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ABSTRACT

With advancements in hardware, high-quality head-mounted display (HMD) devices are being de-
veloped by numerous companies, driving increased consumer interest in AR, VR, and MR applica-
tions. This proliferation of HMD devices opens up possibilities of wide range of applications beyond
entertainment. Most commercially available HMD devices are equipped with internal inward-facing
cameras to record the periocular areas. Given the nature of these devices and captured data, many ap-
plications such as biometric authentication and gaze analysis become feasible. To effectively explore
the potential of HMDs for these diverse use-cases and to enhance the corresponding techniques, it is
essential to have an HMD dataset that captures realistic scenarios.

In this work, we present a new dataset, called VRBiom, of periocular videos acquired using a Vir-
tual Reality headset. The VRBiom, targeted at biometric applications, consists of 900 short videos
acquired from 25 individuals recorded in the NIR spectrum. These 10s long videos have been cap-
tured using the internal tracking cameras of Meta Quest Pro at 72 FPS. To encompass real-world
variations, the dataset includes recordings under three gaze conditions: steady, moving, and par-
tially closed eyes. We have also ensured an equal split of recordings without and with glasses to
facilitate the analysis of eye-wear. These videos, characterized by non-frontal views of the eye and
relatively low spatial resolutions (400 x 400), can be instrumental in advancing state-of-the-art re-
search across various biometric applications. The VRBiom dataset can be utilized to evaluate, train,
or adapt models for biometric use-cases such as iris and/or periocular recognition and associated
sub-tasks such as detection and semantic segmentation.

In addition to data from real individuals, we have included around 1100 presentation attacks con-
structed from 92 PA instruments. These PAls fall into six categories constructed through combi-
nations of print attacks (real and synthetic identities), fake 3D eyeballs, plastic eyes, and various
types of masks and mannequins. These PA videos, combined with genuine (bona-fide) data, can be
utilized to address concerns related to spoofing, which is a significant threat if these devices are to
be used for authentication.

The VRBiom dataset is publicly available for research purposes related to biometric applications
only.

1 Introduction

The rise of head-mounted displays (HMDs) in recent years has significantly transformed the way we experience
digital content. With its Meta Quest series of virtual reality (VR) headsets, the Meta (previously FaceBook) is the
largest headset platform as of 2024'. Recently, Apple released its Mixed reality (MR) headset named Apple Vision
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Pro”, with specific focus on the spatial computing aspects of the device. The Sony Interactive Entertainment has been
actively working on VR for gaming applications with its PlayStation (PS VR) series’. Initially, these devices were
primarily designed for immersive entertainment, offering users experiences in augmented, virtual, or mixed reality.
However, the applications of HMDs extend far beyond gaming and entertainment, encompassing diverse fields such
as education [, 2], professional training [3, 4], healthcare [5, 6, 7], and biometric authentication [&, 9].

Besides its core functionality, an interesting feature of HMDs is the integrated multiple internal cameras. These
cameras, typically located in the surroundings of the user’s eye region, enhance the immersive experience by tracking
user’s eye movements and capturing images and videos of the user’s eyes and surrounding regions. This source of
data opens up a wide range of potential applications to be explored, including biometric authentication. In biometrics,
the HMDs can be instrumental in user recognition based on their iris and/or periocular traits [9]. Such applications
can be employed for both identification and verification purposes ensuring that the user accessing the device is indeed
who they claim to be. In addition to the recognition accuracy, in biometric applications, safeguarding against attacks
and ensuring robustness is critical. The presentation attacks (PA), also known as spoofing, pose a serious challenge
to biometric systems. These attacks can involve the use of masks, synthetic eyes, contact lenses, or printed images
to deceive the system into granting unauthorized access [10, 11]. Therefore, developing effective presentation attack
detection (PAD) or anti-spoofing mechanisms is essential for the practical use of biometric authentication systems in
HMDs. Beyond biometrics, HMDs have significant potential in other applications, such as semantic segmentation of
the eye region [8, 12]. This is particularly relevant for industrial, entertainment, and biomedical applications where
continuous tracking of the gaze and eye movement is necessary. HMDs can facilitate near-continuous gaze tracking,
which has applications ranging from interactive gaming to medical diagnostics [13, 14, 15]. Fig. | depicts some of the
possible biometric use-cases of the HMD data.
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Figure 1: Examples of biometric use-cases offered by the HMD data, in particular by the VRBiom dataset (The
example images are obtained from [16, 17, 18]).

The aforementioned applications have been a part of research and commercial deployments for several years. However,
most existing research and user-applications have focused on data captured by sensors positioned to capture a frontal
view of the eye. The design of recent popular HMDs typically places displays in front of the user’s eyes for an
immersive experience, and thereby necessitates the eye tracking cameras to be positioned in the surrounding areas.
This placement results in an oblique, non-frontal view of the eye region, posing unique challenges for biometric
applications. Additionally, the cameras integrated into these HMDs are often of lower resolution and must operate
within constrained resources. Moreover, the fitment of HMDs varies based on the individual’s inter-eye distance and
nose bridge shape, resulting in variations in the captured regions for different users.

These factors indicate the need for specific studies and datasets acquired directly from HMD devices to address the
above challenges. Such datasets can be invaluable for multiple purposes: (i) benchmarking the performance of existing
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methods/models on HMD data, (ii) fine-tuning models to address domain shifts (introduced by different capturing
angle, devices, resolutions, etc), and (iii) developing new methods tailored to the unique requirements of HMDs.

To address these challenges, in the realm of biometrics, we have created VRBiom: a new Virtual Reality dataset for
Biometric Applications acquired from the Meta Quest Pro. One subset of this dataset comprises 900 short videos,
each lasting nearly 10 seconds, collected from 25 individuals under various conditions, including steady gaze, moving
gaze, and half-closed eye settings. To ensure evaluation and development of various use-cases in realistic scenarios,
half of these videos were recorded with subjects wearing glasses, while the remaining half were recorded without
glasses. These videos present potential for a wide range of applications, such as biometric recognition and semantic
segmentation. It should be noted that conventional biometric recognition pipelines comprise of sequence of tasks,
including region of interest (Rol) detection, segmentation, and orientation. The presented dataset may be harnessed to
enhance each of these tasks separately. We have also captured recordings using different types of 3D masks, combined
with synthetic eyes such as 2D print-outs and 3D fake eyes. These 1104 recordings, also called as presentation attacks
(PAs), comprise other subset of the VRBiom dataset meant for addressing concerns related to PAD and anti-spoofing
measures. The overall VRBiom dataset consists of 2004 recordings of periocular (left and right) regions captured in
near-infrared (NIR) spectrum for 10s at 72 FPS.

The present release of the VRBiom consists of videos and subject-level (identity) labels. It also provides details of the
scenarios and PA instruments used. We do not provide pixel-level annotations for semantic details. The contributions
of our work can be summarized as below:

» We have created and publicly released the VRBiom dataset*, a collection of more than 2000 periocular videos
acquired from a VR device. To the best of our knowledge, this is the first publicly available dataset featuring
realistic, non-frontal views of the periocular region for a variety of biometric applications.

» The VRBiom dataset offers a range of realistic and challenging variations for the benchmarking and development of
biometric applications. It includes recordings under three gaze conditions: steady gaze, moving gaze, and partially
closed eyes. Additionally, it provides an equal split of recordings with and without glasses, facilitating the analysis
of the impact of eyewear on iris/ periocular recognition.

* As a part of VRBiom, we have also released more than 1100 PA videos constructed from 92 attack instruments.
These attacks, incorporating different combinations of PAIs such as prints, fake 3D eyeballs, and various masks,
provide a valuable resource for advancing PAD research in a VR setup.

The organization of this paper is structured as follows: Section 2 provides a brief review of iris/periocular datasets
and HMD-based datasets. Section 3 explains details of the VRBiom dataset, including data collection methods and
associated challenges. In Section 4, we discuss potential use cases of the dataset. Finally, we summarize the work
with Section 5.

2 Related Datasets

In this section, we briefly present some commonly used datasets for iris/periocular biometrics, followed by review of
recent datasets collected using HMD devices.

2.1 Datasets for Iris/ Periocular Biometrics

One of the most prominent and commonly used iris datasets is the CASIA-Iris series’, collected by the Chinese
Academy of Sciences, which consists of four main versions denoted with suffixes V1-V4 [19]. The first version, V1,
released in 2002, comprised 756 images taken from 108 subjects at a resolution of 320 x 280. In 2004, CASIA-IrisV2
was released, containing 2,400 images from 120 individuals at VGA resolution (640 x 480). The third version included
three different subsets: Interval, Lamp, and Twins. The Casia-Interval subset was captured from 249 subjects in an
indoor environment, while the Lamp subset provided 16k images at VGA resolution. The Twins subset contained
recordings of 200 twins, primarily children, in an outdoor environment [20]. The latest version, CASIA-IrisV4, is the
most comprehensive, including 54,601 images from 2,800 subjects distributed across six subsets namely CASIA-Iris-
Interval, Lamp, Twins, Distance, Thousand, and Syn [19, 21].

The Iris Liveness Detection Competition (LivDet-Iris) [22, 23] dataset combines multiple datasets designed for live-
ness detection in the context of iris PAD. The 2017 competition utilized four different datasets created by Clarkson,
Warsaw, Notre Dame (ND), Indraprastha Institute of Information Technology Delhi (IIIT-Delhi), and West Virginia
University (WVU) [22]. The Clarkson and Warsaw datasets mainly focus on print attacks, consisting of 8,095 and

“The VRBiom dataset can be downloaded from https://www.idiap.ch/dataset/vrbion.
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12,013 images, respectively. The ND CLD 2015 and IIITD-WVU datasets comprise more than 7k images each,
acquired at VGA resolution. The recent edition of the competition, held in conjunction with IJCB 2023, aimed at cre-
ating more challenging attacks [23]. This dataset included attack instruments such as print, contact lenses, electronic
displays, fake/prosthetic eyes, and synthetic iris of varying quality.

Researchers at the University of Beira have released a series of UBIRIS datasets of iris images. The UBIRIS v1 dataset
provides 1,877 images acquired under less constrained imaging conditions [24], whereas UBIRIS v2 offers more than
11k images captured at a distance [25]. Another version, UBIPr, derived from UBIRIS v2, provides wider regions
suitable for periocular recognition. They have also released pixel-level masks of semantic elements such as the iris
and sclera, making it a useful resource for segmentation applications.

Additionally, the Multimedia University (MMU) released two iris image datasets in 2010 that are publicly available.
The first version, MMU-v1, consists of 450 images obtained from 45 subjects, while the subsequently released MMU-
v2 provides 995 images from 100 subjects [26, 27].

Table 1 summarizes the iris and periocular biometric datasets, providing details related to samples and attacks where
applicable.

Datasets and Subsets #Subjects | #Images Resolution | Types of Attacks Collection | Institution(s)
Year
CASIA-IrisV1 | 108* 756 320 x 280 | No 2002
CASIA-IrisV2 | 120%* 2,400 640 x 480 | Ni 2004 . .
CASIA-Iris series [19] s x ° Chinese Academy of Sciences
CASIA-IrisV3 | 700 22,034 Various No 2005
CASIA-IrisV4 | 2,800 54,601 Various No 2010
ND CLD 2015 | - 7,300 640 x 480 | contact lens (live) 2015 University of Notre Dame
HITD-WVU - 7,459 640 x 480 | Print 2017 IIIT Delhi
LivDetlris 2017 [22] x ”" e
Clarkson 50 8,095 640 x 480 | Print and contact lens | 2017 Clarkson University
(live)
Warsaw 457 12,013 640 x 480 | Print and contact lens | 2017 Warsaw University
(print, live)
UBIRIS-V1 241 1,877 400 x 300 | N 2004 L. .
UBIRIS [24, 25] x ° University of Beira
UBIRIS-V2 261 11,102 800 x 600 | No 2009
MMU-V1 4 4 - N 201
MMU [26, 27] U 3 30 ° 010 Multimedia University
MMU-V2 100 995 - No 2010
LivDet-Iris 2023 [23] - - 13,332*%* | Various Print, contact lens, | 2023 Multiple Institutions
fake/ prosthetic eyes,
and synthetic iris

Table 1: Overview of iris and periocular biometric datasets. (*number of classes, **number of eyes, ***number of
test data).

2.2 HMD Datasets for Iris/ Periocular Biometrics

Due to the inherent challenges in collecting data using HMD devices and the limitations of hardware quality, there
have been fewer attempts to gather such datasets. However, with recent advancements in hardware technology and the
increasing number of companies releasing HMD headsets, these types of datasets are gaining traction in both research
and end-user applications.

Released in 2012, the Point of Gaze (PoG) dataset is one of the HMD datasets created for gaze detection and head
pose studies [28]. It comprises data from 20 subjects recorded at a resolution of 768 x 480. The Labelled Pupils in the
Wild (LPW) dataset contains 66 eye-region videos at VGA resolution captured at 95 FPS [29]. As its name suggests,
the LPW dataset features several variations in illumination, eyewear (glasses and contact lenses), and makeup, along
with gaze directions. Kim et al. introduced the NVGaze dataset, which was collected from 35 subjects [30]. This
dataset focuses on gaze estimation and includes approximately 2.5 million bona-fide images at VGA resolution.

The Open Eye Dataset (OpenEDS) has two editions: OpenEDS 2019 and 2020, both released by Facebook Real-
ity Labs, which have significantly advanced the field of HMD-based eye-tracking research. The OpenEDS 2019
dataset [3 1] comprises videos and images from 152 subjects and is partially annotated for semantic segmentation. The
2020 version [32] includes two sub-datasets (the Gaze Prediction and Eye Segmentation Datasets) from 80 subjects,
comprising approximately 580k images with a resolution of 640 x 400 pixels, captured at 100 FPS.



The creators of OpenEDS also organized a competition (challenge) to improve performance in tracking and segmen-
tation tasks. While OpenEDS is similar to our presented work, it differs in two main aspects: first, OpenEDS data
is acquired from eye-facing cameras, yielding frontal eye views, whereas our dataset uses a consumer-level HMD
capturing eyes and periocular regions from non-frontal angles. Second, OpenEDS includes recordings only from real
(bona-fide) subjects, while our dataset incorporates a variety of presentation attacks (PAs), making it valuable for PAD
research as well [31, 32].

Our dataset, VRBiom, consists of 900 short videos from 25 participants and more than 1100 videos across six cate-
gories of attack instruments. Each video, with a spatial resolution of 400 x 400, is approximately 10 seconds long and
captured at 72 FPS. Table 2 provides a brief comparison of the publicly available HMD datasets for research.

Datasets Collection | #Subjects | #Images | Resolution | FPS (Hz) | Presentation | Profile Synthetic
Year Attacks Eye Data

Point of Gaze (PoG) [28] | 2012 20 - 768 x 480 | 30 X Frontal X

LPW [29] 2016 22 130,856 640 x 480 | 95 X Frontal X

NVGaze [30] 2019 35 2,500,000 | 640 x 480 | 30 X Frontal

OpenEDS2019 [31] 2019 152 356,649 640 x 400 | 200 X Frontal X

OpenEDS2020 [32] 2020 80 579,900 640 x 400 | 100 X Frontal X

VRBiom (this work) 2024 25 1,262,520 | 400 x 400 | 72 Non-Frontal

Table 2: Summary of the iris/ periocular datasets acquired by the HMDs.

3 The VRBiom Dataset

In this section, we describe the process of acquiring both bona-fide and PA data, along with relevant statistics. We also
discuss some of the challenges encountered in the creation of the VRBiom dataset.

3.1 Collection Setup

A total of 25 subjects, aged between 18 and 50 and representing a diverse range of skin tones and eye colors, partici-
pated in the data collection process. Each participant was briefed on the project objectives and provided their consent
through a signed consent form. The data acquisition for each participant was conducted in a single session lasting ap-
proximately 20 minutes. We divided the recordings into two sub-sessions: the first without the subject wearing glasses
and the second with glasses. For each sub-session, we captured three recordings involving different gaze variations:
steady gaze, moving gaze, and partially closed eyes. Each video had a duration of approximately 10 seconds, recorded
at a frame rate of 72 frames per second (FPS). The videos have a spatial resolution of 400 x 400 pixels and were cap-
tured in a single-channel in the NIR spectrum. It was often observed that for nearly first second of the recording, the
recordings were over-exposed to the NIR illumination. Therefore, we recommend discarding the first 70-80 frames
from processing.

The iris/periocular videos in the VRBiom dataset were captured by the inward facing cameras located in the Meta
Quest Pro headset. For bona-fide recordings, the subjects wore the HMD device, whereas for recording of PAs,
we systematically positioned the Meta Quest Pro on the attack instrument (as described later in this section). The
Meta Quest Pro was connected to a workstation via USB-C cable which facilitated both charging and the transfer of
recording commands and data. Figs. 2a and 2b depict the recording setups for bona-fide and PAs, respectively.

To streamline the data collection, we developed the Meta Quest Pro Data Capture App (app) (Refer to Fig. 2c for GUI).
This app enabled us to set file names, manage recordings, and transfer files from the Meta Quest Pro to our workstation
efficiently. Additionally, the app provided tools to convert the video recordings from the proprietary vrs format to the
conventional avi format, which is compatible with most common video players and softwares. Through the capture
app, we also ensured a specific naming convention for each recoded video. The naming convention consisted of the
following fields: Type (bona-fide or PA), subject ID (or PA ID), Eye (left or right), glasses (without or with), type of
gaze (Steady, Moving, or Partially closed), claimed ID (for PAs), details of PAI (for PAs), recording ID, and a random
suffix. These fields, with their mapped values, were used to create the filename for each video. More details on this
can be found in the actual dataset.
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Figure 2: Setup for the dataset collections: (a) for bona-fide recordings, the subjects wore the HMD devices, (b) for
PA recordings, the HMD device was carefully placed on the temple region of the attack instrument (mannequin, in this
example), and (c) the Meta Quest Pro Data Capture App used for data collection.

3.2 bona-fide Recordings

Before starting the recording, we ensured that the HMD (Meta Quest Pro) is securely and comfortably fitted around
the subject’s head, providing them with an immersive virtual experience. Considering the diverse array of use-cases,
we captured videos under three different gaze variations:

» Steady Gaze: The subject maintains a nearly fixed gaze position by fixating their eyes on a specific (virtual) object.

* Moving Gaze: The subject’s gaze moves freely across the scene.

 Partially Closed Eyes: The subject keeps their eyes partially closed without focusing on any particular gaze.

Figure 3: Samples of bona-fide recordings from VRBiom dataset. Each row presents a sample of steady gaze, moving

gaze, and partially closed eyes (from left to right). Top and bottom rows refer to recordings without and with glasses,
respectively.



#Subjects | #gaze | #glass | #repetitions | #eyes | #total

25 3 2 3 2 900
Table 3: Summary of bona-fide recordings in the VRBiom dataset.

These variations were recorded under two eye-wear conditions: with glasses and without glasses. If the subjects did
not have their own medical glasses, they were provided with a pair of fake glasses. Each gaze variation and glasses
condition was repeated three times to ensure a robust dataset.

Fig. 3 provides samples of each of the aforementioned variations. The HMD is equipped with cameras that simultane-
ously record videos of both eyes. Therefore, for each recording, two videos are captured concurrently- one for the left
eye and one for the right eye. In total, we collected 900 bona-fide videos from 25 subjects, which can be summarized
as follows:

Thus, the structure and coverage of the VRBiom ensure that each subject’s iris/periocular region is recorded across
various realistic scenarios, providing a valuable resource for researchers to analyse and develop biometric applications.

3.3 PA Recordings

Most of the PAs were constructed by combining two categories of attack instruments: those targeting the eyes and
those targeting the periocular region. For the eyes, we used a variety of instruments including fake 3D eyes (eyeballs),
printouts from synthetic and real identities, and plastic-made synthetic eyes. For the periocular region, we employed
mannequins and 3D masks made of different materials. These masks also served as a fake head where the HMD could
be securely placed for recording.

Figure 4: Samples of PA recordings from VRBiom. The top row represents the PAI captured in RGB (visible) spec-
trum, while middle and bottom rows depict the NIR recordings without and with glasses, respectively, as acquired by
the internal (right) camera of the Meta Quest Pro. From left to right, each column presents a sample of the type of
PAIs belonging to the attack series from 2—-7.

Using these combinations, we created six categories of PAls, each with a variable number of attack instruments.
Samples of these categories are provided in Fig. 4, with a brief description as follows:

e Mannequins: We used a collection of seven mannequins made of plastic, each featuring its own eyes. These
mannequins are generic (fake heads) as they do not represent any specific bona-fide identity. Unlike the requirements



of additional components for other PAIs to provide a stable platform or extra equipment to stabilize HMDs, these
mannequins are particularly advantageous due to their integrated and stable platform for placing HMDs.

Custom rigid masks (type-I): This category includes ten custom rigid masks, comprising five men and five women.
The term custom implies that the masks were modeled after real individuals. Manufactured by REAL-f Co. Ltd.
(Japan), these masks are made from a mixture of sandstone powder and resin. They represent real persons (though
not part of the bona-fide subjects in this work) and include eyes made of similar material with synthetic eyelashes
attached.

Custom rigid masks (type-II): We used another collection of 14 custom rigid masks to construct the PAs for the
VRBiom. These masks differ from the previous category in two ways: first, they are made of amorphous powder
compacted with resin material by Dig:ED (Germany); second, they have empty spaces at the eye locations, where
we inserted fake 3D glass eyeballs to construct an attack.

Generic flexible masks: This category includes twenty flexible masks made of silicone. These full-head masks
do not represent any specific identity, hence termed generic. The masks have empty holes for eyes, where we in-
serted printouts of periocular regions from synthetic identities. Using synthetic identities alleviates privacy concerns
typically associated with creating biometric PAs.

Custom flexible masks: These silicone masks represent real individuals. Similar to the previous attack categories,
these masks have holes at the eye locations, where we inserted fake 3D eyes to create the attacks. We have 16 PAIs
in this category.

Vulnerability Attacks: For each subject in the bona-fide collection, we created a print attack. For both eye-wear
conditions (without and with glasses), we manually selected an appropriate frame from each subject’s bona-fide
videos and printed it at true-scale on a laser printer. The printouts were cut into periocular crops and placed on a
mannequin to resemble a realistic appearance when viewed by the tracking cameras of the HMD. The so-obtained 25
print PAs can be used to assess the vulnerability of the corresponding biometric recognition system. These attacks
simulate scenarios where an attacker gains access to (unencrypted) data of authorized individuals and constructs
simple attacks using printouts.

Table 4 summarizes the details of the VRBiom dataset comprising 900 bona-fide and 1104 PA videos. It also provides
the naming conventions used to indicate the type of PAIL

Type PA Series | Subtype # Identities | # Videos Attack Types
bona-fide - [steady gaze, moving gaze, | 25 900 -
partially closed] x [glass, no
glass]
2 Mannequins 7 84 Own eyes (same material)
3 Custom rigid mask (type 1) 10 120 Own eyes (same material)
Presentation | 4 Custom rigid mask (type II) | 14 168 Fake 3D eyeballs
Attacks 5 Generic flexible masks 20 240 Print attacks (synthetic data)
6 Custom silicone masks 16 192 Fake 3D eyeballs
7 Print attacks 25 300 Print attacks (real data)

Table 4: Details of bona-fide and different types of PAs from the VRBiom dataset. Each video was recorded at 72 FPS
for approximately 10s.

3.4 Challenges

Here we briefly discuss some of the challenges encountered during data collection, and the corresponding solutions

employed.

* Eyelashes: During the initial data capture experiments, we observed that the subjects’ eyelashes appeared as a
prominent feature, especially when capturing the periocular region. The absence of eyelashes in most PAIs, where
prints or 3D eyeballs were used to construct the attack, can be considered as an easy to distinguish yet unrealistic
feature. To create a more realistic scenario, we decided to use false eyelashes from standard makeup Kkits.

* PA recordings: Recording the PAs was challenging due to the lack of real-time feedback from the device or capture
app. To achieve the correct positioning and angle for various PAlIs, it often required multiple attempts and recording

trials for data collectors to ensure the desired quality of the captured data.



e NIR Camera’s Over-exposure: The proximity between the attack instrument and the NIR illuminator/receiver often
resulted in over-exposed recordings. Given that VR headsets are designed to fit closely on the forehead, we had a
limited room for adjustment. However, we attempted minor adjustments to the HMD’s orientation and the placement
of the PAI to mitigate exposure issues to a considerable extent.

» Synthetic Eyes: One challenge we faced was the variability in the identity of synthetic eyes. To ensure accurate
biometric measurements, we needed to carefully select synthetic eyes that closely resemble human eyes.

* Print Attack: The print-out attacks designed for vulnerability assessment are inherently 2-dimensional, whereas the
periocular region’s appearance is 3D. To simulate realistic appearance, we employed small paper balls to roll the
printed attacks, thereby providing a structural view akin to 3D representation.

4 Potential Use-Cases of the VRBiom Dataset

This section outlines the potential use-cases of the newly created VRBiom dataset, emphasizing its applicability in
biometric applications such as iris and periocular detection/recognition, presentation attack detection (PAD), as well
as intriguing tasks (or sub-tasks) associated with biometrics such as semantic segmentation focusing on the eye, iris,
and sclera regions. The overview of these use-cases is illustrated in Fig. 1

The use cases discussed here, although well-established in research and development, are highlighted more as possi-
bilities than substantiated claims of direct applicability. The VRBiom dataset can serve as a benchmark to evaluate
the effectiveness of current HMD data for these applications. Alternatively, it can be instrumental in developing (or
fine-tuning) applications specifically for data obtained from HMD devices. The present data can be characterised by
non-frontal views of periocular regions, relatively low spatial resolutions, and limited resources. Thus, some applica-
tions discussed in this section may prove to be quite challenging. This, however, presents interesting research problems
to transform this data into better quality as well as to develop robust applications.

Needless to mention, the advances in HMD technology will not only enhance the quality of the data but also expand
the scope of applications.

4.1 TIris and Periocular Recognition

The VRBiom dataset comprises 900 video recordings from 25 bona-fide subjects. Each subject participated in sessions
combining three gaze and two eye-wear variations, thus providing a valuable resource for sampling and analyzing iris
and periocular regions for detection and recognition tasks. When sampled at the frame level, videos with moving gaze
can be treated as individual frames with varied gazes. These individual frames facilitate the localization and enrollment
of the eye region, making them suitable for both detection and recognition purposes. Detection involves localizing
specific regions of interest (Rol), such as the iris, eye, or periocular regions, while recognition can be performed in
both /:1 verification and /:N identification scenarios.

Based on the design of the pipeline, recent iris/periocular recognition methods can be categorized into feature-
extraction based or classification based. Feature-extraction based methods employ models, often deep convolutional
neural network (CNN) architectures, as feature extractors to obtain a compact representation (embedding) of a pre-
processed input, (i.e., iris/periocular image). In these methods, preprocessing and matching/scoring are typically
separated from feature extraction. Classification based methods, on the other hand, treat the recognition problem in an
end-to-end manner, training the iris dataset in a supervised learning setting.

An overview of iris recognition methods using handcrafted features and classical machine learning techniques can be
found in [33]. A recent work by Nguyen et al. provides a systematic survey of deep learning (DL)-based methods for
iris recognition [27]. Another comprehensive review of iris recognition methods is presented in [34], which details
methods from both categories and various preprocessing techniques for the first category (non end-to-end methods).
Alonso-Fernandez and Bigun discuss several handcrafted feature-based methods for periocular recognition, categoriz-
ing them into texture, shape, and color-based methods [35].

Iris recognition remains a topic of significant interest within the biometric community. Over the past decade, several
challenges have been organized to advance iris recognition performance [36, 37]. The challenge described in [37] was
specifically dedicated to mobile iris recognition. Boutros et al. benchmarked the OpenEDS [31]- an HMD dataset—
for iris recognition [ 16, 9]. Although this dataset has been acquired from an HMD device, it captures nearly frontal
view of the eye regions making it easy to detect, localize, and recognize an individual.

The use of HMD data for biometric recognition is still in its early stages and is yet to gain mainstream attention. A
major challenge posed by HMD-based iris detection is the oblique view of the Rol, which often results in localization
failures and leads to failure to acquire (FtA). The non-frontal view, even after normalization, may cause feature/data



distortion. This, combined with the relatively small size of the Rol, results in the loss of fine, subtle features that
may present discriminatory information. Several quality metrics for iris and periocular images, including low-quality
images, have been presented in [33]. A study of the quality assessment of HMD-based data for recognition purposes
may provide useful insights towards designing new methods.

4.2 TIris and Periocular PAD

For a biometric authentication system to be practically deployable, its resistance to presentation attacks (PAs) is crucial.
The importance of PAD for iris and periocular traits has been well recognized by the biometric community. Several
works by A. Czajka, K. Bowyer, and colleagues present comprehensive reviews of iris PAD methods and datasets [1 1,

]. However, these works do not discuss datasets or PAD methods for HMD-based datasets, likely due to a lack of
relevant data. With VRBiom, we provide the first PAD dataset acquired using HMD devices, containing approximately
1100 short videos of PAs. Through a combination of attack instruments for the eyes and surrounding regions (refer to
Section 3), we have created a variety of attack scenarios for PAD tasks. The inclusion of print attacks of the bona-fide
samples allows for the vulnerability analysis of different PAD methods.

Several studies have also proposed approaches that combine both iris and periocular regions for PA detection [39, 18].
Such approaches can be explored for the VRBiom dataset, if the detection and localization of iris does not yield
satisfactory results.

LivDet-Iris® is a well-known competition regularly organized to compare liveness detection methods (i.e., to differen-
tiate between real human and fake samples). The fifth installment of this competition was held in conjunction with
IJCB in 2023 [23]. Despite the participation of reputable academic institutions, the average classification error rates
were as high as 22-37% (the variation refers to the weighing mechanism of different PAIs). Although the quality of
data and types of attacks in the competition datasets and VRBiom dataset differ, this highlights the challenging and
unresolved nature of the iris and/or periocular PAD problem.

4.3 Semantic Segmentation

Semantic segmentation of the eye to localize components such as the iris and sclera has demonstrated its usefulness
in both biometric and non-biometric tasks. This segmentation process is often an integral crucial stage in recognition
and PAD-related tasks discussed in the previous section. The creators of the OpenEDS dataset have also highlighted
segmentation as a key application of interest [31]. Segmentation of individual traits, such as the iris [40] and sclera
[41], has received considerable attention in the literature. Recently, multi-class semantic segmentation—which involves
the simultaneous detection and localization of various parts of the eye region— has gained interest as well [42, 43, 44].

Similar to the previous use-cases, the topic of eye segmentation has been further advanced by numerous competitions.
For instance, challenges such as NIR-ISL [17] and SSRBC [45] focus specifically on iris and sclera segmentation,
respectively. The VRBiom dataset (after annotations) can also be used to benchmark the performance of existing
segmentation methods, with reference to biometric applications, on realistic HMD data captured in the NIR spectrum.
Given the variation in the exact angle of capture due to differences in subjects’ face shapes and inter-eye distances,
the frames in the VRBiom dataset present a challenging dataset. As typical segmentation methods are usually trained
on frontal views of the eye, one may be required to address this domain gap by designing implicit or explicit affine
transformations.

S Summary

In this work, we introduced the VRBiom dataset, a novel dataset of periocular videos captured using the VR device,
Meta Quest Pro. This dataset is the first publicly available resource offering realistic, non-frontal views of the perioc-
ular region, comprising 900 short videos from 25 subjects and 1104 presentation attack (PA) videos using 92 different
attack instruments. The dataset includes diverse and challenging scenarios such as steady gaze, moving gaze, and
partially closed eyes; with an equal split of recordings with and without glasses.

The HMD-captured data are relatively novel and present significant potential for various applications that are yet to be
fully explored. However, these also pose unique challenges such as non-frontal views, user-specific fitment issues, and
low resolutions. With the VRBiom dataset, we hope to provide a valuable resource for understanding and advancing
biometric applications associated with AR and VR devices. The inclusion of various attack recordings also provides
an opportunity to enhance anti-spoofing measures for VR-based authentication systems.

*https://livdet.org
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We have outlined the data collection process and associated challenges, providing useful insights for researchers
aiming to acquire similar data from VR devices. The VRBiom dataset is publicly available to support advancements in
biometric research, including authentication, semantic segmentation, and presentation attack detection (PAD), along
with related sub-tasks.
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