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Abstract
In traditional conversational intelligence from speech, a cas-
caded pipeline is used, involving tasks such as voice activity
detection, diarization, transcription, and subsequent processing
with different NLP models for tasks like semantic endpointing
and named entity recognition (NER). Our paper introduces To-
kenVerse, a single Transducer-based model designed to handle
multiple tasks. This is achieved by integrating task-specific to-
kens into the reference text during ASR model training, stream-
lining the inference and eliminating the need for separate NLP
models. In addition to ASR, we conduct experiments on 3 dif-
ferent tasks: speaker change detection, endpointing, and NER.
Our experiments on a public and a private dataset show that the
proposed method improves ASR by up to 7.7% in relative WER
while outperforming the cascaded pipeline approach in individ-
ual task performance. Additionally, we present task transfer
learning to a new task within an existing TokenVerse.
Index Terms: multitask training, speech recognition, speaker
change detection, named entity recognition, XLSR-Transducer

1. Introduction
Automated analysis of conversational audios has a wide range
of practical applications, including in contact center analytics
[1, 2]. Traditionally, conversational audios are transcribed with
intermediate voice activity detection (VAD) [3] or endpointing
[4] and diarization [5]. Afterward, separate NLP pipelines are
employed on the transcripts to perform tasks such as named en-
tity recognition (NER) [6], among others, to comprehend the
conversation’s structure and content [7, 8]. Using separate mod-
els for each subtask (optimized independently) has drawbacks
[9] such as error propagation and a potential mismatch between
automatic speech recognition (ASR) metrics and the final task.
For instance, the best ASR hypothesis may not be optimal for
the final task. Moreover, the cascaded approaches could trans-
late to increased compute and latency, which will be exacer-
bated by the introduction of a new task.

In this paper, we introduce TokenVerse, a neural Trans-
ducer [10] model capable of learning ASR and multiple addi-
tional tasks through the incorporation of task tokens. In con-
trast to the multi-head based multitasking approaches explored
in previous studies [11, 12, 13], TokenVerse distinguishes it-
self by generating tokens directly within the ASR hypothesis,
as illustrated in Fig. 1a. Leveraging the transducer architec-
ture [10], we can attain text-audio alignment for each output
token, including those designated as task tokens. For example,
we can perform NER directly in the acoustic domain, presenting
potential utility in scenarios such as audio de-identification [14].
To address challenges in low-resource settings, we use self-
supervised (SSL) trained XLSR-53 [15] model as an encoder in

hi this is fromagerie du bourg how can i help you i am carlos is gruyere the best
cheese you have over there

hi this is fromagerie du bourg [ENDP] how can i help you [ENDP] i am carlos is
gruyere the best cheese you have over there 

hi this is fromagerie du bourg [ENDP] how can i help you [ENDP] [SCD] i am
carlos is gruyere the best cheese you have over there 

Reference:

T1: [+ENDP]

T2: [+SCD]

T3: [+NER] hi this is [NE] fromagerie du bourg  [/NE] [ENDP] how can i help you [ENDP] [SCD] i
am [NE] carlos [/NE] is [NE] gruyere [/NE] the best cheese you have over there 
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b) TokenVerse: Token-based multitasking with XLSR-Transducer

a) Token Augmentation Protocol

Figure 1: a) Proposed unified token augmentation protocol for
SCD, ENDP, and NER. b) TokenVerse unifies multiple speech
and NLP tasks (e.g., T1+T2+T3) in a single model within the
neural Transducer framework.

the transducer setup, leading to the XLSR-Transducer (Fig. 1b).
Previous works aims at modeling several tasks directly from
speech using special tokens [16, 17], or ASR with speaker
change detection (SCD) [18, 19, 13], VAD [20], speech-to-text
translation [21], or timestamps [22], NER [9, 23] and multi-
speaker ASR [24, 25]. Token-based multitasking offers mul-
tiple benefits, e.g., it has a fix number of parameters while all
tasks are predicted with standard decoding without increased la-
tency. However, NLP tasks like NER in conjunction with other
tasks from audio domains have not received much attention in
the literature. Therefore, we consider 3 additional tasks along-
side ASR: SCD, endpointing and NER. These tasks are selected
to represent both audio and NLP domains. SCD is an audio task
[26]. Endpointing can be viewed as an NLP task when conduct-
ing semantic endpointing [27], or as an audio task [4]. NER
is an NLP task [6, 9]. They serve as suitable benchmarks for
evaluating our proposed method.

2. TokenVerse
Through TokenVerse, we aim to train a single model for
ASR (main task), speaker change detection (SCD), endpoint-
ing, and named entity recognition (NER). This is achieved by
augmenting the reference text, with task tokens that denote spe-
cial events at the acoustic level. In the following sections, we
discuss the annotation protocol, dataset preparation, details of
our ASR model and ablation experiments.

2.1. Token Augmentation Protocol

We introduce ”tokens” for tasks apart from ASR: [SCD]
(speaker change detection), [NE] and [/NE] (named entity
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recognition), and [ENDP] (endpointing). An illustrative exam-
ple is depicted in Figure 1a. We insert [SCD] token during
text concatenation if there is a speaker change from one seg-
ment to another within an utterance. The [ENDP] token is
inserted at the end of a segment text, considered as a seman-
tic endpoint from the conversational context perspective. Note
that occurrence of [ENDP] will be a superset of [SCD] be-
cause a speaker change indicates the completion of the previous
speaker’s sentence. For NER, we insert [NE] before the start
of a named entity (NE) and [/NE] after it is concluded, since
it can comprise multiple words.

2.2. Dataset Preparation

Our work is focused on conversational audios which is typi-
cally long in duration (avg 5 minutes) and can’t be directly used
for ASR training due to high GPU memory requirements. The
dataset provides audio-text transcripts together with timestamp
information for every segment within the long-form audio. For
each sample, we begin with the first segment start and find the
farthest segment end such that the duration is up to 20 seconds.
Audios within this range are extracted as one utterance and this
procedure is repeated until the last segment is consumed. Note
that an utterance may span over multiple segments, potentially
containing silences, noise, speaker changes, endpoints and nu-
merous named entities. Afterward, we concatenate the text cor-
responding to all segments within an utterance, inserting to-
ken at appropriate positions according to our tasks, described in
§2.1. This multitask dataset preparation approach applies uni-
versally across all datasets (see §4.1) used in our experiments.

2.3. Training & Inference

TokenVerse Training We train the XLSR-Transducer
model on the multitask data which consists of XLSR encoder,
state-less predictor [28] and joint networks (linear layer). The
model is trained with pruned transducer loss [29]. We utilize
SentencePiece [30] tokenizer to train subwords from the train-
ing text [31]. It is important to note that the text includes task-
specific tokens, and splitting them into multiple subwords may
degrade their prediction accuracy because the entire sequence
of subwords for a token must be predicted correctly to count it
as a valid token prediction. Hence, we ensure that tokens are
represented by a single subword during their training.1

TokenVerse Inference We generate hypothesis with beam
search. From the hypothesis, we can extract and align the pre-
dicted task tokens in the time domain. Since NER consists of
two tokens, we extract words between a matched pair of [NE]
and [/NE]. We discard any unpaired tag from the hypothe-
sis. To obtain timestamps for [SCD] or [ENDP], we note the
acoustic frame index for which these tokens are emitted and cal-
culate time information, i.e., XLSR acoustic embeddings have
a frame duration of 25ms and a stride of 20ms. Particularly
for [SCD], the time-level token prediction enables subsequent
tasks, e.g., diarization [19].

2.4. Ablations within TokenVerse

We conduct ablation experiments to understand how includ-
ing or excluding tasks affects other tasks in the TokenVerse.
Note that ASR is our primary task and is always included.
Single task For each task, we retain only the tokens spe-
cific to that task in the multitask dataset and train our XLSR-

1https://github.com/google/sentencepiece

Table 1: Datasets statistics with token metadata per subset for
the public and private datasets.

Datasets metadata Token-based metadata [%]

subset #utt/word dur [h] [SCD] [NE] [ENDP] #NE #uniq

DefinedAI dataset

train 10k/359k 40 1.9 3.6 2.1 6.5k 2350
dev 559/20k 2.25 2.0 3.6 2.1 379 232
test 1.1k/42k 4.5 1.9 3.4 2.0 727 378

CallHome dataset

train 2.7k/198k 13 6.3 2.9 8.7 2.8k 1414
dev 641/52k 3 7.2 3.0 10.4 779 466
test 339/23k 1.5 6.0 3.0 9.6 351 220

Transducer model. This helps eliminate any detractor tasks
that may affect the performance of the task being evaluated and
serves as a baseline in this paper.
Leave-one-task-out We systematically exclude tokens corre-
sponding to a single task from the multitask dataset and proceed
to train our ASR model These experiments aims to examine how
the removal of a task affects all other tasks, including ASR. This
provides insights into whether we should retain or discard any
task in TokenVerse for optimal performance on a given task.
Task-Transfer Learning In conventional multi-head multi-
task architectures [11, 12], integrating a new task typically ne-
cessitates fine-tuning the model on the specific task while keep-
ing the base encoder and other heads frozen. We explore the
viability of this extension for TokenVerse by fine-tuning the
model, derived from the removal of a task, specifically on the
new task. Furthermore, we evaluate its impact on both existing
tasks and the performance of the new task in comparison to the
overall performance when all-tasks are included.

3. Task-Specific Baselines, Metrics &
Evaluation Protocol

In this section, we describe strong independent baselines for
each task considered in this work.
Automatic Speech Recognition We train our XLSR-
Transducer model after removing all task tokens from the mul-
titask dataset. This serves as a baseline for comparison with the
multitask models on the ASR task. Evaluation It is evaluated
with WER. For TokenVerse models, we remove task tokens
from both the reference and hypothesis to compute WER for a
fair comparison. We also report WER including task tokens,
which reflects its prediction errors.
Named-Entity Recognition We finetune pretrained BERT2

[32] model on our datasets for subword-level NER classifi-
cation. We evaluate the models on both reference and hy-
pothesis from the ASR model. Evaluation NER systems
are usually evaluated by comparing their outputs against hu-
man annotations, either using an exact-match or soft-match ap-
proach [6]. We adapted these metrics to a scenario where the
text comes from an ASR system. Exact-Match: Let P =
{P1, P2, . . . , Pn} be the set of predicted entities, and A =
{A1, A2, . . . , An} be the set of actual entities, where each Pi

and Ai is accompanied by its corresponding [NE]-[/NE] to-
kens (See Fig.1). Thus, an entity Pi is considered correctly
identified if and only if: ∀i ∈ {1, 2, . . . , n}, Pi = Ai, includ-

2https://huggingface.co/google-bert/
bert-base-uncased



ing the tokens. Soft-Match: in this case we only count for the
paired sets of [NE]-[/NE] tokens without considering if the
predicted entity value Pi was correctly transcribed. After ob-
taining each pair, we evaluate NER with F1-score.
Speaker Change Detection For the SCD baseline, we utilize
the diarization pipeline3 from PyAnnote [33] to extract speaker
change timestamps from the audio. In literature, the SCD is pre-
dominantly regarded as a task within the audio domain [26], we
opt not to establish an independent text-based baseline for this
task. Evaluation We evaluate SCD in two ways: text-based
(only valid for TokenVerse) and time-based. In text-based
evaluation, we align the reference and hypothesis using edit-
distance. For each occurrence of the [SCD] token in the ref-
erence, matching with the same token in the hypothesis counts
as True Positive; else, False Negative. Unmatched tokens in
the hypothesis are considered False Positive. F1 score is cal-
culated by standard definitions. In time-based evaluation, we
obtain the timestamps where [SCD] tokens are predicted in
the hypothesis. We calculate F1 score [13], using a collar of
250ms during timestamp matching, following common practice
in speaker diarization literature [5]. Additionally, segment cov-
erage, purity [26], and their F1 score are also reported. We use
pyannote.metrics [34] to compute all time-based metrics.
Endpointing Considering semantic endpointing, we fine-
tune BERT [32] for [ENDP] token classification on the mul-
titask training text, termed as BERT-ENDP. Results are re-
ported on both reference text and hypothesis text obtained from
TokenVerse. From the audio perspective, we use segmen-
tation pipeline4 from PyAnnote to obtain endpoint timestamps.
Evaluation Endpointing is also evaluated in two ways: text-
based and time-based. The text-based evaluation follows the
same approach as described previously for SCD. In the time-
based evaluation, the F1 score computation also follows the
same approach as for SCD. Additionally, we also report false
alarms (FA), missed speech (MS), and detection error rate
(DER), which are common metrics in endpointing literature [3].

4. Experimental Setup
4.1. Dataset

To train TokenVerse, we require conversational audio data
with corresponding transcripts, NER and segment timestamps,
and speaker annotations. We could not find a large-scale public
dataset satisfying all the tasks. Thus, we opt for a private dataset
(DefinedAI5) which contains stereo-audio/transcript pairs for
contact center conversations between agents and customers.
We upsampled audio from 8 kHz to 16 kHz to align with the
XLSR-53 model’s requirements. Each segment includes tran-
scripts, speaker ID and NE annotations, facilitating multitask
dataset preparation (Sec 2.2). This dataset spans health, bank-
ing and finance domains, which makes it particularly chal-
lenging due to variations in NEs. Additionally, we train and
evaluate TokenVerse on the open-source CallHome English
dataset (LDC97S42), which contains natural conversational
stereo-audios between multiple speakers. The transcript in-
cludes named entities annotation.This dataset poses challenges
due to its natural conversational nature, known to be challeng-
ing for ASR modeling, and a large number of short segments
without entities, differing from the DefinedAI dataset. Further
details about these datasets are provided in Table 1.

3huggingface.co/pyannote/speaker-diarization-3.1
4huggingface.co/pyannote/segmentation-3.0
5https://www.defined.ai/

Table 2: WERs (%) for ASR on DefinedAI with TokenVerse.
†task tokens are removed from both referene and hypothesis.

Exp Model w/ token w/o token†

1) ASR (baseline) 15.3

2) all-tasks 15.6 14.7
3-a) single-[SCD] 15.2 15.1
3-b) single-[NE] 15.3 14.7
3-c) single-[ENDP] 14.8 14.7

4.2. Training TokenVerse

We train TokenVerse on the multitask dataset. It involves
XLSR-transducer model, which is constructed from the Icefall’s
Transducer recipe6 adapted with XLSR from fairseq [35] as the
encoder. The fine-tuning uses Scaled Adam [36] and a learning
rate scheduler that consists of a 500-step warmup phase fol-
lowed by a decay phase directed by the number of steps and
epochs. The model is optimized with pruned RNN-t loss [29].
The learning rate is set to lr=1.25e−3 and we train the model
for 50 epochs. For each dataset, the best epoch is selected based
on the WER on respective dev sets and results are presented on
the eval sets. The task-transfer experiments, described in §2.4,
are trained for additional 10 epochs on the new task.

5. Results & Discussion
Automatic Speech Recognition For the DefinedAI (Tab. 2)
set, WERs are reported both with and without task tokens in
the reference and hypothesis for multitask models. However,
the baseline ASR model is trained without task tokens in tran-
scripts, so there is no distinction between them. Including all
tasks in TokenVerse (exp 2) leads to a 4% relative improve-
ment in WER compared to the baseline ASR model (exp 1).
For models trained on a single task (exp 3a-c), ASR results re-
main similar except for SCD. When comparing WERs before
and after token removal, we observe a relatively large gap be-
tween all-tasks and single-task models, potentially due to higher
token insertion or deletion as compared to non-token words in
the hypothesis. In single-task models, a larger gap is observed
for [NE] as the model must accurately predict both tokens, in-
troducing additional error sources. On the CallHome dataset
(Tab. 5), the multitask model with all tokens yields a 7.7% rela-
tive improvement. Overall, the results on both datasets indicate
that the all-tasks TokenVerse improves ASR performance.
Named-Entity Recognition As expected, compared to eval-
uating BERT-NER on reference text, a significant degradation
is observed when evaluated on hypothesis (Tab. 3) due to ASR
errors [9]. In exact-match, on both the DefinedAI (Tab. 3) and
CallHome (Tab. 5) test sets, the all-tasks TokenVerse out-
performs the baseline BERT-NER models trained on their re-
spective datasets and evaluated on hypothesis in F1 score. This
is not the case for soft-match evaluation on the DefinedAI test
set, where the F1 score is similar. This degradation is mostly
attributed to the incorrect prediction of [/NE] tag by the base-
line, resulting in only a partial match of the named entity words.
The absolute F1 score is low on the CallHome dataset due to
higher ASR errors on named entities, attributed to their low rep-
etition in the training text (see Tab. 1).
Speaker Change Detection On the DefinedAI (Tab. 4), in-

6https://github.com/k2-fsa/icefall/tree/
master/egs/librispeech/ASR/zipformer



Table 3: Text-based performances of TokenVerse on the the
[NE] (exact- and soft-match) and [ENDP]. P: precision; R:
recall. †upper-bound: BERT model evaluated on text refer-
ences. ‡model trained on [ENDP] or [NE] task.

Exp Model [NE]-Exact [NE]-Soft [ENDP]

@P @R @F1 @P @R @F1 @F1

BERT: fine-tuned on DefinedAI

b-1) Eval. on Ref.† 80.0 77.0 78.5 91.6 87.9 89.7 81.6
b-2) Eval on Hyp. 52.9 53.0 52.9 82.0 81.3 81.6 80.5

2) all-tasks 65.0 51.7 57.6 93.0 73.2 81.9 89.9
3-b/c) single‡ 61.7 49.9 55.2 91.4 73.3 81.4 88.5

Table 4: [SCD] and [ENDP] time-based evaluation. FA: false
alarm; MS: missed speech; DER: detection error rate. †F1-
score computed from the Coverage-Purity perspective. ‡single-
task model per task, i.e., SCD and ENDP.

Exp Model SCD EndPointing

F1 CP-F1† F1 FA MS DER

b-1/2) PyAnnote 69.6 92.2 73.5 1.1 8.5 9.6
2) all-tasks 79.7 97.7 85.7 4.7 1.4 6.1
3-a/c) single‡ 87.5 97.6 84.1 1.9 2.0 3.9

cluding all tasks in TokenVerse outperforms the baseline
PyAnnote model in time-based evaluations. Interestingly, mod-
els trained for single-task SCD perform better than the all-tasks
model in terms of F1, but show similar results for Coverage-
Purity based F1. Upon closer scrutiny, we found that including
[ENDP] delays the prediction for [SCD] tokens, causing the
hypothesis timestamps of these tokens to fall outside the toler-
ance window (250ms). Increasing the tolerance window further
improves the F1 for both models, with a much higher rate of in-
crease for the all-tasks model. This observation is reinforced in
the text-based F1 score, where the all-tasks model achieves an
F1 score of 90.3% compared to 88.5% from the single-[SCD]
model. On the CallHome test set (Tab. 5), the all-tasks model
outperforms the PyAnnote baseline. These evaluations suggest
that excluding [SCD] from TokenVerse is preferable for
precise speaker change timestamps, while including all tasks
improves speaker-attributed text segmentation.
Endpointing In text-based evaluation on the DefinedAI
(Tab. 3) and CallHome (Tab. 5) test sets, the all-tasks
TokenVerse outperforms the BERT-ENDP models trained on
respective datasets. Additionally, on the DefinedAI dataset, we
evaluate the BERT-ENDP model on both reference and hypoth-
esis to understand the effect of ASR errors on [ENDP] token
prediction. Interestingly, we do not observe a significant degra-
dation when evaluating on the hypothesis compared to the ref-
erence. This suggests that errors introduced by ASR may not
drastically affect the semantic meaning of the sentences. In
time-based evaluation on the DefinedAI test set (Tab 4), the all-
tasks model outperforms the baseline PyAnnote segmentation
model. However, single-task ENDP is better than including all
tasks in DER due to lower false alarms.

5.1. Ablation results

In ASR, we observed degradation for all ablation experiments
(see §2.4), with the largest relative degradation of 2.4% in WER
when [ENDP] was removed. Transfer learning on any of the 3
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Figure 2: Absolute changes in text-based evaluation w.r.t
all-tasks TokenVerse in @F1. We either remove a task,
e.g., remove-[NE], or transfer to the removed task, e.g.,
transfer-to →[NE]. Note that all-tasks TokenVerse
performs better in all scenarios.

Table 5: F1-score and WERs for CallHome Eval set on different
tasks with TokenVerse. †time-based F1 score. ‡baselines are
computed with PyAnnote for SCD or with fine-tuned BERT on
ENDP and NER (exact-match).

Exp ASR SCD† ENDP NER
WER (↓) F1 (↑) F1 (↑) F1 (↑)

baselines‡ 24.6 91.7 55.9 27.4
all-tasks 22.7 92.5 73.3 30.6

tasks do not degrade ASR performance further. The text-based
evaluations of other tasks on DefinedAI are reported in Figure 2;
absolute change is calculated from the all-tasks model. Remov-
ing a task adversely affects other tasks. Specifically, for SCD
and endpointing, [NE] removal has the least impact on per-
formance. Learning it afterward either improves or maintain
their performance, indicating a stronger correlation between
these tasks than with NER; supported by the degradation in
[SCD] performance when [ENDP] is removed. Task trans-
fer on [ENDP] degrades the performance further, possibly due
to confusion during prediction caused by the insertion of the
token before [SCD] during training. Transfer to NER shows
relatively large degradation compared to other tasks, likely be-
cause the model must predict both [NE] and [/NE] accurately.
This suggests that tasks encoded with multiple tokens may not
transfer as effectively as those encoded with a single token.

Overall, all-tasks TokenVerse outperforms specialized
models for each task and single-task models suggesting that ad-
ditional tasks improve each other. Moreover, our task transfer
experiments suggest that a new task can be learned effectively.

6. Conclusions
In this paper, we demonstrate the effectiveness of a token-based
multitask model on speech and NLP using XLSR-Transducer
as our ASR model, termed TokenVerse. We consider speaker
change detection, endpointing and named entity recognition as
3 additional tasks alongside ASR. Results on 2 datasets show
that our approach improves ASR performance while outper-
forming strong task-specific baselines. Ablation experiments
suggest that multitask training across different domains can en-
hance performance on all tasks. Our approach offers flexibility
for extension to numerous tasks across various domains.
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