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Abstract

Recent developments in Virtual Reality (VR) headsets
have unlocked a plethora of innovative use-cases, many of
which were previously unimaginable. However, as these
use-cases, such as personalized immersive experiences, ne-
cessitate user authentication, ensuring robustness and re-
sistance to spoofing attacks becomes imperative. The ab-
sence of appropriate dataset has constrained our under-
standing and assessment of VR devices’ vulnerability to pre-
sentation attacks. To address this research gap, we intro-
duce a new periocular video dataset acquired from a VR
headset (Meta Quest Pro), comprising 900 genuine and 996
presentation attack videos, each spanning 10 seconds. The
bona-fide videos consist of variations in terms of gaze and
glasses; while the attacks are constructed with 6 different
types of instruments. Additionally, we evaluate the perfor-
mance of two prominent CNN architectures trained using
various configurations for detecting presentation attacks in
the newly created dataset, VRPAD. Our benchmarking on
VRPAD reveals the presence of spoofing threats in VR head-
sets. While baseline models exhibit considerable efficacy in
attack detection, substantial scope exists for improvement
in detecting attacks on periocular videos. Our dataset will
be a useful resource for researchers aiming to enhance the
security and reliability of VR-based authentication systems.

1. Introduction
In recent years, the advancement in the wearable devices

such as Head-Mounted Display (HMD) made it possible to
interact with real and/or virtual environments for specific
purposes. The HMD device operated in such virtual on real
(Augmented Reality), virtual only (Virtual Reality) and vir-
tual/real blended (Mixed Reality) environments enable the
people to play computer games, interact with multimedia
including video and train for profession-purpose. There are
many vendors such as Meta, Apple, Microsoft and HTC fo-
cusing on the development of these kind of devices in dif-

Figure 1. In top left, a user attempting to spoof the Iris/Periocular
authentication of the Virtual Reality (VR) headset by presenting a
print-out of face of another real or synthetic identity. The cameras,
mounted on the temple region of the device, are intended to cap-
ture the periocular regions of the wearer of headset. This picture is
representational as controlled exposure of incident light is neces-
sary to record good quality attacks. The bottom row depicts attack
(left) and bona-fide (right) samples from the VRPAD dataset.

ferent real/virtual level.
Beyond gaming, the HMD devices have many applica-

tion areas ranging from healthcare to communication. In
healthcare, it can be adopted for use in surgical training and
planning [12, 22], and in more specifically for the ophthal-
mology and psychology, it may be possible to diagnose the
eye diseases [24], as well as to analyze the human emo-
tion/behavior [3] based on the data collected by such de-
vices. In communication, the avatar as digitization of the
real people in the Metaverse, which is defined as the virtual
world’s access by HMD devices, provides a way of interac-
tion for people to communicate with each other on virtual
platforms [4]. This kind of communication requires the as-
surance regarding the validity on person on the other side,



and needs additional security layers such as identity recog-
nition using biometric traits. The use of iris or periocular
region, being inherently visible to the HMD, as biometric
trait can be natural choice in this regard.

The existence of the biometric systems is vital for these
devices in order to provide secure access to the personal
information regarding to healthcare or privacy. The intro-
duction of such systems also requires the robustness against
presentation attacks that are realized over various instru-
ments (mask, paper etc.). A Presentation Attack Detection
(PAD) system must be co-exist with the biometric system
in order to keep unauthorized access, which mimics as an
authorized person over printed paper etc., away. Although
it’s an achievable data-driven machine learning task because
of the plenty number of the PAD dataset in the mainstream
biometric recognition [6, 18], to the best knowledge of us,
there is no PAD dataset collected specifically from HMD
devices.

With emergence of VR devices, and possible diverse us-
age, it is important to envisage upcoming challenges and
conduct research to address these well in advance. The crit-
ical missing factor is no such data is publicly available given
the novelty or recentness of such data. In this work, we ad-
dress both challenges associated: first, we create a dataset of
nearly 1,900 periocular videos, nearly 10 s long, captured
by the headset cameras of Meta Quest Pro (a VR headset re-
leased by Meta, formerly Facebook). This dataset consists
of recordings of 25 bona-fide users with still gaze, moving
gaze, as well as partially closed eyes. For selected record-
ings, we construct a presentation attack (PA) by fake 3D
eyeballs, print-outs of periocular regions of other enrolled
users as well as that of synthetic identities. This dataset-
Virtual Reality Presentation Attack Dataset (VRPAD)- will
be publicly released1 to the research community for further-
ing work in this area. Secondly, we conduct PAD assess-
ment of the newly created VRPAD using two most com-
monly used convolutional neural network (CNN) architec-
tures: ResNet and MobileNet. For each architecture, we
select three different strategies based on which components
of the CNN are adapted (trained/ finetuned) or regarded as
constant (frozen). For each of these combinations, we eval-
uate their robustness towards detection of PA from the VR-
PAD.

The main contributions of the paper can be summarized
as below:
• We create a dataset of 900 iris/ periocular videos of 25

subjects captured by the cameras of a VR headset, specif-
ically the Meta Quest Pro. We also capture nearly 1,000
videos of presentation attacks constructed using fake eye-
balls, printouts, and synthetic eyes using a variety of
masks and mannequins.

1URL will be shared upon acceptance of the paper.

• We conduct PAD assessment of the newly created dataset
using two state-of-the-art architectures, by training them
in different strategies. Results of our experiments indicate
that while the existing CNN architectures, along with pre-
trained weights, are able to detect the PAs to a large ex-
tent, there is a systematic opportunity for improvement.

2. Related Work
In this section, we first provide an overview of recent ad-

vances in iris/ periocular PAD methods, then we discuss in
brief some existing datasets acquired using HMD devices.

Iris/Periocular PAD: The PAD for iris or periocular re-
gions as biometric trait is a well-studied area of research.
In [19], Sharma et al. proposed a DenseNet based PAD
system in order to expose the complicated features of the
iris stroma by the multi-resolution analysis capability of
the DenseNet. Similar to [19], Swarup et al. also used
the DenseNet combined with attention mechanism between
the dense blocks of the DenseNet [20]. Li et al. leveraged
the frequency domain to alleviate the cross-dataset perfor-
mance degradation because of the limited data on the bona-
fide samples [14]. Fang et al. proposed an attention-based
deep pixel-wise method, which detects the regions effecting
the performance of the PAD, in [9] for infrared and visible
domains. In [1], the problem of iris PAD is considered for
the contact lens scenario and a generalized CNN topology
is used combined with early and late fusion strategies in
order to have robust PAD methods in cross-dataset setting.
Dhar et al. proposed a multitask system for both eye au-
thentication and PAD [7]. They mitigated the problem of
forgetting in the Multitask Learning (MTL) by introducing
the distillation-based approach. In [23], a Generative Ad-
versarial Network (GAN) based approach is used in order
to generate synthetic PA samples that are underrepresented
in the training set. Agarwal et al. proposed a PAD system
by combining gener-covariate based classifiers in [2]. In the
same study, fairness based observations are also shared re-
lated with gender bias in the PAD datasets. In [15], Li et al.
proposed a PAD system for better generalization in a cross-
dataset setting by exposing domain-invariant and domain-
specific features in the samples.

HMD Datasets: HMD based datasets are severe in the
literature as the topic is relatively new. The most recent
study is proposed as the OpenEDS dataset by Garbin et
al. [10]. This dataset consists of 356k infrared images with
an image size of 640 × 400 collected from 152 subjects.
The another recent dataset is the NVGaze proposed by Kim
et al. [11] and it contains 2.5 million infrared images with
dimensions of 640× 480 for 30 subjects. Tonsen et al. pro-
posed a similar dataset named as the LPW [21] with 22 sub-
jects in a head-mounted fashion and it consists of 130k im-
ages with a spatial resolution of 640 × 480. The Point of
Gaze dataset, by McMurrough et al. [16], is collected from



20 subjects and contains images with a spatial resolution of
768× 480 pixels.

3. New Dataset: VRPAD
This section describes the details regarding to the VR-

PAD dataset including the statistics for bona-fide and attack
samples, the PA instruments used during the data collection
session and the protocol information.

3.1. Description

The VRPAD dataset, to the best of our knowledge, is the
first periocular PAD dataset acquired from HMD devices
such as Meta Quest Pro. Since the environment of data ac-
quisition is highly controlled (the HMD closely fits around
the head of the subject), we recorded every identity, either
bona-fide or PAIs, in one session. Each recorded sample
is composed of two sub-samples referring to Near Infrared
(NIR) cameras of Meta Quest Pro looking into left and right
eyes (temples) of the identity.

During bona-fide session, each participant was briefly in-
formed about the project, and was required to sign a consent
form. As seen in Fig. 3, each subject was recorded in two
sub-sessions: one with wearing glasses and another with-
out. For each sub-session, the subject was asked to maintain
three specific conditions as still gaze, moving gaze, and par-
tially closed eyes. We recorded each video for nearly 10s
at 72 fps. Post recording, we often observed that during ini-
tial first second or so, several recordings were over-exposed,
and thus, initial 70 frames were discarded. The videos, thus,
have around 650 frames and spatial resolution is 400×400.

(a) (b) (c)

(d) (e) (f)
Figure 2. PA instruments for VRPAD: (a) Rigid masks with own
eyes, (b) rigid masks with fake eyeballs, (c) flex masks with print
attacks, (d) flex masks with print attacks, (e) flex masks with fake
eyeballs, and (f) auxiliary instruments (fake eyeballs, prints with
synthetic eyes, eyelashes, glasses).

We constructed presentation attacks with different com-
binations of Presentation Attack Instruments (PAIs) to cre-
ate a wide range of attack dataset. The summary of com-
bination of 3D masks (and mannequins) and fake eyes con-
sidered to create attacks is provided in Table 1. Fig. 2 de-

Figure 3. Samples of bona-fide recordings from VRPAD. Each row
presents a sample of still gaze, moving gaze, and partially closed
eyes (from left to right). Top and bottom rows refer to recordings
without and with glasses, respectively.

picts some samples of PAIs which include rigid masks with
own eyes, rigid masks with fake 3D eyeballs, generic flex
masks with printouts of synthetic eyes, custom flex masks
with fake 3D eyeballs, and attacks constructed from prints
of bona-fide samples. Some auxiliary instruments such as
fake eyeballs, eyelashes and glasses were also used to bring
more variations and realism to PAIs. Some samples from
PA sessions can be examined in Fig. 4.

3.2. Dataset Statistics

Our dataset comprises of video recordings of 25 bona-
fide subjects. For each subject, a total of 36 video samples
were captured: which are combinations of 3 gaze scenar-
ios, 2 glass/no-glass, and 3 repetitions from each left and
right camera. In total, 900 bona-fide videos were recorded.
Subsequently, for each subject, we chose a suitable near-

(a) (b) (c)

(d) (e) (f)
Figure 4. Samples of PA recordings from VRPAD. (a) Mannequins
with own eyes, (b) rigid masks with own eyes, (c) rigid masks with
fake eyeballs, (d) flex masks with print attacks, (e) flex masks with
fake eyeballs, and (f) print attacks from bona-fide samples.



frontal frame from with and without glass recordings. A
print-out of this frame from a laser printer (which is visible
in NIR spectrum) was used to create print-attacks. For each
eye (left and right), we recorded three repetitions, with and
without glasses for such attacks; thereby obtaining a set of
300 attacks videos that can be assessed for not only obfus-
cation, but also for vulnerability of recognition system.

For PAs, each instrument was recorded 3 times with and
without glasses. Thus, for each fake identity, we obtained
18 attack videos. Our VRPAD encompasses 7 unique man-
nequins that were used to obtain (7 × 3 × 2 =) 86 videos.
Similarly, for two types of custom rigid masks (ones with
own eyes and ones fake 3D eyeballs), we obtained 120 and
60 attack presentations. For flexible masks with printed
eyes and fake 3D eyeballs, we recorded 240 and 192 videos,
respectively.

3.3. Experimental Protocol

To conduct PAD assessment and establish baselines on
the VRPAD, we created an experimental protocol. We di-
vided the VRPAD into train, val, and test partitions.
We ensured that these partitions are disjoint in terms of
identities, and nearly equal in volume (i.e., 33% of total
dataset). With uniform sampling, we selected every 10-th
frame of each video for processing. It should be noted that
all experiments described in this work have been conducted
at frame-level. That is, each constituent frame is regarded
as an independent data, irrespective of the implicit correla-
tion frames of same video may have. Detection of attacks
from video data, by exploiting temporal information, is not
considered in this work. For frame-level PAD assessment,
the train partition of VRPAD consists of 37,280 frames
from 588 videos. The val partition has 38,563 frames from
512 videos—which have different identities as that from the
training partition. For the test partition, our experimental
protocol consists of 43,648 frames from 696 videos (bona-
fide and attacks combined). Some samples which were not
recorded correctly, due to technical or manual glitches were
removed after manual inspection2.

Fig. 3 shows samples of bona-fide recordings, and Fig. 4
presents different types of PAs.

4. PAD Assessment of VRPAD

Initially, we provide the specifics of the experimental
setup, models, and evaluation metrics used. Subsequently,
we discuss the outcomes of the PAD experiments con-
ducted on the VRPAD. These experiments are combina-
tions involving two backbone architectures and three dif-
ferent models (training configurations).

2We plan to re-record some videos that were removed in the present
version. These videos are less than 3% of overall dataset, and similarly
distributed across different partitions

4.1. Experimental Setup

Since the periocular region is considered as a biometric
trait to be assessed for PAD, we adopt the entire frame as
the input. From samples in Figs. 3 and 4, it can be observed
that the frame of Meta Quest Pro encompasses the eyes and
surrounding areas, validating the use of the entire frame as
the periocular region. Additionally, due to the variability
in eye positions (relative to the frame borders), cropping a
fixed region cannot guarantee a more precise and confined
periocular region. We conducted experiments to identify
iris regions to dynamically obtain a smaller periocular re-
gion. However, our preliminary experiments indicated that
commonly available eye detectors, such as OpenCV, are not
reliable for accurate detection of eyes from VRPAD sam-
ples. Although we did not conduct a detailed analysis of
detection failures, potential reasons include:

• Non-frontal Views: Most state-of-the-art eye or iris de-
tectors are trained to process frontal views. The non-
frontal, oblique nature of the VRPAD samples, resulting
in elliptical iris shapes instead of circular ones, leads to
poor detections.

• Domain Shift: Common models for eye detection are
trained on RGB or visible spectrum data, whereas the VR-
PAD samples are acquired in the NIR spectrum, causing
a domain shift.

• Size: The samples in VRPAD are relatively small, with
an average iris diameter of less than 60 pixels.

Nevertheless, qualitatively and quantitatively improved
iris detection from single or multiple frames remains an
open research problem. We anticipate that advancements
in iris detection will yield positive impacts on PAD or any
pertinent applications of the VRPAD. We did not perform
specific studies, such as domain adaptation or transfer
learning, on eye/iris detection as the focus of this work is
confined to understanding the threat of PAs to VR-based
authentication systems.

PAD CNN Models: The PAD CNN models can be consid-
ered as a sequential combination of a backbone and a classi-
fier. The backbone comprises a convolutional stem derived
from a well-established CNN architecture, while the classi-
fier is a conventional feed-forward neural network (FF-NN)
tailored for binary classification. Prior to being fed into the
classifier, the output of the backbone may undergo process-
ing steps such as flattening, batch normalization, or dimen-
sionality reduction. The output of the classifier is a scalar
obtained via a Sigmoidal activation function, constraining
its range to [0, 1]. This output indicates the probability of a
sample being bona-fide. In this work, we have investigated
two widely recognized architectures as backbones for PAD
CNN:



Type # Identities # Videos Subtype Attack Types
bona-fide 25 900 [still gaze, moving gaze, half

closed] × [glass, no glass]
Presentation At-
tacks

7 84 Mannequins [2] Own eyes (same material)

10 120 Custom rigid mask with own
eyes [3]

Own eyes (same material)

5 60 Custom rigid mask [4] Fake 3D eyeballs
20 240 Generic flexible masks [5] Print attacks (synthetic data)
16 192 Custom silicone masks [6] Fake 3D eyeballs

Vulnerability
Attacks

25 300 Print attacks [7] Prints of real data

Table 1. Details of bona-fide and different types of PAs from VRPAD. Each video is recorded at 72 FPS for approximately 10s. The
numbers in [ ] brackets are used to refer type of PAI (called attack series, hereafter) in rest of the discussions.

• ResNet-34: This architecture represents a 34-layer vari-
ant of the improved ResNet architecture [8]. The ar-
chitectures based on residual connections have demon-
strated superior performance across various applications.
They facilitate the learning of subtle data features, such as
micro-textures potentially containing discriminative in-
formation related to PAs, while mitigating issues like van-
ishing gradients.

• MobileFaceNet: This architecture belongs to a family
of compact architectures specifically optimized for oper-
ation in resource-constrained environments in handheld
devices. This characteristic makes MobileNets an attrac-
tive choice for scenarios where the PAD model may op-
erate on an HMD device. With use of depthwise separa-
ble convolutions, MobileNets achieve high performance
while maintaining a low parameter count. In this work,
we utilize MobileFaceNet [5], a variant of MobileNets
tailored for face recognition tasks, as our backbone.

Training Configurations: Based on the selection of layers
within the PAD CNN and the chosen training strategy, we
conducted experiments with three distinct configurations
outlined below:
• Model1: The entire PAD CNN (i.e. both the backbone

and classifier) is trained from scratch on the train par-
tition of the VRPAD. The models are initialized with ran-
dom weights.

• Model2: The backbone utilizes weights from a pretrained
model and remains fixed (frozen) throughout training,
while the classifier is trained from scratch. In this config-
uration, the backbone serves as a fixed feature extractor,
providing an embedding of the input sample to the classi-
fier for detection of PAs.

• Model3: Similar to the previous configuration, the back-
bone employs pretrained weights while the classifier is

initialized with random weights. However, during train-
ing, the entire PAD CNN (including the backbone) un-
dergoes training or fine-tuning for the PAD objective. No
layers of the backbone are frozen.
We selected these configurations to provide an overview

of commonly employed strategies for training PAD mod-
els. In the case of pretrained weights (Model2 and Model3),
we opted for models pretrained for face recognition for two
reasons3. Firstly, since the periocular region is a subset of
the face, the initial layers of the backbone may be more
effective at learning the desired features of the present use-
case. Secondly, the efficacy of face recognition CNNs to-
ward PAD via transfer learning has been extensively stud-
ied [13, 17].

During training, frames from various videos (bona-fide
+ PA) are randomly grouped to form training batches of 64
samples. Preprocessing and data augmentation involved re-
sizing the samples to 112 × 112, as required by the PAD
CNN backbones. The output of the backbone, an intermit-
tent layer pf the PAD CNN, was configured to be 512-d. We
employed random horizontal flipping and random rotation
up to 20◦ to improve generalization. Additionally, dropout
was applied across multiple layers of the PAD CNNs.

An SGD-based optimizer with an initial learning rate of
1e-3 was utilized alongside a step-wise rate scheduler. The
weight decay and momentum of the optimizer were set to
1e-4 and 0.90, respectively.

PAD Pipeline:4 To establish PAD baselines, we have used
to the conventional pipeline where the preprocessed image
(or frame) of the input presentation is fed into a CNN,
which yields a PAD score. This score, within a predefined

3ResNet: https://github.com/deepinsight/insightface, MobileFaceNet:
https://github.com/yeyupiaoling/Pytorch-MobileFaceNet

4The source code for all PAD experiments described in this work will
be released publicly after acceptance of the paper.



range, is then thresholded to obtain a binary decision
(bona-fide or attack). Our training utilizes the train
partition, while the val partition is employed for model
validation at each training epoch and to determine the score
threshold τ . Finally, the results are reported on the test
partition of the VRPAD.

Evaluation Metrics: We report the performance of afore-
mentioned configurations toward PAD on the VRPAD using
the following evaluation metrics:
• APCER (Attack Presentation Classification Error Rate):

APCER measures the proportion of PAs incorrectly clas-
sified as genuine (bona-fide). For NPAIs PAIs, APCER is
calculated as:

APCERPAIs = 1− 1

NPAIs

NPAIs∑
i=1

scorei, (1)

where scorei is 0 if the i-th presentation is classified as
genuine, and 1 otherwise. When multiple categories of
PAIs exist, we report the overall APCER as the average
across all attack categories.

• BPCER (bona-fide Presentation Classification Error
Rate): BPCER measures the proportion of genuine pre-
sentations incorrectly classified as attacks. For NBF gen-
uine presentations, BPCER is calculated as:

BPCER =
1

NBF

NBF∑
i=1

scorei. (2)

• ACER (Average Classification Error Rate): ACER is the
average of APCER and BPCER:

ACER =
APCER+ BPCER

2
. (3)

The Equal Error Rate (EER), used to determine the
score threshold on the validation (val) set, approximates
the ACER for the validation set, where APCERval ≈
BPCERval.

4.2. Results of PAD Experiments

Results of Model1: In our initial experiment, we trained
the entire PAD CNN from scratch using the train par-
tition of VRPAD, comprising 588 video samples. With a
selection of every 10-th frame, the training dataset encom-
passed a total of 37k frames. Despite unequal volumes of
classes (bona-fide v/s PA) and various attack instruments,
we did not perform any class balancing during data loading
or loss calculations. For baseline experiments, we relied
on the default setup, although techniques for balancing data
distributions could potentially improve PAD performance.

For Model1 with a ResNet-34 backbone, an EER of
10.46% was achieved on the dev partition. Applying the
same score threshold on the test partition an APCER
(average) of 7.69% and BPCER of 7.50% were obtained.
This indicates overall approximately 6,500 frames out of
43,648 were inaccurately classified by Model1 of the PAD
CNN. Similarly, when the PAD CNN with a MobileFaceNet
backbone was trained from scratch, a nearly identical EER
(10.42%) was observed compared to the ResNet backbone.
The APCER and BPCER on the test partition were 7.82%
and 7.07%, respectively. The results of PAD assessment
are presented in Table 2, while Receiver Operating Char-
acteristic (ROC) curves for both backbones are shown in
Fig. 5a. Although both backbones exhibited similar perfor-
mance around the EER operating point (of the validation
partition), the ROC analysis reveals relatively superior per-
formance of the MobileFaceNet architecture at lower ranges
of APCER. Table 2 also provides a summary of incorrectly
classified attack series (such as mannequins or flex masks).
It can be observed that MobileFaceNet-based configuration
is better at detecting most types of attacks compared to its
ResNet-based counterpart.

Results of Model2: In this configuration, the pretrained
backbone serves as a fixed feature extractor, and training
is restricted to the classifier component only. The ResNet
and MobileFaceNet backbones comprise 34,171,713 and
1,233,409 parameters, respectively, while our FF classifier
has 32,897 parameters. Thus, in the Model2 setup, only
0.09% (for ResNet) and 2.66% (for MobileFaceNet) of the
overall PAD CNN parameters are trainable. For the ResNet
backbone, we observed BPCER of 16.44%, along with a
notably high APCER of 27.12%, indicating that nearly one
in every four attack frames was misclassified as genuine.
Using the MobileFaceNet backbone, the error rates were
nearly halved compared to the ResNet backbone, although
they exhibited similar trends. The subpar performance of
the Model2 configuration is further evident from Fig. 5b.
This can potentially be attributed to the fact that less than
0.09% of the overall CNN was trainable, which may be in-
sufficient, for the given training setup, to effectively mit-
igate the threat of presentation attacks on the HMD. Ad-
ditionally, employing a different backbone, such as one
trained on more diverse and generic datasets, may lead to
different conclusions.

Results of Model3: This configuration involves overall
finetuning of the PAD CNN, where the pretrained back-
bone is finetuned while the classifier is trained. Thus, it can
be anticipated to harness the benefits of pretrained weights
(from rich and dynamic data) and adapting the same for the
specific task using the appropriate dataset, i.e., the train-
ing partition of VRPAD. The PAD assessment provided in
Table 2 validates this assumption. In case of the ResNet
backbone, the BPCER was significantly reduced to as low



PAD Model Backbone EER (dev) APCER 2 APCER 3 APCER 4 APCER 5 APCER 6 APCER 7 APCER BPCER ACER

Train from scratch
ResNet 10.46 2.44 0.42 61.60 13.88 1.50 0.00 7.69 7.50 7.59

MobileFaceNet 10.42 0.64 0.00 65.00 13.88 2.22 0.00 7.82 7.07 7.45

Fixed backbone
ResNet 32.65 61.03 37.18 56.35 19.30 32.61 7.28 27.12 16.44 21.78

MobileFaceNet 14.21 43.08 8.08 24.81 20.07 3.16 0.98 12.24 8.14 10.19

Finetune
ResNet 13.65 3.50 0.19 40.51 12.00 19.40 0.83 9.68 1.31 5.50

MobileFaceNet 8.70 1.28 0.00 18.46 0.95 5.41 0.00 2.57 2.60 2.59
Table 2. Assessment of PAD for VRPAD using three training configurations on both backbones. The EER values are obtained from the val
partition, while all other metrics are computed on the test partition. The interim columns with APCER x refer to the APCER obtained for
specific attack series (Refer Table 1). All values are indicated as percentages. As each value is an error metric, lower values are desirable.
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Figure 5. ROC (Receiver Operating Characteristics) plots reflecting the performance of PAD using each Model configuration on the test
partition of the VRPAD.

as 1.31% compared to 7.5% when the entire PAD CNN was
trained from scratch. Although there was a marginal in-
crease of nearly 2% each in the APCER (on the test parti-
tion) and ACER (on the validation partition) for this back-
bone, the overall performance on the test partition exhibited
improvement. For the MobileFaceNet backbone, Model3
demonstrated the best performance, with error rates on the
test partition of VRPAD as low as 2.60%, and both error
rates (APCER and BPCER) balanced around the ACER op-
erating point. For each type of attack (denoted by attack
series), the MobileFaceNet outperforms the ResNet-based
model by a significant margin. The ROC plots in Fig. 5c
clearly indicate that Model3, particularly for the Mobile-
FaceNet backbone, offers better capabilities for PA detec-
tion.

A simple visual comparison of ROCs from Fig. 5 pro-
vides two clear observations: first, Model3 (involving over-
all finetuning of pretrained weights) outperforms the de-
tection of PAs from VRPAD. Second, across all model
configurations, MobileFaceNet is significantly better than
ResNet34 for PAD within the given experimental setup.

5. Conclusions

As VR headsets continue to gain traction across diverse
applications, it is imperative for research community to an-
ticipate and address the potential risks associated with their
use, particularly in use-cases involving user authentication.
Despite the awareness of possible risks, the lack of peri-

ocular video data captured from VR headsets has hindered
the validation and study of these concerns. In this work,
we made an important contribution by introducing a new
dataset of periocular videos captured from the internal cam-
era of a specific VR device (Meta Quest Pro). This pub-
licly available dataset, VRPAD, comprising 900 bona-fide
videos from 25 subjects and 996 presentation attacks, en-
ables researchers to comprehensively investigate the risks
associated with biometric authentication systems based on
VR headsets to various types of PAs. Notably, the bona-fide
videos are captured under different conditions, including
steady gaze, moving gaze, and partially closed eyes, with
and without glasses, while the presentation attacks encom-
pass six distinct instruments.

The second contribution of our work involves assess-
ing the performance of two prominent CNN architectures
(ResNet34 and MobileFaceNet) using different training
configurations on the newly created dataset. Our exper-
iments establish baseline performance metrics and reveal
the vulnerability of samples from VR headset to spoof-
ing attacks. Despite achieving acceptable performance in
terms of ACER around the specific operating point, we ob-
serve a significant drop in performance at lower values of
APCER, indicating a significant risk of spoofing attacks.
For instance, when the APCER falls below 1%, the BPCER
reaches nearly 50% in some experiments– implying that
nearly every other bona-fide frame is incorrectly classified
as an attack.



Our experiments demonstrate that the MobileNet-based
architecture consistently outperforms the ResNet-based ar-
chitecture, indicating the significance of architecture se-
lection in mitigating the PAD threat. Further research is
warranted to enhance the accuracy and robustness of PAD
methods, particularly in anticipation of potential advance-
ments in spoofing techniques.

As a future work, we aim to explore suitable PAD mod-
els and training strategies to detect these attacks effectively.
Additionally, developing better methods for detecting or lo-
calizing eye or iris regions may lead toward improving PAD
performance and adapting existing techniques to VR head-
set data. Addressing these challenges in a timely manner is
crucial to ensuring the security and reliability of VR-based
authentication systems in the face of evolving threats.
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