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Abstract

The training of automatic speech recognition
(ASR) with little to no supervised data remains
an open question. In this work, we demon-
strate that streaming Transformer-Transducer
(TT) models can be trained from scratch in con-
sumer and accessible GPUs in their entirety
with pseudo-labeled (PL) speech from foun-
dational speech models (FSM). This allows
training a robust ASR model just in one stage
and does not require large data and computa-
tional budget compared to the two-step sce-
nario with pre-training and fine-tuning. We
perform a comprehensive ablation on different
aspects of PL-based streaming TT models such
as the impact of (1) shallow fusion of n-gram
LMs, (2) contextual biasing with named enti-
ties, (3) chunk-wise decoding for low-latency
streaming applications, and (4) TT overall per-
formance as the function of the FSM size. Our
results demonstrate that TT can be trained from
scratch without supervised data, even with very
noisy PLs. We validate the proposed frame-
work on 6 languages from CommonVoice and
propose multiple heuristics to filter out halluci-
nated PLs.

1 Introduction

There are many challenges when developing au-
tomatic speech recognition (ASR) engines for
industrial applications, including (1) large-scale
databases that generalize across multiple domains;
(2) inference under challenging low-latency set-
tings; and (3) lightweight ASR model size to
minimize deployment costs. While the first has
been solved by training large acoustic foundational
speech models (FSM) with massive databases (Con-
neau et al., 2020; Pratap et al., 2023), the latter two
strongly relate to architectural choices, e.g., us-
ing Connectionist Temporal Classification (CTC)
(Graves et al., 2006) or transducer-based (Graves,
2012) modeling.

*Equal contribution. Order is determined by a coin flip.
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Figure 1: Proposed framework for efficient and fast
streaming ASR prototyping with pseudo-labeled data.
Transducer model are further improved via shallow fu-
sion of n-gram LMs and contextual biasing of target
named entities.

In industrial applications, large supervised
databases in target domains are not always avail-
able, thus several techniques have been proposed
to develop robust ASR models with small super-
vised corpora: (1) data augmentation (Park et al.,
2019; Bartelds et al., 2023); (2) only-audio self-
supervised pre-training with large databases and
fine-tuning with small corpora (Baevski et al.,
2020; Conneau et al., 2020; Zuluaga-Gomez et al.,
2023); (3) pseudo-label then fine-tune, e.g., semi-
supervised learning (Zhu et al., 2023; Lugosch
et al., 2022; Zuluaga-Gomez et al., 2021) and
weakly supervised learning (Radford et al., 2022).
Most of the approaches target the attention-based
encoder-decoder (AED) (Watanabe et al., 2017a)
or CTC models. Even though these two architec-
tures have shown impressive results on multiple
benchmarks (e.g., Whisper (Radford et al., 2022)),
they still lag in streaming settings (Prabhavalkar
et al., 2023).



The Transformer-Transducer architecture (Yeh
et al., 2019) is widely exploited for industrial uses
that require streaming decoding because the trans-
ducer decoder naturally supports streaming (Li
et al., 2021, 2020). However, the transducer used to
be harder to train compared to AED and CTC, thus,
it was less explored in the community, until it was
shown to achieve a performance as close as AED
models (Sainath et al., 2020). The transducer mod-
els consist of an encoder, predictor and joint net-
works. Using a Transformer (Vaswani et al., 2017)
encoder leads to a Transformer-Transducer (TT)
architecture (Battenberg et al., 2017; Yeh et al.,
2019; Zhang et al., 2020a). When trained from
scratch, the TT models require sufficient amounts
of supervised datasets in the target language and do-
main (Noroozi et al., 2023; Li et al., 2021). At the
same time, fine-tuning a large pre-trained model,
even when using a transducer decoder, would not
allow streaming decoding.

In this work, we focus on two questions partly
unanswered by the research community: (1) Could
we quickly prototype a streaming TT model on a
single accessible GPU? (2) Can we train TT mod-
els with only pseudo-labeled (PL) data? We target
the streaming scenario, which is by nature more
challenging than standard offline (full attention)
decoding (Sainath et al., 2020). Despite the ro-
bustness of AED models in the offline scenario,
they still require a large amount of supervised data.
Here, we use TT models (Yeh et al., 2019), where
the challenge arises on the fact that these do not
include a self-supervised stage,1 i.e., needing audio-
text pairs always. We demonstrate that TT models
can be trained entirely from scratch with PLs gen-
erated from Whisper (Radford et al., 2022) while
attaining competitive performance in streaming sce-
narios. The overall proposed approach is illustrated
in Figure 1.

Contributions:
• We propose a framework for full-stack rapid

development of ASR streaming solutions from
scratch with low-to-zero supervised resources;

• comprehensive study of TT performance as a
function of the pseudo-labels quality, for both,
online and offline settings;

• robust heuristics to filter out noisy and hallu-
cinated PLs from FSM;

• evaluation of the impact of shallow fusion

1Chiu et al. (2022) explore to warm start the encoder with
a pre-trained SSL-based model, albeit closed source model.

with external n-gram LM and contextual bias-
ing for named entities;

• experimentation and validation on 6 languages
from CommonVoice.

2 Related Work

Developing robust ASR systems for low-latency on-
line settings with little to no supervised data is still
an open challenge in the community. In this sec-
tion, we introduce the most prominent approaches
to overcome these issues.

From Encoder-Decoder to Transducer models
One of the key advantages of transducer models
over encoder-decoder relies on the fact that it sup-
ports streaming decoding. Not until recently, it
has been demonstrated that these models can sur-
pass standard AED systems (Sainath et al., 2020).
There have been multiple breakthroughs that have
made transducer training easier, such as (1) pruned
transducer loss (Kuang et al., 2022), (2) better
architectures, e.g., FastConformer (Rekesh et al.,
2023); and (3) from the modeling side, e.g., model
pruning, sparsification (Yang et al., 2022a), and
quantization (Sainath et al., 2020). However, little
to no work has been done on fast TT model proto-
typing (few GPU-days) with pure pseudo-labeled
data.

Pseudo-labeling in ASR Semi-supervised
learning (Zhang et al., 2020b; Park et al., 2020;
Higuchi et al., 2021), pseudo labeling (Zavaliagkos
and Colthurst, 1998; Likhomanenko et al., 2020;
Hwang et al., 2022), and weakly supervised learn-
ing (Radford et al., 2022) are a family of methods
aiming to partly alleviate the burden of lack of
labeled data for supervised ASR training. These
methods have shown promising word error rate
(WER) improvement in multiple settings and lan-
guages. In practice, a teacher model is trained on an
audio-text paired corpus Dl = {Xi, Yi}. Then, it is
used to pseudo label a much larger unlabeled only
audio corpus, Dpl = {Xi, Y

∗
i }. Afterward, usually

a smaller model (Barrault et al., 2023) can use Dl

and Dpl for supervised training or fine-tuning (Hsu
et al., 2021).

The main difference between most of the pre-
vious studies and our approach proposed in the
paper is that typically iterative training is used
(Zhang et al., 2020b; Park et al., 2020; Hwang
et al., 2022). A multi-stage strategy combining
self- and semi-supervised learning eventually re-



sults in strong pseudo-labels. In the present paper,
we focus on the performance that can be achieved
“out-of-the-box” by using already available FSM
and training transducer models from scratch and
only once. Thus, this approach allows for minimiz-
ing the overall computational cost, i.e., one-stage
training and applying improvement methods, such
as decoding with shallow fusion. We aim to reveal
the potential of the FSM in pseudo-label generation
and demonstrate what performance can be reached
with minimal training efforts.

PLs, however, are often noisy and bounded by
the quality of a teacher model, whereas their use
might result in suboptimal final performance in
the models. This can be solved by either filtering
out the nosiest samples or increasing the teacher
model size to improve their quality.2 Several ap-
proaches to improve the PL quality include im-
proving loss functions (Zhu et al., 2023; Gao et al.,
2023), pairing online and offline models at training
time (Higuchi et al., 2021), and continuous single-
language (Likhomanenko et al., 2022; Berrebbi
et al., 2022) and multilingual pseudo-labeling set-
ting (Lugosch et al., 2022).

Knowledge Distillation with Large Models
Knowledge distillation (KD), or teacher-student
training (Watanabe et al., 2017b), is a very well-
known technique to distill knowledge from a large
model into a smaller model (Hinton et al., 2015).
The former is considered the Teacher and the lat-
ter is the Student. In this framework, we first
train the teacher model with the correct label (e.g.,
supervised training) (Takashima et al., 2018) or
in a self-supervised manner. The student model
is then trained with the posterior distributions of
the pre-trained teacher model (Chebotar and Wa-
ters, 2016). There has been prior work on KD for
CTC (Takashima et al., 2018) and AED models
with Whisper (Radford et al., 2022) (Gandhi et al.,
2023; Ferraz et al., 2024) and Transducer mod-
els (Panchapagesan et al., 2021). Similarly, work
to distil offline transducer models into online has
been explored by Kurata and Saon (2020) or from
self-supervised models (Yang et al., 2022b).

In our work, we focus on sequence-level KD,
which means we use the one-best hypothesis from
the teacher model instead of using the posterior dis-
tribution. This approach has some benefits: (1) no
need to cache the teacher model or its outputs into

2We assume that a larger model, trained under the same
conditions and with increased data, will attain lower WERs.

memory; (2) no need to modify the current ASR
training pipelines; (3) overall faster ASR training
w.r.t teacher-student based KD, where we can lever-
age highly optimized inference pipelines–including
model quantization–for PL generation, e.g., Whis-
perX (Bain et al., 2023). All this results in pseudo-
labeling that meets the needs for fast prototyping
for standard industrial applications.

3 Experimental Setup

This section describes the datasets, TT architecture,
details for training with pseudo-labeled data, effec-
tive integration of language model and contextual
biasing with shallow fusion, and metrics we use for
evaluation.

3.1 Pseudo Labeling with Whisper

Our core contribution is the fast prototyping of
TT streaming ASR trained exclusively on pseudo-
labeled data. We select the Whisper model as our
teacher model (Radford et al., 2022) due to its
strong performance across multiple benchmarks.
In addition, Whisper provides models at different
parameter scales.

Decoding with WhisperX pipeline We use
the WhisperX pipeline (Bain et al., 2023) across
all the experiments to generate PLs. It is composed
of (1) a voice activity detection step to segment
long-form audio; (2) batching multiple segments
for efficient inference; (3) model quantization of
Whisper and C++ implementation on FasterWhis-
per3 which uses CTranslate2 for fast decoding;4

(4) model inference and word level alignment. Note
that we pseudo-label each training corpus with 5
Whisper model sizes, i.e., whisper-tiny, base, small,
medium, and large-v3.

Data filtering heuristics We developed multi-
ple data selection heuristics (H) to filter out noisy
and hallucinated PLs. H1: remove PL if composed
of the same unigram three or more times. H2:
compute maximum word length from supervised
training corpus and remove utterances with one
or more PLs larger than the max threshold.5 H3:
compute wordratio

6 and filter out samples with
wordratio less than 1 or more than 4. H4: verbal-
ize all the numbers from the pseudo-labels, remove

3https://github.com/SYSTRAN/faster-whisper
4https://github.com/OpenNMT/CTranslate2/
5See the per language proposed thresholds in appendix C.
6Number of words divided by utterance duration [seconds].



punctuation and normalize following the Common-
Voice recipe in Lhotse (Żelasko et al., 2021). These
heuristics are applied for every training corpora.
Similar heuristics are proposed in (Barrault et al.,
2023).

3.2 Transformer-Transducer Training
We train Transformer-Transducer models from
scratch for each language and dataset. We use
stateless predictor (Ghodsi et al., 2020) and Zip-
former encoder model (Yao et al., 2023) with the
latest Icefall Transducer recipe and its default train-
ing hyper-parameters.7 This includes ScaledAdam
optimizer (Kingma and Ba, 2014), learning rate
scheduler with a 500-step warmup phase (Vaswani
et al., 2017) followed by a decay phase (each 7.5k
steps and 3.5 epochs), as in Yao et al. (2023). The
neural TT model is jointly optimized with an inter-
polation of simple and pruned RNN-T loss (Kuang
et al., 2022; Graves, 2012) and CTC loss (Graves
et al., 2006) (λ = 0.1), according to:

L = (1− λ) · LRNNT + λ · LCTC . (1)

We use an effective batch size of 600s with a gra-
dient accumulation of 1, the peak learning rate is
lr = 5.0e−2 and we train each TT for 30 epochs on
a single RTX 3090 GPU with only PLs.8 Training
takes between 1 and 2 days. During the decoding,
we use a beam size of 4.

Regularization with supervised data We per-
form experiments where along with PLs we mix
in 100h of randomly selected supervised data from
the train set Dl during training. We compute mix-
ing weights between Dl and Dpl so each train-
ing batch contains at least one sample from Dl.
This is achieved with CutSet.Mux function from
Lhotse (Żelasko et al., 2021).9 All the experiments
that uses PL and supervised data are denoted with
+sup. [100h], otherwise, the model is trained with
PL only. As an ablation experiment, we also test
the performance by scaling up supervised data to
200h and 400h when using the weakest FSM, i.e.,
whisper-tiny. This experiment aims to (1) compen-
sate for very low-quality PLs, and (2) demonstrate
that Whisper PLs (from the largest models) are of

7https://github.com/k2-fsa/icefall/tree/
master/egs/librispeech/ASR/zipformer.

8We also run an experiment valuable for the industrial
domain. It includes a thorough analysis of PLs quality for the
call-center domain, see Appendix D.

9It lazily loads two or more datasets and mixes them on
the fly according to pre-defined mixing weights.

sufficient quality for transducer training without
any supervised data.

Enabling streaming decoding with multi-chunk
training All the models proposed in this
work can perform streaming decoding. This
is achieved by performing chunk-wise multi-
chunk training. During training, we use causal
masking of different sizes to enable stream-
ing decoding under different low-latency con-
figurations (Swietojanski et al., 2023; Kumar
et al., 2024). Specifically, we rely on two
lists: chunk-size={640ms,1280ms,2560ms,full}
and left-context-frames={64,128,256,full}.10 At
training time, we randomly select the chunk size
and the left context chunks for each batch. This
enables the final model to work on a wide variety
of streaming settings. At test time, we select 13
different decoding configurations ranging from 320
ms11 to 2560 ms chunks (see App. A).

3.3 Language Modeling and Contextual
Biasing

Leveraging more text data and context information
with language model and keywords integration can
considerably improve ASR performance. Since in
our set-up, we assume that we have zero (or very
little) supervised data, using extra unpaired text
data would not contradict the original constraints.
At the same time, relying mainly on pseudo-labels,
we see text knowledge integration as an opportunity
to make our models more reliable and robust. The
widely used method of LM integration during the
decoding is shallow fusion (SF) (Aleksic et al.,
2015; Kannan et al., 2018; Zhao et al., 2019; Jung
et al., 2022). SF means log-linear interpolation of
the score from the ASR model with an external
separately optimized LM at each step of the beam
search:

y∗ = argmax logP (y|x) + λ logPLM (y), (2)

where PLM (y) is an external LM and λ is a hyper-
parameter to control the impact of the LM on the
overall model score.

To gain more possible improvement from the
text information, we explore three options with
the SF: (1) word-level n-gram LM, (2) named-
entities, (3) combination of word-level n-gram LM

10The effective number of left context chunks is computed
as left_context_frames//chunk_size.

11Decode chunk size of 320ms is more challenging as it has
not been used during training.



and named-entities. We choose n-gram over neu-
ral network (NN) LMs, as the use of NN-LMs
would be impractical in low-latency streaming sce-
narios due to the size of the models. Named entities
are extracted automatically and considered as key-
words forming biasing lists: for more details see
Section 3.4.1.

Shallow fusion with Aho-Corasick One of the
drawbacks of LM fusion is that it typically slows
down the decoding time during inference, espe-
cially when using bigger NN-LMs. Since we focus
on streaming ASR models in this paper, any po-
tential increase in inference time is critical for us.
Recent studies demonstrated that SF implemented
with the Aho-Corasick (AC) algorithm (Aho and
Corasick, 1975) is fast and optimized when used
for the keyword biasing (Guo et al., 2023). Thus,
we use the AC implementation from Icefall12 to
integrate key named entities (NE) and word-level
n-gram LMs during the decoding.

The Transducer model we use outputs its hy-
potheses at the subword level and, in this case, an
external LM is also typically trained on subwords.
In our experiments, to benefit from the word-level
statistics, we integrate word-based n-gram external
LMs. Such integration from word to subword level
is possible with the AC implementation. First, the
LM n-grams are converted into strings of subword
units with SentecePieces;13 second, the subword
units are used to build an AC prefix trie including
LM weights in the probability domain.

When a string match occurs between a model
prediction and a string in the prefix trie, the log
probability of the matching hypothesis is aug-
mented by the LM weight. To obtain positive cost,
we convert the logarithmic LM weights (e.g., from
ARPA) back to probabilities by taking an exponent.
In the case of context biasing, SF works in the same
way but instead of LM weights a fixed bias cost is
added to each matched arc. Typically when apply-
ing context biasing alone, we set such cost to 0.7.14

For SF with combined n-gram LM and biasing list,
we still use LM weights, bias cost, and a single
prefix tree. Using a single prefix tree has the advan-
tage of faster running time, which is relevant for
streaming models. We tune the biasing cost on the

12https://github.com/k2-fsa/icefall/blob/
master/icefall/context_graph.py

13https://github.com/google/sentencepiece
14For contextual biasing with NEs, we tested the biasing

costs = {0.1, 0.3,0.5,0.7,1.0,1.5,2.0}. 0.7 performed systemat-
ically better in all scenarios.

dev sets and set it differently when a biased entity
is present in the LM vs when it is not15:

C =


αoutLM if NE is not in LM,
exp(LMw) + αinLM if NE is in LM,
exp(LMw) otherwise.

Language modeling For LM SF, we train tri-
gram word-level LMs with SRILM (Stolcke, 2002).
To train n-gram LMs, we use text data from the
corresponding train sets. All the train texts are
uppercased and normalized to contain only unicode
characters.
Evaluation protocol For evaluation, we use the
standard word error rate (WER) metric for ASR
which is the lower the better.

3.4 Databases

Here, we introduce the datasets used for fast ASR
prototyping and describe the process of generating
biasing lists for each language.

3.4.1 CommonVoice Database
The CommonVoice dataset comprises several
thousand hours of audio in more than 100 lan-
guages (Ardila et al., 2020). To the best of our
knowledge,16 the CommonVoice data was not used
for training Whisper model and can be used for
zero-shot evaluation. In our case, it is an important
point, as using unseen data for generating PLs pro-
vides a more realistic estimation of the proposed ap-
proach performance.17 For experimentation, we se-
lect six languages from CommonVoice-v11 (Ardila
et al., 2020) 18 which have sufficient data for train-
ing ASR and language models: Catalan (CA), En-
glish (EN), German (DE), French (FR), Spanish
(ES), and Italian (IT). We use the official train sets
and report WERs on the official test sets. See Ta-
ble 1 for further statistics.

Biasing List Creation We automatically cre-
ate biasing lists for target CommonVoice subsets

15For SF of n-gram LM combined with NEs, we tested the
biasing following costs: inLM = {0.5,1.0,1.5,2.0}; notInLM=
{0.5,1.0,1.5,2.0}. inLM=0.5 and notInLM=1.5 performed sys-
tematically better in all settings.

16According to the discussions in the official
OpenAI-Whisper GitHub repository: https://github.
com/openai/whisper/discussions/349, https:
//github.com/openai/whisper/discussions/2305.

17Although officially the CommonVoice data is not included
in the training data for Whisper, we realize the possibility of
some CommonVoice data still being seen by the model through
other sources and in a small amount.

18CommonVoice-v11: cv-corpus-11.0-2022-09-21



Table 1: Train and test sets statistics with context infor-
mation per CommonVoice language. †total of unique
entities per test set after removing unigrams shorter than
5 characters. ‡number of utterances in the test set with
at least one named entity.

Lang Train set Test set stats & Named entities

(code) [hr] utt/hr unique† nb. utt‡

EN 1000 16K/27 6921 6442
CA 1200 16.3K/28 2108 2607
FR 600 16K/26 6035 7486
DE 600 16K/27 6949 8491
ES 317 15.5K/26 4776 6528
IT 200 15k/26 5838 5938

to perform the contextual biasing experiments. For
this purpose, we use BERT models from Hugging-
Face (Wolf et al., 2020) fine-tuned on the named-
entity recognition (NER) task for each language
individually.19 The following steps are included:
(1) automatic text labeling with BERT, (2) NEs
extraction from the BERT labels, (3) NEs lists fil-
tering. In Table 1, one can see the statistics of
NE lists per language where the size of lists with
unique NEs varies from 2108 to 6949 which is
rather long for contextual biasing.20 The last col-
umn of Table 1 shows the number of utterances per
test set that contain at least one NE. This informa-
tion gives an estimation of the proportion of NEs
in the test sets: DE and FR sets have almost half of
the utterances with NEs, at the same time, the CA
set has only 17% of those.

Heuristics for biasing list selection Since
NEs are automatically extracted with the BERT-
based NER, extraction errors are inevitable. To
minimize noise from potentially erroneously ex-
tracted NEs, we follow simple filtering heuristics
when preparing the final biasing lists. H1: select
only NEs that are composed of 1 to 4 words, and
H2: remove single-word NEs shorter than 5 char-
acters. For example, the filtering step is important
to reduce such noisy outputs as short single words
that often are not NEs: ich, wir, die – for DE, san,
mar, new – for ES. We also tried to further filter
the lists by only allowing NEs that are repeated at

19EN: dslim/bert-base-NER-uncased; DE, ES,
FR: Babelscape/wikineural-multilingual-ner
(Armengol-Estapé et al., 2021); CA: projecte-aina/
roberta-base-ca-cased-ner (Tedeschi et al., 2021).

20The ideal size of the biasing FST is significantly influ-
enced by the data; according to (Chen et al., 2019), perfor-
mance started to decline when the number of contextual enti-
ties surpassed 1000.

least twice, or NEs composed of bigram or more.
However, in our experiments, only applying H1
and H2 was sufficient and yielded better WERs
overall.

4 Results

We report our results in two parts. First, we present
the overall performance of models trained with PL
and with different settings. The following configu-
rations are compared: (1) offline VS streaming TT
models, (2) models trained on PL-only VS models
with supervised data regularization, and (3) mod-
els with different chunk sizes. Second, we report
the performance of models with SF. For the base-
line, we use a Zipformer streaming model trained
per each language on PL only. In addition, we
also compare our results to the offline Zipformer
trained on the same data and include the reference
to the previous results reported on CommonVoice
in (Radford et al., 2022) (Table 3).21

4.1 Performance on models with PL of
different quality

Offline models In Figure 2, we present the of-
fline results for TT models trained from scratch on
PL data only in six languages (depicted by blue
graphs). These models are evaluated only in a non-
streaming context to determine the upper bound
WERs achievable by training with PLs of varying
qualities. As the size of the Whisper Model in-
creases (shown on a log-scaled x-axis), there is a
corresponding improvement in WERs, also on a
log-scale. The best performance is observed for
ES, with the least favourable results for EN. These
results show that our approach adapts across a spec-
trum of PL data quantities and qualities, ranging
from 200h for IT to over 1000h for CA and EN. We
additionally analyzed the performance of models
trained on PLs depending on how well each lan-
guage is represented in the data used for training
Whisper models (Radford et al., 2022). Yet, no
consistent effect is noticed.

Regularization with supervised data Red
graphs in Figure 2 also show WERs for offline
models that along with PLs include a small amount
of supervised data, up to 100h, for regularization.
This strategy proves to be beneficial in cases with

21Note that the results from (Radford et al., 2022) are not
directly comparable to ours, as we use the CV-11 version of
CommonVoice and (Radford et al., 2022) uses the version
CV-7. We anyway include their results to have the previous
reference point but locate them in Appendix.
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Figure 2: WERs for offline Zipformer models on six
languages of CommonVoice. Models are trained with
pseudo-labels from different Whisper model sizes (blue
graphs). Adding 100h of supervised data during training
(red graph) regularizes the training up to models with
700M params, especially for languages with less data.

noisier PLs, particularly for smaller Whisper mod-
els like Whisper-tiny, Whisper-base, and Whisper-
small when WER goes down for all the languages.
The benefits, however, decrease or are absent with
more accurate PLs generated by larger models,
such as Whisper-medium and Whisper-large-v3.
Thus, with our results on six languages, we can
conclude that when supervised data is available,
regularization is recommended for models with
weak PLs and can be omitted with strong PLs. The
results with 100h regularization are also available
in Table 3 for offline models and are consistent with
the performance on streaming models reported in
Table 2.

Scaling-up supervised data helps on cases with
very noisy PLs For the ablation experiment
on mixing in more supervised data, we maintain a
fixed computational budget for generating PLs and
explore the extent to which supervised data can off-
set noisy PLs. The results are pictured in Figure 4.
Using only Whisper-tiny, we train TT models from
scratch for the six CommonVoice languages with
over 200h of available supervised data. Our results
show significant improvements in WER as super-
vised data increases from 100h to 200h and even
more so up to 400h, especially in languages like
Catalan, French, and Italian, which likely suffer
from lower-quality PLs. For this experiment, our
oracle results are from the models fully trained on
the supervised data, which can be found in Table 3
for offline models and in Table 2 for streaming

Table 2: WERs for streaming evaluation with n-gram
LM and bias-lists (BL). Listed on four CommonVoice
languages and two decoding configurations. The Zip-
former models are trained with pseudo-labeled data
from different Whisper models and 100h of supervised
data (“sup. [100h]”) from the original train set. All
experiments show additive WERs improvement when
adding either (or both) n-gram LM or biasing lists.

cs=320ms;lf=2.5s cs=320ms;lf=∞

Experiment CA DE ES IT CA DE ES IT

Whisper-tiny (39M )

Zipformer (70M ) 46.2 29.5 24.5 37.3 46.0 28.9 23.8 36.7
+sup. [100h] 38.7 27.0 21.6 26.7 38.3 26.4 21.0 25.9
+n-gram LM 38.6 26.2 21.2 25.7 38.2 25.5 20.5 25.0
+bias-list 34.4 26.3 21.3 25.5 33.9 25.7 20.5 24.7
+n-gram LM+(BL) 34.0 25.7 21.0 24.7 33.6 25.1 20.2 23.9

Whisper-base (74M )

Zipformer (70M ) 39.7 23.9 20.2 28.4 39.4 23.3 19.5 27.6
+sup. [100h] 29.9 22.2 18.3 23.0 29.6 21.5 17.6 22.3
+n-gram LM 29.4 21.4 17.8 22.2 29.1 20.8 17.1 21.5
+bias-list 26.0 21.6 17.6 22.0 25.6 21.0 16.9 21.2
+n-gram LM+(BL) 25.7 21.0 17.2 21.3 25.2 20.4 16.5 20.7

Whisper-small (244M )

Zipformer (70M ) 21.1 22.4 16.2 21.5 20.8 21.3 15.4 20.6
+sup. [100h] 20.1 17.8 16.0 20.1 19.8 17.2 15.3 19.3
+n-gram LM 19.6 17.1 15.5 19.3 19.3 16.5 14.8 18.5
+bias-list 17.7 17.2 15.4 19.3 17.3 16.6 14.7 18.5
+n-gram LM+(BL) 17.4 16.7 15.0 18.8 17.1 16.1 14.3 17.9

Whisper-medium (769M )

Zipformer (70M ) 16.7 16.5 17.6 18.6 16.4 15.8 16.7 17.8
+sup. [100h] 16.5 16.6 14.9 19.4 16.2 15.8 14.3 18.4
+n-gram LM 16.1 15.8 14.6 18.6 15.8 15.1 13.9 17.7
+bias-list 14.8 16.0 14.6 18.6 14.5 15.3 13.9 17.7
+n-gram LM+(BL) 14.6 15.5 14.3 18.1 14.3 14.8 13.6 17.2

Whisper-large-v3 (1.5B)

Zipformer (70M ) 22.5 16.1 15.9 17.5 21.8 15.3 15.1 16.7
+sup. [100h] 16.6 16.3 14.6 18.4 16.4 15.6 14.0 17.6
+n-gram LM 16.2 15.6 14.2 17.6 16.0 14.9 13.6 16.8
+bias-list 15.0 15.8 14.1 17.8 14.8 15.1 13.5 17.0
+n-gram LM+(BL) 14.8 15.3 13.8 17.2 14.5 14.6 13.2 16.4

Baseline streaming Zipformer (only supervised data)

Zipformer (70M ) 7.8 13.8 13.5 17.5 7.6 13.1 12.8 16.6

models.

Low-latency streaming decoding Figure 3
lists the streaming decoding results across six Com-
monVoice languages, testing 13 different decod-
ing configurations (see 3.2). We establish an up-
per performance bound with models tested in non-
streaming mode and also include a box plot for
each TT model trained with PLs derived from var-
ious Whisper model sizes. The results show how
model performance can fluctuate under different
streaming conditions, with smaller chunk sizes or
limited left context posing greater challenges.

The results with the configuration with
cs=320ms and lf=2.5s are also reported in Tables 2
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Figure 3: Box plots of WERs for six languages of CommonVoice. Streaming Zipformer models are trained from
scratch, with only PLs generated with different Whisper model sizes. Each box denotes 13 decoding configurations,
ranging from challenging (320ms chunk with limited left context) to more relaxed (2560ms chunk with full left
context) streaming settings. (Note different WER scaling on the y-axis.)
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Figure 4: Ablations on WERs of Zipformer models for
6 languages of CommonVoice. We study the impact
of mixing supervised data during training with pseudo-
labeled of very low quality, i.e., Whisper-tiny.

and 4 and demonstrate consistently better perfor-
mance when the full left context is used. This
tendency stays independent of language and SF.

4.2 SF with n-gram LM brings substantial
WER reductions on challenging scenarios -
and decoding analysis

Performance on different models and languages
with SF is presented in Table 2. Zipformer models
in the table are our baselines, i.e., streaming models
trained on PL data. We use the further improved
models with an additional 100h of supervised data
for decoding with SF. For all the languages, we
can see a WER decrease when decoded with an ex-
ternal LM. The WER also always improves when
context biasing with NEs is introduced. It is an
important observation since all NEs are extracted
automatically with no human supervision involved.
Moreover, all biasing lists are rather long, which
often is an obstacle to improvement when biasing
methods are used (Chen et al., 2019). Neverthe-
less, our approach proves to work on biasing lists
of large sizes as well. According to our results,
external LM and context NEs fusions are comple-
mentary methods, gaining the best WER when they

are combined during decoding.
The improvement with SF is consistent through

the languages and has the biggest impact when
models are trained on weaker PLs generated from
the smaller Whisper models. This behavior is ex-
pected, as the models that saw less training data
have more potential to still benefit from any ad-
ditional data given during regularization and/or
decoding. On the other hand, the improvement
decreases with the PLs generated by Whisper-
medium and Whisper-large-v3.

Another remarkable observation is that the mod-
els trained on PLs are more competitive with the
models trained on the supervised data only when
less training data is given. For example, CA lan-
guage has 1200h of training data and supervised
models are considerably winning over the PL mod-
els even after all the improvements we introduce:
7.8% VS 14.8% for supervised and PL models cor-
respondingly.22 When double less training data is
used for DE language, i.e., 600h, the difference is
less prominent but still considerable: 13.8% VS
15.3% for supervised and PL models correspond-
ingly. When the amount of training data is further
reduced to 317h for ES and 200h for IT, we observe
either little or no degradation from supervised mod-
els to PL models: 13.5% VS 13.8% for ES and
17.5% VS 17.2% for IT for supervised and PL
models correspondingly. These results illustrate
well the advantages and strengths of the proposed
framework and methods for the low-resource sce-
narios. Due to space constraints, in Table 2, we
show the performance only on four languages; SF

22Here and below in this paragraph, we report WERs for
the configuration with cs=320ms and lf=2.5s. We observe the
same tendency in the results with the other configuration as
well.



Table 3: WERs for six CommonVoice languages. The
Zipformer offline models are trained with pseudo-
labeled data from different Whisper models. We also
report WERs when a small amount of supervised data
is added during training, denoted as “sup. [100h]”.
Note that the transducer models are trained from scratch
in ∼1 day GPU time.

Language [hours]

Experiment CA EN DE FR ES IT
1200 1000 600 600 317 200

Whisper-tiny (39M )

Radford et al. (2022) 51.0 28.8 34.5 49.7 30.3 44.5
Zipformer (70M ) 41.1 21.5 25.7 33.8 20.1 32.2

+sup. [100h] 36.8 20.9 22.6 29.7 16.1 19.8
+n-gram LM 32.4 21.0 22.1 31.3 15.9 18.7
+n-gram LM+(BL) 32.0 20.7 21.5 30.8 15.6 18.0

Whisper-base (74M )

Radford et al. (2022) 39.9 21.9 24.5 37.3 19.6 30.5
Zipformer (70M ) 30.5 19.2 19.4 24.7 14.8 22.7

+sup. [100h] 27.9 19.1 17.5 21.8 12.6 16.3
+n-gram LM 24.0 19.1 17.0 22.2 12.2 15.5
+n-gram LM+(BL) 23.7 18.8 16.4 21.7 11.8 14.8

Whisper-small (244M )

Radford et al. (2022) 23.8 14.5 13.0 22.7 10.3 16.0
Zipformer (70M ) 18.6 17.1 13.4 16.5 10.7 14.8

+sup. [100h] 17.4 16.9 12.8 15.8 10.2 12.9
+n-gram LM 15.1 16.7 12.4 15.8 10.0 12.4
+n-gram LM+(BL) 14.9 16.4 11.9 15.4 9.7 11.8

Whisper-medium (769M )

Radford et al. (2022) 16.4 11.2 8.5 16.0 6.9 9.4
Zipformer (70M ) 14.0 16.7 11.3 13.7 9.5 12.1

+sup. [100h] 13.7 16.4 11.3 13.5 9.5 12.0
+n-gram LM 12.1 16.2 10.9 13.2 9.3 11.5
+n-gram LM+(BL) 11.9 15.9 10.4 12.9 9.0 11.1

Whisper-large-v3 (1.5B)

Radford et al. (2022) 14.1 9.4 6.4 13.9 5.6 7.1
Zipformer (70M ) 12.8 16.2 10.5 12.4 8.9 11.1

+sup. [100h] 13.6 16.3 10.7 12.4 9.0 11.6
+n-gram LM 12.1 16.0 10.4 12.0 8.9 11.3
+n-gram LM+(BL) 11.8 15.6 10.0 11.6 8.6 10.8

Baseline offline Zipformer (only supervised data)

Zipformer (70M ) 4.9 14.5 8.5 10.7 8.1 10.2

impact on offline models for all six languages can
be found in Table 3.

5 Conclusions

In this work, we propose a framework to meet
the challenge of training streaming ASR systems
with few-to-none supervised data by leveraging
PLs from foundational speech models. We conduct
a thorough examination of the efficacy of PL-based
TT models across various dimensions, including
offline and chunk-wise decoding for streaming ap-
plications, and the influence of FSM size on the
TT model’s WERs. We introduce robust heuristics
to filter out unreliable and hallucinated PLs. Our
findings reveal that TT models can be effectively
trained from scratch on noisy PLs. We managed to
further improve the performance of models trained
with weak pseudo-labels (generated by Whisper-
tiny, -base, and -small) by adding regularization
with different amounts of supervised data. Addi-
tionally, we prove that decoding with the shallow
fusion of external n-gram LM and automatically
generated named entities always improves the per-
formance of models, independent of the quality of
pseudo-labels.

Limitations

One of the limitations of the paper is that the data
from the CommonVoice dataset is read speech that
can considerably differ from spontaneous speech
and unprepared conversations. Our choice was
mostly due to the possibility of testing our frame-
work on six different languages and in this regard,
CommonVoice suited us well. Besides this, mod-
els for each language were trained on a different
amount of data (from 200h to 1200h) that demon-
strated different impacts of the proposed methods.
However, no experiments were done to see the
performance with different amounts of train data
within each language.

Another limitation of the paper is that despite
focusing mostly on the streaming ASR models, we
provide no results on the execution time. This in-
formation would be especially important for the
shallow fusion experiments. Although we noted
good time performance of the proposed shallow
fusion implementation for offline models, the eval-
uation for streaming models is missing.
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A Streaming decoding configurations

We perform a swipe of streaming decoding eval-
uations under multiple low-latency settings. We
evaluate the following configurations:

• Decode chunk size = 320ms with left context
of 2560ms, 5120ms and full;

• decode chunk size = 640ms with left context
of 2560ms, 5120ms and full;

• decode chunk size = 1280ms with left context
of 2560ms, 5120ms and full;

• decode chunk size = 2560ms with left context
of 2560ms, 5120ms and full.

The overall results are reported in Figure 3 for each
of the proposed languages.

B Extended results for models trained on
PL data

Offline models evaluation Table 3 shows the
WERs for Zipformer offline models trained on six
CommonVoice languages with either solely PLs
or a mix of PLs and a small amount of supervised
data (100h). These extended results correspond to
those depicted in Figure 2 in the main paper.

Streaming models evaluation Table 4 shows
the WERs for Zipformer streaming models trained
on four CommonVoice languages with solely PLs
and evaluated on two different streaming configu-
rations.

C Filtering stage

As part of our efforts to reduce the amount of the
hallucinated or low-quality pseudo-labels, we pro-
pose to filter out data based on some heuristics, as
described in Section 3.

In Table 5 we list the exact statistics of the max-
imum number of characters allowed per pseudo-
labeled word for each dataset from CommonVoice.
Note that languages that join words, such as Ger-
man (DE) have a substantially larger threshold.
Note that if a single word of the full pseudo-labeled
utterance meets the threshold, we discard the entire
sample.

D Call-center speech use case

We also evaluate our approach on a particularly
important use case for industrial applications. Here,



Table 4: WERs for streaming evaluation with n-gram
LM and bias-lists (BL). Listed on four CommonVoice
languages and two decoding configurations. The Zip-
former models are trained with only pseudo-labeled data
from different Whisper models. All experiments show
additive WERs improvement when adding either (or
both) n-gram LM or biasing lists.

cs=320ms;lf=2.5s cs=320ms;lf=∞

Experiment CA DE ES IT CA DE ES IT

Whisper-tiny (39M )

Zipformer (70M ) 46.2 29.5 24.5 37.3 46.0 28.9 23.8 36.7
+n-gram LM 46.0 29.0 24.0 36.5 45.8 28.4 23.2 35.9
+bias-list 43.7 28.9 23.7 36.0 43.6 28.4 23.0 35.3
+n-gram LM+(BL) 43.6 28.4 23.3 35.3 43.5 28.0 22.6 34.6

Whisper-base (74M )

Zipformer (70M ) 39.7 23.9 20.2 28.4 39.4 23.3 19.5 27.6
+n-gram LM 39.1 23.2 19.8 27.5 38.7 22.5 19.0 26.7
+bias-list 36.2 23.3 19.6 27.2 36.0 22.7 18.9 26.4
+n-gram LM+(BL) 36.0 22.7 19.3 26.5 35.7 22.2 18.5 25.7

Whisper-small (244M )

Zipformer (70M ) 21.1 22.4 16.2 21.5 20.8 21.3 15.4 20.6
+n-gram LM 20.8 21.8 15.8 20.7 20.5 20.8 15.0 19.8
+bias-list 20.0 21.7 15.6 20.5 19.7 20.6 14.8 19.7
+n-gram LM+(BL) 19.8 21.3 15.2 20.0 19.6 20.2 14.5 19.1

Whisper-medium (769M )

Zipformer (70M ) 16.7 16.5 17.6 18.6 16.4 15.8 16.7 17.8
+n-gram LM 16.4 15.8 17.4 17.8 16.1 15.1 16.4 17.0
+bias-list 16.1 16.0 17.0 17.8 15.9 15.3 16.0 17.1
+n-gram LM+(BL) 15.9 15.6 16.8 17.3 15.7 14.9 15.8 16.5

Whisper-large-v3 (1.5B)

Zipformer (70M ) 22.5 16.1 15.9 17.5 21.8 15.3 15.1 16.7
+n-gram LM 22.4 15.4 15.6 16.8 21.7 14.7 14.9 16.0
+bias-list 21.9 15.6 15.5 16.9 21.1 14.9 14.8 16.1
+n-gram LM+(BL) 22.1 15.2 15.3 16.4 21.3 14.5 14.6 15.6

Baseline streaming Zipformer (only supervised data)

Zipformer (70M ) 7.8 13.8 13.5 17.5 7.6 13.1 12.8 16.6

Table 5: Maximum number of characters allowed in
each pseudo-labeled word with Whisper.

CA EN DE FR ES IT

16 16 30 20 25 22

we are given 1.7k hr of unlabeled audio and our
task is to train a TT system from scratch without
incurring costly labeling for supervised training.
This is a challenging scenario because Whisper
models might not perform as well as in benchmarks
due to, unseen noise or artifacts, accent or simply
due to domain shift. Below, we define the database
and the steps followed.

D.1 Call-center database

We employ a collection of unlabeled two-channel
agent-user conversations of more than 10 minutes
long from the call center domain. In total, there are
12.8k WAV audio files, i.e., ∼1728 hr. We use a 54-
min test set with gold annotations to evaluate our
system. We generate pseudo-labels with WhisperX
pipeline (§3.1), though we slightly modify the VAD
step to only allow up to 5 seconds of contiguous
silence between contiguous segments. This process
leads to 735 hrs of pure pseudo-labeled audio.

D.2 Baseline performance

In Figure 5 we list a matrix with the WERs ob-
tained by varying the Whisper model size and the
maximum chunk size for the cut and merge step
from WhisperX (Bain et al., 2023). See more infor-
mation in §3.1. Increasing model size yields better
WERs while having 25-second long segments pro-
duces lower WERs overall. This is expected as
the Whisper model is trained with audios of ∼30
seconds long (Radford et al., 2022).

D.3 Filtering Stage

We perform an exhaustive filtering stage to remove
potential low-quality data. This step further re-
duces the dataset to 510 hours, i.e., a 30% relative
reduction. We use similar heuristics as in §3.1 to
reduce the hallucinated hypotheses.24

D.4 Additional supervised data

We use GigaSpeech (Chen et al., 2021) (GS) L
subset (2.5k hours), full LibriSpeech (Panayotov

24An example of a hallucinated hypothesis: utt-id-01
let me try to turn my flashlight on okay w b a d
w b a d w w w w.



Figure 5: WERs on the test set with different Whis-
per model configurations and chunk sizes of the VAD
model.

et al., 2015) (LS) train set and CommonVoice En-
glish (Ardila et al., 2020) (CV) train subset (1.5k
hours) as extra datasets during training. This aims
to regularize the training phase. In total, we use 5k
hours of speech as extra datasets, while 510 hours
are set as the target domain set.

D.5 Pseudo-labeled data filtering

As we aim to develop an ASR system as fast as
possible, we developed a process to select a sub-
set of the PL database smartly. We extract acous-
tic and text-based metadata from each {X,Y ∗}
pair. The acoustic metrics (1) STOI, PESQ and SI-
SDR are computed with TorchAaudio-SQUIM (Ku-
mar et al., 2023); (2) perplexity is computed
with GPT2 (Radford et al., 2019) using Hug-
gingFace (Wolf et al., 2020; Lhoest et al., 2021)
and (3) a pseudo-edit-distance metric computed
by comparing different Whisper model outputs,
i.e., WER metric: whisper-tiny:hypothesis &
whisper-large-v2:reference.

D.6 Experiments

We perform two experiments for the call center use
case. First, in the baseline scenario, we filter out
(or select) a subset from the original PL dataset by
using one or multiple metrics, e.g., perplexity and
SI-SDR threshold. We use the remaining dataset
for ASR training. Second, we are presented with
a fixed computational budget that limits the final
dataset size for model training. This leads us to
select a smaller portion of the PL dataset based on
i) random selection or ii) sorting the PL dataset
by one metric (e.g., SI-DR) and then selecting the
top samples that meet the allowed computational

budget.

E Data Selection Based on Metrics

This is the baseline scenario, where we filter the PL
dataset by one or multiple metrics, and then we use
the remaining dataset for ASR training. The results
of this approach are listed in Table 6. Experiment
0) shows the WERs when using all the PL dataset,
which serves as the baseline. From Exp 1) to 5) we
run several filtering strategies, with some proposed
metrics. Furthermore, we note that Exp 3) shows
the best WERs while using 25% less data than Exp
0). This translates to faster training and conver-
gence of the Zipformer model. In conclusion, these
early experiments indicate that better WERs can be
attained with fewer data points when a smart policy
is in place. For instance, 0.5% absolute WER re-
duction, i.e., 13.9% WER (Exp 0) → 13.4% WER
(Exp 3) from Table 6.

Table 6: WERs for Zipformer models trained for 20
epochs with different data selection policies. Note that
all experiments use the multi-dataset training recipe un-
less otherwise specified. †Metric computed from com-
paring hypothesis between Whisper tiny and large-v2.

Exp Data selection policy Dataset WER
PPL STOI SI-SDR WER† BLEU Size

-) ALL data (no additional data) 510 15.1
0) ALL data (baseline model) 510 13.9

1) ≤ 500 ≤ 0.7 ≥ 15 - - 210 15.1
2) ≤ 800 ≤ 0.3 ≥ 5 - - 437 13.5
3) - - - ≤ 25% - 387 13.4
4) - - - - ≥ 50 428 13.9

Fixed Computational Budget In this setting,
we are presented with a fixed computational budget,
i.e., limited by the dataset sized for model training.
This leads to selecting a smaller portion of the PL
dataset based on i) random selection or ii) sorting
the PL dataset by one metric (e.g., SI-DR) and
then selecting the top samples meeting the allowed
budget. These results are listed in Table 7. We
can see significant WERs improvements up to the
200h of training. After this point, bringing more PL
data at training time does not improve significantly
WERs. In addition, we can conclude that none of
the proposed sorting metrics is significantly better
than random selection for ASR training when a
fixed computational budget is imposed. There are
several hypotheses that can justify these results,
as follows:



Table 7: WERs for Zipformer models trained for
10 epochs with different computational budgets w.r.t
amount of data. †delta of relative WER reduction 50h
→ 400h.

Sorting Dataset size ∆†

Metric 50h 100h 200h 300h 400h

0) ALL data (baseline) [510h] 13.9% WER

1) WER (↓) 30.7 19.3 15.3 15.0 13.8 55%
2) Perplexity (↓) 31.3 21.3 17.2 14.6 14.0 55%
3) STOI (↑) 33.0 21.7 16.6 15.9 13.9 57%
4) Random selection 30.0 19.7 14.9 14.2 13.9 53%

1. The amount of PL data brings more WERs
reductions than the proposed sorting metrics;

2. pseudo-labels from Whisper large-v2 are of
sufficiently good quality, close to gold annota-
tion levels;

3. the filtering stage is already removing most
of the noisy and/or hallucinated PLs, i.e., the
remaining 510-hour subset is already of good
quality overall;

4. the proposed sorting metrics are not suffi-
ciently discriminative for selecting the data
required for the downstream application, i.e.,
random selection leads to lower WERs in
some cases;

5. using supervised data at training time brings
important regularization, thus minimizing the
issue of using noisy PLs.

The filtering stage is key for model training.
We confirmed this hypothesis by training a Zip-
former model with multi-dataset training on the
unfiltered PL dataset, i.e., a 735-hour subset. To
our surprise, the model performance, even though
seeing more data than Exp 0 (Table 7 and Table 6),
did not reach acceptable WERs, e.g., 30%+ WER.
Further research down this line will shed light on
what are the best practices for selecting representa-
tive data for training, including filtering of halluci-
nated PLs. Note that selecting or sorting PLs might
be of less importance as the dataset size increases.


