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ABSTRACT Sign Language conveys information through multiple channels composed of manual (hand-
shape, hand movement) and non-manual (facial expression, mouthing, body posture) components. Sign
language assessment involves giving granular feedback to a learner, in terms of correctness of the
manual and non-manual components, aiding the learner’s progress. Existing methods rely on handcrafted
skeleton-based features for hand movement within a KL-HMM framework to identify errors in manual
components. However, modern deep learning models offer powerful spatio-temporal representations for
videos to represent hand movement and facial expressions. Despite their success in classification tasks,
these representations often struggle to attribute errors to specific sources, such as incorrect handshape,
improper movement, or incorrect facial expressions. To address this limitation, we leverage and analyze
the spatio-temporal representations from Inflated 3D Convolutional Networks (I3D) and integrate them into
the KL-HMM framework to assess sign language videos on both manual and non-manual components. By
applying masking and cropping techniques, we isolate and evaluate distinct channels of hand movement,
and facial expressions using the I3D model and handshape using the CNN-based model. Our approach
outperforms traditional methods based on handcrafted features, as validated through experiments on the
SMILE-DSGS [1] dataset, and therefore demonstrates that it can enhance the effectiveness of sign language
learning tools.

INDEX TERMS Deep Learning, Explainability, Hidden Markov Models, Sign Language Assessment, Sign
Language Recognition

I. INTRODUCTION
Sign Language (SL) is a visual mode of communication,
where information is conveyed through manual(handshape,
hand movement) and non-manual (facial expression, body
posture, mouthing) channels. Both the manual and non-
manual components are crucial for effective verbal and
non-verbal communication. It plays an important role in
communication for the deaf and hard-of-hearing (DHH)
community.

In recent years, owing to the awareness of accessibility
needs of people, SL learning platforms are gaining popu-

larity. These platforms help to bridge the communication
gap between the hearing and DHH communities by devel-
oping assistive technologies that evaluate a learner’s perfor-
mance by providing meaningful feedback and facilitating
their progress in acquiring accurate signing skills. In that
direction, there has been effort for more than a decade in
developing interactive sign language learning platforms for
both children and adults [2]–[6].

Most existing platforms for sign language learning and
assessment focus on testing vocabulary using pre-recorded
videos for later analysis. E-learning platforms, such as Sig-
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nAssess [7], allow users to compare their recorded videos to
reference sign videos. In terms of real-time sign language
verification, applications like SignAll [8] and ISARA [9]
assess whether a produced sign is correct or incorrect.
However, simply determining if a sign is correct or incorrect
provides insufficient information to help a learner improve
their production. From a linguistic perspective, Willoughby
et al. envisioned My Interactive Auslan Coach [10], a system
designed to provide automatic feedback on the correct-
ness of handshape and hand movement for Australian Sign
Language. Similarly, Huenerfauth et al. [11] proposed a
system that analyzes sign production and offers feedback on
both manual and non-manual components. However, these
two systems are prototypes, with their feedback systems
primarily evaluated for usability. Cory et al. [12] propose a
distribution modeling method based on VAEs [13] and Gaus-
sian Processes to evaluate the correctness of sign sentences,
but not on a granular level.

In the context of providing automatic granular feedback,
Tornay et al. [14], introduced a phonology-based sign lan-
guage assessment system that provides feedback on two lev-
els: (i) Lexeme-level, evaluating whether the produced sign
matches the reference sign, and (ii) Form-level, assessing the
correctness of each manual component. This approach mod-
els each manual channel separately, later combining them
within a statistical framework using the Kullback-Leibler
divergence-based Hidden Markov Model (KL-HMM) [15],
[16]. The system utilizes CNN-based methods for extracting
handshape features and handcrafted skeleton-based features
with further processing for hand movement.

The KL-HMM system offers the advantage of modeling
individual channels, such as handshape, hand movement, and
facial expressions, independently. It allows for the fusion of
these channels and subsequently offers a structured approach
to factorize the output into distinct components. This ex-
plainability is crucial for facilitating a detailed breakdown for
the assessment of individual channels. Deep learning models
for spatio-temporal tasks, such as action classification [17]–
[22], can be fine-tuned for sign recognition by modeling
all channels—handshape, hand movement, and facial expres-
sions—in a unified manner. These models can leverage large-
scale datasets and can be trained on multilingual sign lan-
guages, making them versatile and applicable across different
languages and signing variations. Although these models
have shown success in recognition tasks, the inseparability
of individual channels limits their ability to provide detailed,
granular feedback necessary for assessment.

The goal of this work is to address these limitations by
proposing an approach that combines the merits of both deep
learning approaches and statistical methods to enable fine-
grained assessment of sign language videos. We propose
leveraging the spatio-temporal representations extracted from
I3D model [17] trained on MeineDGS [23], combined with
masking and cropping techniques to isolate hand movement
and facial expressions, and integrating these representations

into a KL-HMM framework for evaluation. For handshape
analysis, we employ a CNN-based model like proposed in
[14], [24].

The contributions of this paper are as follows:

1) Integration and analysis of deep learning-based spatio-
temporal representations with the statistical framework
of KL-HMM for sign language assessment.

2) Isolating individual components in manual and non-
manual channels by using masking and cropping of
videos

3) Leveraging the I3D model that uses temporal context
for facial action unit detection and extending the
assessment system to evaluate facial expressions.

II. BACKGROUND
This work takes place in the context of sign language
learning as illustrated in Figure 1, where a learner’s sign
production is evaluated and feedback is given based on the
correctness of the production at different levels. The rest of

FIGURE 1. Illustration of the assessment framework for sign language
learning.

this section describes the framework for the phonology-based
assessment system for Sign Language as proposed in [14].
The method takes inspiration from spoken language, as both
spoken and sign language have a production phenomenon
and a perception phenomenon. The production involves
the generation of the signal, in speech, it is movement
of articulators such as vocal folds, tongue, jaw, lips etc.,
that produce a 1D acoustic signal. Whereas, in SL a 2D
visual signal is generated with varied hand movements, facial
expressions and body postures. The perception phenomenon
involves interpreting the signal in terms of linguistic units of
words or phrases. In [15], [16] a KL-HMM based approach
was used to model articulatory features (AF) as posterior
representations for speech recognition, which was extended
for SL [25].

The framework consists of two phases (i) Training Phase:
To build reference KL-HMM models for the signs (ii)
Assessment Phase: Validation of the produced sign against
the reference sign.

A. Training Phase
In the training phase, subunit posteriors corresponding to
different channels of handshape (hshp), hand movement
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(hmvt), facial expressions (fexp) etc., are modelled through
KL-HMMs as depicted in Figure 2. More precisely, given
the visual signal (v1, . . .vt, . . .vT ), the posterior proba-
bility of subunits corresponding to each of the channels
are estimated as zt,f where f ∈ {hshp, hmvt, . . . }. The
posteriors corresponding to different channels are stacked
zt = [zt,1, . . . zt,f , . . . zt,F ] and used a feature observa-
tions to train a HMM, whose states are parameterized by
categorical distributions yi = [yi,1, . . . yi,f , . . . yi,F ]

T, for
i ∈ {1, . . . N} where N is the number of HMM states. The
parameters of the HMM are estimated by optimizing a cost
based on Kullback-Leibler (KL) divergence. This HMM is
referred to as Kullback Leibler divergence based HMM (KL-
HMM) [15], [16].

l1 l2 l3

y1,1 y2,1 y3,1

...
...

...
y1,F y2,F y3,F

z1,1 zt,1 zT,1

· · ·...
...

...· · ·

z1,F zt,F zT,F

VS 1 posterior estimation,
e.g. handshape

· · · VS F posterior estimation,
e.g. hand movement

· · ·

zt,1

· · ·

zt,F

xt

Visual signal: (v1, . . . ,vt, . . . ,vT )

Local score: Kullback
Leibler divergence

St
1 =

∑F
f=1 KL(y1,f , zt,f )

Perception
Space

Production
Space

Visual Space

stack of
posterior

probability
distributions

stack of
categorical

state
distributions

FIGURE 2. Illustration of modeling production and perception phenomena
in KL-HMM framework for sign language processing [25]. The visual
signal is denoted by (v1, v2 . . . vT ), [z1,1 . . . zt,f . . . zT,F ] is the stack of
posterior estimates of F channels obtained from the visual signal, and
the emission distribution for HMM state i is parameterized by the
categorical distribution [yi,1 . . . yi,f . . . yi,F ].

B. Assessment Phase
In the assessment phase, the produced sign is matched with
the expected sign production in a Dynamic Time Warping
framework (DTW). As illustrated in Figure 3, the method
matches the stack of posterior sequences from the produced
sign video ZT = [z1,1, . . . zt,f , . . . zT,F ] with the sequence
of KL-HMM states of the expected sign characterized by cat-
egorical distributions YN = [y1,1, . . . yn,f . . . yN,F ] , where
n is the state. The local score given by S(n, t) is based
on symmetrical KL-divergence. A threshold applied on the
path length normalized global score S(N,T ) is used for
lexeme-level assessment i.e., to assess whether the produced
sign matches the reference sign. Form-level assessment that
corresponds to assessing the sign at the level of different
production channels is done by factoring out the score for

each channel from the global score and applying a threshold
on channel-wise scores.

The match is obtained by dynamic programming with the
recursion following

S(n, t) = l(yn, zt) +min[S(n, t− 1) + cx,

S(n− 1, t− 1) + cx]

where cx = −log(0.5) is the transition cost and l(yn, zt)
is the local score given by:

l(yn, zt) =

F∑
f=1

SKL(yn,f , zt,f )

SKL(yn,f , zt,f ) =
1

2

Df∑
d=1

ydn,f log(
ydn,f
zdt,f

)+zdt,f log(
zdt,f
ydn,f

)

where Df corresponds to the dimension of the f th chan-
nel.

Based on the best matching path (tbn, t
e
n) for each state n,

the score for lexeme-level assessment is calculated as:

Slex =
1

N

N∑
n=1

∑ten
tbn

l(yn, zt)

ten − tbn + 1

The form-level assessment scores for each channel can be
factored from this as;

Sf
form =

1

N

N∑
n=1

∑ten
tbn

SKL(yn,f , zt,f )

ten − tbn + 1

l1

...

ln

...

lN

y1,1

yn,1

yN,1

· · ·

· · ·

· · ·

y1,F

yn,F

yN,F

z1,1 zt,1 zT,1

· · ·...
...

...· · ·

z1,F zt,F zT,F
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posterior estimation

· · ·
VS F hand
movement
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· · ·
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· · ·
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Test Signer Production:
(v1, . . . ,vt, . . . ,vT )

S(N,T )

Reference
Model

FIGURE 3. Illustration of the assessment framework [14].
[z1,1 . . . zt,f . . . zT,F ] is the stack of posterior estimates of F visual
sub-units obtained from the test signer production. Each state ln of the
reference KL-HMM model is parameterized by the categorical distribution
[y1,1 . . . yn,f . . . yN,F ]. The DTW score is given by S(N, T )
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III. PROPOSED METHODS
In this section, we describe the methods used to extract
posterior features for different channels of handshape, hand
movement, and facial expressions, for developing the KL-
HMM recognition models and assessment systems. The
proposed framework is illustrated in Figure 4.

A. Handshape
We use the pre-trained frame-wise handshape classifier based
on SubUNets [26] to extract handshape posteriors. This
classifier utilizes a CNN-LSTM-based model trained on the
One-Million Hands dataset [27] for handshape classification.
The model is trained on the 30 most commonly occurring
handshapes out of the 60 in the dataset. Additionally, another
classifier was trained to include these 30 handshapes along
with a transitional shape. Consequently, we extract 61-
dimensional vectors for each hand.

B. Hand Movement
For modeling the hand movement, we leverage the I3D
[17] model for action recognition, which was pre-trained
on MeineDGS (Deutsch GebärdenSprache - German SL)
dataset [23] for sign spotting, to recognize isolated signs in
specific frame window. We expect the model to capture sign
language-specific movements, rather than merely functioning
as an action recognition model. We leverage cross-lingual
knowledge by utilizing a model trained on one sign language
to enhance its applicability across different sign languages.
To isolate the handshape information from hand movement
features, we mask the hand region in the frame before
extracting the movement features.

Unlike the handshape case, where we use the model
output (after softmax) as our posterior representation, for
hand movement, we use the 1024-dimensional representation
from the penultimate layer of I3D and then later con-
vert them into posteriors for DSGS (DeutschSchweizerische
GebärdenSprache - Swiss German SL) for assessment, as the
final layer representations are more tailored to DGS.

We analyze two methods for converting the feature repre-
sentations into posteriors for integration with the KL-HMM
framework: (i) Language dependent subunit extraction and
(ii) Conversion using softmax. In the first approach, we
generate posteriors by classifying subunit-like movement
structures for each frame. Given a sequence of I3D feature
representations for each sign, we train left-to-right HMMs
with varying numbers of states for each sign, selecting the
optimal number based on development set performance for
DSGS sign recognition. We then align the features with the
HMM states and train a multilayer perceptron (MLP) to
classify these states that serve as movement subunits, using
a cross-entropy-based cost function. The MLP output serves
as our movement posterior representation. The process is
illustrated in Figure 5. In the second approach, we apply a
softmax function to the feature representations to transform
them into posterior-like outputs.

C. Facial Expression Analysis
The Facial Action Coding System (FACS) [28], [29] is a
taxonomy of facial action units (FAUs) used to encode facial
expressions based on the activation of specific muscles or
muscle groups (e.g., cheek raise, cheek puff, brow raise).
Facial expressions are typically dynamic, involving onset,
peak, and offset phases. Some transitions can be subtle,
requiring analysis of a sequence of frames to capture them
effectively, rather than a single frame. [30]–[32] apply
temporal modeling using LSTM-based models for FAU
detection. Due to the high cost of labeling action units,
video datasets for FAU detection are relatively scarce. One
notable large-scale dataset with frame-level annotations is
Aff-Wild2 [33]. In this work, we leverage the Aff-Wild2
dataset and employ the I3D [17] model to capture effective
spatio-temporal representations for FAU detection.

IV. EXPERIMENTAL SETUP
In this section, we outline the setup for (i) analyzing I3D-
based posterior features for hand movement, (ii) developing
a recognition system, and (iii) creating an assessment system.

A. Analysis of I3D-based posteriors
As mentioned in Section III, we evaluate two methods
to convert the I3D representations into posteriors. In this
section, we analyze the separability of features obtained by
the two methods and also compare them with the handcrafted
skeleton-based representations from [25]. We conducted the
study by plotting the distribution of positive and negative
distances between sign instances. Positive distances repre-
sent distances obtained by matching instances within the
same sign class, whereas negative distances correspond to
the distance obtained by matching instances of different
sign classes. We use dynamic time warping (DTW) with
a cost function based on Symmetric KL divergence, cosine
similarity, and Bhattacharya distances for the analysis. The
degree of overlap between the positive and negative distance
distributions provides insight into the separability of the
features.

B. Datasets
1) Sign Language Assessment
The SMILE-DSGS dataset [1] was created in the context of
developing an assessment system for the lexicon of Swiss
German Sign Language. It is the only database that has
linguistically annotated SL data to aid production-level SL
assessment. The dataset is composed of 100 isolated signs
from DSGS. The data was acquired from 11 adult L1 signers
and 19 adult L2 learners performing the signs of a DSGS
vocabulary production test. The videos were collected with
a Microsoft Kinect v2 sensor, the dataset includes both RGB
and depth data obtained by the sensor and the gloss(meaning
label associated with the sign in related spoken language)
annotations. The linguistic annotations evaluate the accept-
ability of the signs through six categories, based on linguistic
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FIGURE 4. Proposed framework for the development of KL-HMM-based systems for sign language assessment. Framewise hand crops are used to
extract handshape posteriors, hand masked sequences of 16 frames are used to extract hand movement posteriors, and a sequence of 16 face crops
are used to extract facial expression posteriors. A stack of the posteriors are used to train the KL-HMM models.

FIGURE 5. Subunit-based posterior extraction

criteria (lexeme, meaning, and form). The category evaluates
the acceptance of the produced sign according to whether it
is the same lexeme (word), has the same meaning, and has
the same form as the target sign.

1) Category 1 - Same lexeme as target sign: same mean-
ing, same form

2) Category 2 - Same lexeme as target sign: same mean-
ing, slightly different form

3) Category 3 - Same lexeme as target sign: same mean-
ing, different form

4) Category 4 - Same lexeme as target sign: slightly
different meaning, slightly different form

5) Category 5 - Different lexeme than target sign: same
meaning, different form and

6) Category 6 - Different lexeme than target sign: differ-
ent meaning, different form

The linguistically acceptable productions of Category 1
and 2 are used to build the KL-HMM reference models
for assessment. The data was partitioned into 1125 training
samples from 15 signers, 581 test samples from 8 signers,
and 509 development samples from 7 signers. There are
412 samples corresponding to categories 3 and 4, and 183
samples corresponding to categories 5 and 6.

Aff-wild2 [33]–[43] is a large, in-the-wild dataset for
classifying basic expressions and action units. It was intro-

duced within the Affective Behavior Analysis in the Wild
(ABAW) competition. It consists of 564 videos with about
2.6 million frames. It has a huge diversity in terms of
age, ethnicity, gender, nationalities, and environment. The
data is annotated on a per-frame basis for the seven basic
expressions (i.e., happiness, surprise, anger, disgust, fear,
sadness, and the neutral state) and twelve action units.
Since facial expressions usually have onset, peak, and offset
stages, temporal modeling is beneficial for classification. We
use the Aff-wild2 videos to train our I3D-based model for
representing facial expression features.

C. Posterior feature extraction
We employ the methods described in Section III to extract
posterior representations for handshape, hand movement, and
facial expressions.

(i) Handshape: We use the SubUnets [26] model men-
tioned in Section III to extract the handshape posteriors.
Openpose [44] 2D pose estimation method was used to
localize the wrist and these coordinates were used to obtain a
hand patch, that serves as the input to the model. The output
of the SubUnets classifier is used as the handshape posterior
probability vector zt,hshp.

(ii) Hand movement: We use the I3D-model pre-trained
on MeineDGS data to extract spatio-temporal representations
for DSGS data. The model takes 16 frames of size 224x224
as input, with necessary padding if signs last shorter than 16
frames. The model was trained to optimize cross-entropy loss
using SGD optimizer [45] with a momentum of 0.9, batch
size of 4, and an initial learning rate of 0.01 with decay.
Feature representations for each frame are extracted using a
sliding window approach, with the representation assigned
to the central frame within the window. We then use the
subunit extraction method described in Section III to obtain
the hand movement posterior vector zt,hmvt.

VOLUME , 5
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(iii) Facial expression: We train an I3D model on AffWild2
dataset for facial action unit classification. It is a multi-
label classification problem, as more than one FAU can be
activated in a frame. We use the MTCNN model [46] for
face detection, cropping faces from individual frames in the
Aff-Wild2 dataset. The input to the model consists of 16
frames of cropped faces, each resized to 224x224. We extract
and resize the face crops and apply slight augmentations.
The model is trained with a batch size of 16, optimizing
binary cross-entropy loss using an SGD optimizer with a
momentum of 0.9 and a learning rate of 0.01. We employ the
subunit extraction method to obtain posterior representations
for facial expressions. zt,fexp

D. KL-HMM reference systems
As proposed in [14], we trained different configurations of
KL-HMM models for each sign, as follows:

1) M: Models only the hand movement subunits obtained
from both the dominant and non-dominant hands
(combined)

2) M+S: Models the stack of hand movement subunits
and handshape subunits.

3) M+S+F: Models the stack of all three subunits of
handshape, hand movement, and facial expressions.

We train the KL-HMMs with a varying number of hidden
states, ranging from 3 to 30, using only the acceptable sign
production data belonging to Category 1 and 2. This variation
in the number of states allows us to capture different levels
of granularity in the sign’s temporal structure. The optimal
number of states is determined by selecting the model that
achieves the best recognition accuracy on the development
set. Once we have the KL-HMM reference models for all the
signs, we use them to match with the test signer productions
to obtain the lexeme and form-level scores.

For sign language assessment, following the approach
in [14], the thresholds for lexeme assessment, hand move-
ment form assessment, facial expression form assessment,
and handshape form assessment are calculated using the
development set, which contains data from Categories 1
and 2. This is done by creating a set of positive sign
scores by matching the same sign instances and by creating
a set of negative sign scores by matching instances from
different signs. We select the threshold that produces the
highest F1 score for both lexeme and form assessment on
the development set.

We report the recognition accuracy of the KL-HMM sys-
tems and the F1 scores for lexeme and form-level assessment
on the test set.

V. RESULTS
In this section, we present the results of the analysis of
I3D features, KL-HMM recognition systems for DSGS sign
recognition, and the F1 scores for assessment.

A. Analysis of I3D features
The histogram plots for the feature separability analysis
are shown in Figure 6. The overlap between the positive
and negative distance distributions provides insight into the
separability of the features. Lower overlap indicates better
separability, as the feature representations for the same
sign class are closer than those of different sign classes.
Conversely, higher overlap suggests poor separability, mak-
ing it more difficult for the model to distinguish between
different signs accurately. From Figure 6, we observe that
the sub-unit-based I3D posteriors exhibit the least overlap,
making them the preferred choice for building the assessment
system.

B. Recognition
Table 1 presents the recognition performance of various KL-
HMM systems trained using skeleton-based posteriors and
I3D sub-unit-based posteriors as hand movement features.
The KL-HMM system configuration is denoted by M for
movement, S for handshape, and F for facial expression. The
results indicate that I3D-based features outperform skeleton-
based methods in the DSGS sign recognition task. For
these results, movement features are isolated from handshape
information by applying hand masking in the input frames.

TABLE 1. KL-HMM recognition accuracy for different model configurations

M M+S M+S+F

Skeleton 55.77% 74.18% -
I3D 66.09% 75.81% 75.34%

To further examine the impact of hand masking on hand
movement feature extraction, we conducted additional exper-
iments without applying hand masking during hand move-
ment feature extraction. We provide the recognition results
without hand masking in Table 2. In the unmasked case,
handshape is integrated into the hand movement features,
leading to better performance in sign classification than
in the masked case. We also observe that incorporating
facial expression posteriors does not significantly impact
performance. We hypothesize that this is because isolated
signs are less influenced by facial expressions compared to
continuous signing (like in sentences).

TABLE 2. KL-HMM recognition accuracy for masked and unmasked hands

for hand movement posterior extraction

M M+S M+S+F

I3D-unmasked 88.77% 89.65% 89.44%
I3D-masked 66.09% 75.81% 75.34%

C. Assessment
Table 3 presents the F1 scores for assessment on lexeme
level, form (handshape, hand movement, and facial expres-
sion) level. The I3D-based features perform better than

6 VOLUME ,
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(a) Histogram of feature pair distances of skeleton-based features

(b) Histogram of feature pair distances of softmax(I3D) features

(c) Histogram of feature pair distances of I3D features

FIGURE 6. Histogram of Positive and Negative DTW Distances(with different cost functions) for Feature Separability Analysis: The positive distances
represent distances between instances of the same sign class, while the negative distances correspond to distances between different sign classes

skeleton-based features for movement assessment. Since the
best path for calculating the assessment score is obtained
based on all the channels, it also leads to a better assessment
of handshape in some cases.

VI. CONCLUSION
In this paper, we presented a method to integrate deep
learning-based feature representations into the statistical
framework of KL-HMM for sign language assessment.
Our experiments demonstrated the effectiveness of using

I3D-based models for hand movement feature extraction;
however, this approach is flexible and can be adapted to
other action recognition models fine-tuned on large-scale
sign language datasets. Furthermore, language dependence
can be incorporated through the subunit extraction method
outlined in our study. Interestingly, our findings indicate that
facial expressions do not significantly contribute to isolated
sign recognition, suggesting a limited role in this context.
However, the influence of facial expressions in continuous
signing remains an open question and a potential direction

VOLUME , 7



Neha Tarigopula et al.:

TABLE 3. F1 scores for lexeme and form assessment. hshp corresponds

to handshape assessment, hmvt corresponds to hand movement assess-

ment and fexp corresponds to facial expression assessment.

Model
Conf

hshp hmvt fexp lexeme

Skeleton M - 0.9003 - 0.8771
M+S 0.7960 0.9049 - 0.8993

I3D M - 0.9222 - 0.9123
M+S 0.8053 0.9090 - 0.9234
M+S+F 0.8041 0.9201 0.8612 0.9192

for future research. Overall, our work lays the groundwork
for developing more adaptable and comprehensive sign lan-
guage assessment systems, contributing to the advancement
of sign language learning tools.
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