intertwined with the sleep stage of preceding windows-epochs, could likely be improved by

employing models that incorporate a memory system.

Future works could also conduct experiments on the algorithm’s fairness concerning health,

gender, and age. Investigating this aspect was one of our primary research questions, and we

have developed the necessary tools to analyze the outcomes. However, due to constraints, we

were unable to carry out experiments to empirically test our hypotheses pertaining to this

inquiry.
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A An appendix

Table A.1: Explanation of the naming convention used in this work and the respective comm-
mand line to reproduce the experiment in the sleepless package

Name Model Channels Command Linea

cnn chambon 2eeg
1eog

CNNb Fpz-Cz, Pz-Oz,
horizontal

chambon-
noscheduler

cnn 9l 2eeg 1eog CNNc Fpz-Cz, Pz-Oz,
horizontal

ninel-cnn

a model config file name to reproduce the experiment with the sleepless package
b Chambon-baseline see Section 3.2.4
c Satapathy-baseline see Section 3.2.4
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Table A.2: Explanation of the naming convention used in this work and the respective com-
mmand line to reproduce the experiment in the sleepless package for the manually chosen
extraction techniques.

Name Model
Feature

Extraction
Channels

Command
Linea

rf mne 2eeg random forest MNEb Fpz-Cz and
Pz-Oz

rf-gs-mne

xgb mne 2eeg
gradient
boosting

MNEb Fpz-Cz and
Pz-Oz

xgb-gs-mne

rf chambon
2eeg

random forest Chambonc Fpz-Cz and
Pz-Oz

rf-gs-chambon

xgb chambon
2eeg

gradient
boosting

Chambonc Fpz-Cz and
Pz-Oz

xgb-gs-mne

rf chambon
fpzcz

random forest Chambonc Fpz-Cz rf-gs-chambon

rf chambon
pzoz

random forest Chambonc Pz-Oz rf-gs-chambon

rf chambon
1emg

random forest Chambonc Submental rf-gs-chambon

rf chambon
1eog

random forest Chambonc Horizontal rf-gs-chambon

rf chambon
2eeg 1emg

random forest Chambonc Fpz-Cz, Pz-Oz
and submental

rf-gs-chambon

rf chambon
2eeg 1eog

random forest Chambonc Fpz-Cz, Pz-Oz
and horizontal

rf-gs-chambon

rf chambon
2eeg 1eog 1emg

random forest Chambonc
Fpz-Cz, Pz-Oz,
horizontal and

submental
rf-gs-chambon

a Model config file name to reproduce the experiment with the sleepless package
b MNE-baseline see Section 3.2.4
c Chambon-baseline hand-craft feature see Section 3.2.4
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Table A.3: List of the most popular datasets in the literature.

Datasets Number of PSG Subjects Accessibility

Mass [66] 200 healthy and patients public a

MIT-BIH [67] 18 patients public

CAP [68] 108 healthy and patients public

Haaglanden
Medisch

Centrum [69]
151 healthy public

Sleep Apnea [70] 25 patients public

Sleep-EDF [71] 197 healthy public

Dreams
database [72]

47 healthy and patients public

Siesta [73] [74] 295 healthy and patients private

Massachusetts
General Hospital
Sleep Laboratory

10000 healthy private

Sleep Heart Health
Study [75] [76]

5804 patients public

Psychiatry and
Neurology in

Warsaw
43 patients private

Wisconsin Sleep
Cohort

2310 healthy and patients private

ISRUC-Sleep [77] 116 healthy and patients public

University of
Zurich [78]

54 healthy private

a Need research ethic board approval
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