
TROPER
HCRAESER

PAIDI

SENTIMENT ANALYSIS USING PRETRAINED
LLMS

Alexandre Huou Petr Motliceka

Esaú VILLATORO-TELLO b

Idiap-RR-05-2024

JULY 2024

aEPFL
bIdiap

Centre du Parc, Centre du Parc, Rue Marconi 19, CH - 1920 Martigny
T +41 27 721 77 11 F +41 27 721 77 12 info@idiap.ch www.idiap.ch

Report
Bachelor Semester Project

Sentiment Analysis
using pretrained LLMs
by Alexandre Huou (SCIPER 342227)

Communication Systems, BA6
8 ECTS

Supervised by

Prof. Petr Motlicek
Dr. Esau Villatoro

Contents

1 Introduction 1

2 Related Work 1
2.1 IDIAP’s Audio Sentiment Analysis Model . 1

3 Dataset 1
3.1 Dataset Preprocessing . 1

4 Method Implemented 3
4.1 GPU Acceleration . 3
4.2 Model Misclassifications . 3
4.3 Ideas for improving the accuracy . 4
4.4 3-shot prompting . 4

5 Baselines 5
5.1 Performance with ML Classifiers . 5
5.2 Performance with Roberta . 5
5.3 Results . 5

6 Conclusion 6

References 7

Spring Semester - 2024

1 Introduction

The ubiquity of digital communication, especially on social media platforms, provides a rich source
of data that reflects a wide range of human emotions. Analyzing this data to detect underlying emo-
tional states involves challenges related to the subtleties and complexities of language, context, and
cultural expressions. Furthermore, as online interactions increase, the need for automated systems to
effectively manage and respond to such emotional data becomes more critical.

This project aims to evaluate general pretrained LLM’s capacity in the field of Sentiment Analysis.
In order to do so, 2 datasets were used:

• DS1: Text Dataset for Text Emotion Detection [1]:

• DS2: Tweets Emotion Detection [2]:

This project’s code is contained in a GitHub repository [3]. The models used aren’t trained or fine
tuned with respect to classification, but generation instead, which will make getting good accuracy a
challenging task. The prompts folder gives examples of the prompts fed in order to achieve this.

The challenge lies in balancing complexity and detail for these prompts, as the model is very quick
to hallucinate and give unexpected labels, despite it needing some sort of lengthy explanation to a
degree in order to best answer within the demanded classes.

By achieving these objectives, this study intends to contribute to the broader field of affective
computing by providing insights and methodologies that can be employed to enhance the emotional
intelligence of automated systems. This not only aids in better understanding human communications
on digital platforms but also supports various applications that rely on sentiment analysis to tailor
content, responses, or services according to user emotions.

2 Related Work

2.1 IDIAP’s Audio Sentiment Analysis Model

This project is part of a larger IDIAP initiative aimed at detecting sentiment and emotion from audio.
The broader project seeks to develop models that can interpret emotions from both audio and text
sources.

The role of this specific module is to analyze text. It processes transcripts likely generated from
audio files by speech-to-text technology. This allows the system to evaluate emotional content in
written form, which complements the audio analysis.

This aligns with ongoing research and expands the practical uses of emotion detection technology.

3 Dataset

3.1 Dataset Preprocessing

DS1 is described as a collection of SMS and Messages, DS2 as one of Tweets. The former is given
with labels in one-hot encoding:

Figure 1: Extract from DS1

Thus the first task was to find out the mapping (for some reason this wasn’t explicit in the kaggle,
and going through the creator’s personal projects was needed). Then, since the second dataset too
was about emotions, a mapping transforming a selected set of emotions into sentiment was required.

1

Figure 2: Extract from DS1

The following choice was arbitrarily made:

• joy - Positive

• disgust, sadness, fear, anger, shame, guilt - Negative

• neutral - Neutral

• Surprise - X

The decision to fully remove the ”Surprise” instances from the dataset, stems from the lack of
”common sense” way to map them back to either positive or negative as surprises can be both. Fur-
thermore, given it represented a very small fraction of the overall set it wouldn’t affect too negatively
our results.

Once this basic comprehension-based preprocessing made, the python module data player.py was
made, in order to get a rough understanding of the datasets. This script gives basic statistics about
most and least frequent apparitions of certain keywords. In order for it to have any relevance what-
soever, another kind of preprocessing was applied to the datasets directly, passing them through the
ntlk module in order to remove useless words (typical stopwords include: ”the”, ”he”, ”on”, etc. . .).
Here is a table that sums up the obtained information:

Figure 3: Table with statistics

2

4 Method Implemented

4.1 GPU Acceleration

Now that the datasets are preprocessed, the actual LLM work can start. For this project we are using
the llama-cpp-python package on Windows. This made for the first (and one of the longest) bugs.
The bug was really hard to diagnose, as the sole indicator was : Cublas = 0. This means simply that
GPU Acceleration is off, without any traceback or error message. This git issue [4], solved the problem
along with a fresh reinstall of our Nvidia GPU drivers and associated software (we also mention it in
our repository).

Once GPU Acceleration was working, we started simply by doing 0-shot-prompting, that is 1
prompt per element of our dataset, of the form:

Figure 4: 0-shot prompt for DS2

4.2 Model Misclassifications

From this point onwards, the Llama model started behaving oddly, returning the prompt given to it
in form of its output (instead of one of ”Positive”, ”Negative”, ”neutral”). Many hours were spent,
trying to change prompts, upgrade versions, follow prompt engineering courses (namely Llama’s one
[5]) to no avail. On the other hand, Mistral’s model worked like a charm, giving 90% of answers in
the possible labels. The only (but persistent) problem is that of the model overusing neutral as a
prediction, and even when evaluating it on the first dataset (that doesn’t have neutral in its classes).

Figure 5: Confusion Matrix with all extra la-
bels in ”Misclassified”

Figure 6: Classification Report

In order to solve this problem, 2 solutions were implemented: we pass the model’s output through
the NLTK module once more, to convert all variations of a label back to its root, then we force any
result that’s still different by mapping it to the user chosen majMap.

Figure 7: Confusion Matrix with all extra la-
bels mapped to Negative for DS1

Figure 8: for DS2

3

4.3 Ideas for improving the accuracy

Before using few-shot learning on the model to get the accuracy up, a few ideas were considered:

• Trying completely different prompts (each run of the model takes about 3-6 hours depending on
the dataset that’s tested).

• Prompting to get probabilities and then doing some post processing, thus avoiding the model
hallucinating However to consistently get decent results, multiple examples had to be given thus
effectively doing few-shot prompting

• Fully fine tune a model to this specific task, but we simply didn’t have the hardware resources
for such a task.

Overall, none of these solutions seemed really promising and so the decision was made to start
using 3-shot prompting instead.

4.4 3-shot prompting

The n-shot prompting technique consists in giving randomly selected examples of n desired input-
output tuples. LLMs are few shot learners and it has been largely reported that by giving examples,
the accuracy improves significantly. However, at first I misunderstood the task, and instead manually
picked 3 examples, made a static prompt with these and fed it to the LLM. Needless to say, the
accuracy didn’t bulge.

At first, the prompt systematically had at least one randomly chosen example per label. However,
due to the dataset’s labels not following a uniform distribution, this probably biased the model and
made it predict ”neutral” disproportionately with respect to its order.

Figure 9: Confusion Matrix for DS2 with clas-
sified 3-shot

Figure 10: Confusion Matrix for DS2 with un-
classified 3-shot

As we can see, when classifying the shots the model heavily predicted neutral (3rd column on both
images) as it was artificially biased due to the sheer number of examples it was fed over the full run.

The codebase works flawlessly at this point, there remains only to find the best accuracy-wielding
prompts, and to run baselines to compare whichever results might be obtained to what is already
being done.

4

5 Baselines

5.1 Performance with ML Classifiers

Several traditional machine learning classifiers were used on our own datasets, including Logistic
Regression, Support Vector Machine (SVM), Decision Tree, and Random Forest, to analyze their
effectiveness in regards to emotion detection in text. These classical approaches were fine-tuned to
handle the nuances of textual data, providing a baseline for performance metrics. These were expected
to be the ”lower bound”, deciding whether our not fine-tuned LLM approach was worth considering.

This comparison was crucial to highlight the advancements in deep learning for natural language
processing tasks and to evaluate the potential improvements offered by state-of-the-art transformer-
based models over traditional methods.

5.2 Performance with Roberta

We employ the RoBERTa model, anticipating it to surpass the performance of our baseline models
due to its specialized fine-tuning for emotion detection tasks. RoBERTa is an evolution of BERT
(Bidirectional Encoder Representations from Transformers), which was originally developed by Google.
BERT revolutionized the field of natural language processing by enabling models to understand context
from both left and right sides of a word within a text, significantly enhancing the model’s ability to
interpret complex language constructs.

RoBERTa extends BERT’s methodology by training more extensively on a larger corpus and with
more refined tuning of hyperparameters. This extensive training allows RoBERTa to achieve even
greater performance benchmarks across various NLP tasks, including those closely related to emotion
detection in text.

Given that RoBERTa has been fine-tuned specifically for the kind of semantic analysis required in
detecting emotional nuances in text, we anticipate it to demonstrate superior accuracy and effectiveness
compared to our initial models, and thus be our ”higher bound”.

5.3 Results

The comparative performance between baseline classifiers and our RoBERTa-based model underlines
key insights into the adaptability and robustness of these approaches to emotion detection in text.
Our model shows a consistent performance that lies between two baselines, proving its efficacy in
understanding and processing complex emotional nuances in text data.

The Decision Tree Classifier (best performing ML classifier), used as a lower-bound baseline, ini-
tially demonstrates a deceivingly competitive performance with F1-macro scores and accuracy that
nearly approach those of more sophisticated models on the original dataset splits. However, when
we experiment by switching the training and testing datasets—testing on data not seen during train-
ing—the Decision Tree’s performance significantly degrades. This drop in performance underscores a
critical limitation of traditional machine learning classifiers: they heavily depend on the nature of the
training data and struggle to generalize to new, unseen contexts. This is particularly evident when
testing the model trained on Dataset1 (Messages) on Dataset2 (Tweets), where the unique semantic
structure and brevity of Tweets impact the model’s ability to effectively parse and interpret emotional
content.

Moreover, the testing results on unseen datasets highlight the adaptability of our model. While
traditional classifiers exhibit dramatic performance reductions when confronted with new data types
or shifted contexts, we maintain relatively stable and high performance. This robustness is a testament
to the advanced capabilities of transformers-based models, which are designed to capture a deeper,
more nuanced understanding of language context than their machine learning counterparts.

This experiment not only demonstrates the superior performance of our model in known con-
texts but also its potential to maintain high accuracy in unfamiliar settings, a vital characteristic for
practical applications in diverse real-world scenarios. The results advocate for the use of advanced
NLP techniques, such as pretrained LLMs (Mistraal here), in applications where adaptability and
robustness across varied text formats and domains are crucial.

5

Table 1: Experimental Results on 90% Test Split

DS1: Messages DS2: Tweets
F1-macro Accuracy F1-Macro Accuracy

Baseline (Decision Tree C.) 0.56 0.87 0.62 0.72
Zero-shot 0.74 0.85 0.59 0.64
3-shot 0.78 0.90 0.66 0.70
Baseline RoBERTa 0.80 0.91 0.75 0.78

Figure 11: Switched Train vs Test Sets

6 Conclusion

Throughout this project, significant contributions were made towards enhancing natural language
processing capabilities, specifically in emotional text analysis:

• Developed a codebase (gitHub Repo) that can run Mistral with user specific prompts, datasets,
arguments and overall is quite modulable

• A set of accuracy efficient prompts

• A set of obtained results after 48 hours+ runtime

• This report

This project not only advanced my practical skills in areas such as GPU set-up, Pandas, PyTorch,
leveraging Docker for deployment (tried having simulated Ubuntu), LateX (which I had never used)
and ML, but also provided deep insights into effective data handling and GPU utilization for complex
NLP tasks, and for that I must thank the entirely of the IDIAP lab, this was overall tremendously
interesting although gratly time-consuming.

6

References

[1] Dataset 1. url: https://www.kaggle.com/datasets/jarvis11/text-dataset-for-text-
emotion-detection.

[2] Dataset 2. url: https://github.com/SannketNikam/Emotion-Detection-in-Text/tree/
main/data.

[3] Project Repository. url: https://github.com/ahuou/SentimentAnalysis-PretrainedLLM.

[4] Git Issue for Llama on Windows. url: https://github.com/abetlen/llama-cpp-python/
issues/721#issuecomment-1723205068.

[5] Prompt-Engineering course. url: https://www.deeplearning.ai/short-courses/prompt-
engineering-with-llama-2/.

7

