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Abstract—Sign languages convey information through multiple chan-
nels. The handshape channel is an important manual component for
conveying the message. In the literature, it is mainly modeled as a
sequence of images of discrete postures even in the case of dynamic
gestures, leading to blurring problems in detection. Furthermore, to
model these discrete postures using deep learning frame level labeling of
the sign language videos is also required, which is time consuming and
human intensive. In this paper, as opposed to modeling of handshape
information through images of discrete postures, we propose dynamic
modeling through skeletal information. More precisely, we develop an
approach that combines HamNoSys-based prior knowledge and sign
language data to derive dynamic handshape units by modeling skeletal
features using hidden Markov models. We demonstrate the effectiveness
of the proposed approach through sign language assessment study, sign
language recognition and handshape recognition analysis on SMILE
DSGS corpus.

Index Terms—Handshape subunits, skeleton-based feature, sign lan-
guage assessment, hidden Markov models.

I. INTRODUCTION

Sign languages are visual mode of communication that involves
multiple channels of information to convey meaning, namely hand-
shape, hand movement, body posture, facial expression, mouth move-
ment and mouthings. While manual information is treated as primitive
components for isolated signs, the non-manuals are necessary in
sentence-level signing. In both cases, the handshape channel plays an
important discriminating role in the manual aspect. It is, therefore, the
most considered feature in sign language processing [1]. Moreover,
it is important to note that the manual aspect of sign languages are
mainly composed of well-defined dynamic gestures but also contain
static gestures such as finger spelling hand poses. In this paper,
our focus lies on effective modeling and assessment of handshape
component in sign language production.

In the literature, the handshape component is typically treated and
processed as discrete subunits where the temporal relationship in-
between the subunits is modeled implicitly, such as through sign-
level modeling or through prior knowledge-based handshape subunit
estimation itself. In the first case, image-based handshape subunits are
extracted and temporal approaches such as Hidden Markov Models
(HMM) [2]–[4] or Long Short-Term Memory (LSTM) are used [5]–
[7] to model the sign and integrate the temporal relationship. In
the second case, dynamic modeling is integrated at the subunits
estimation level: for that either 3D Convolutional Neural Networks
(CNN) [8]–[10] which extracts spatio-temporal features is used or
preprocessing techniques [11], [12] to select relevant posture frames
are applied. In [13], the authors developed the Hand SubUNet
estimator where two separate systems are used to specifically model
the spatial and the temporal aspect of the handshape subunits: first
CNN and then LSTM and finally Connectionist Temporal Classifi-
cation (CTC) is applied for sequence to sequence classification. The
advancement of such deep learning algorithms in image processing

have led to promising results, however, to develop such systems
frame-level annotations of the sign language videos are needed, which
in turn requires sign linguistic expertise and is expensive in terms of
time and cost.

In recent years, different tools have emerged for estimating skeletal
information such as, OpenPose [14] and MediaPipe [15] and have
been successfully used for modeling the hand movement information
for sign language assessment [16], [17] and sign language recogni-
tion [18], [19]. Moreover, skeletal information gives the possibility of
isolating 3D handshape subunits from the hand movement informa-
tion leading to explicit morphologically dynamic handshape subunits
especially useful for assessing handshape component independently
and potentially provide better feedback. We investigate this aspect by
developing a novel hidden Markov model based approach that explic-
itly models temporal relationship ”within” handshape subunits based
on skeletal information, akin to modeling hand movement information
based on skeletal information, and validating the proposed approach
through sign language assessment, sign language recognition and
handshape recognition studies.

The paper is organised as follows: Section II presents a brief back-
ground on the phonology-based sign language processing framework
employed in this work. Section III the proposed handshape subunits
estimation, Section IV the experimental setup and Section V present
results. Section VI finally concludes the paper.

II. BACKGROUND

The research and development presented in this paper takes
place in the framework of an explainable phonology-based sign
language recognition [18] and assessment [16] approach developed
for building assistive technology for sign language learning, where
feedback on production of different channels can be provided to
the learners [17], [20]. In this framework, as illustrated in the
Figure 1, subunits corresponding to the different channels f such
as, hand movement (denoted as hmvt), handshape (denoted as
hshp), are jointly modeled through hidden Markov models. This
is done by: (a) estimating the posterior probability of the visual
subunits vsf : zt,f = [P (vs1f |vt) · · ·P (vsdf |vt) · · ·P (vs

Df

f |vt)]
T

for each channel f ∈ {hshp, hmvt, . . . }, where Df is the fea-
ture dimension of channel f , given the sequence of visual signal
frames (v1, . . .vt, . . .vT ) and (b) stacking the posterior probability
distributions zt = [zt,hshp zt,hmvt, . . . ]

T and using it as feature
observation for a Kullback-Leibler divergence based HMM (KL-
HMM), whose states are parameterized by categorical distributions
yn = [yn,hshp yn,hmvt, . . . ]

T, for n ∈ {1, . . . , N} where N is
the number of HMM states. The HMM parameters are estimated by
optimizing a cost function based on Kullback-Leibler divergence [21],
[22].



Fig. 1. Illustration of modeling production and perception phenomena in
KL-HMM framework for sign language processing [18]. The visual signal is
denoted by (v1,v2, . . .vT ), [z1,1 . . . zt,f . . . zT,F ] is the stack of posterior
estimates of F channels obtained from the visual signal, and the emission
distribution for HMM state n is parameterized by the categorical distribution
[yn,1 . . .yn,f . . .yn,F ]; here it is a three HMM states example.

After training sign-level HMMs, isolated sign language recognition
is carried out by decoding the most likely sign at the output. Sign
language assessment, as illustrated in Figure 2, is carried out by
matching the expected reference sign production with the stacked
posterior feature sequence estimated from the visual signal of test
sign production using dynamic time warping (DTW) with local score
based on symmetric KL-divergence. A threshold is applied on the
resulting global score S(N,T ) after path length normalization to
carry out sign-level assessment (i.e., whether the produced sign is
targeting the correct sign or not). Whilst, form-level assessment (i.e.,
whether the produced hand movement and handshape are correct or
not) is carried out by factoring out the score of each channel from the
global score and applying a threshold on the resulting channel-wise
score. For more details, the reader is referred to [16].

When compared to the previous works [16], [18], the focus of
this paper is on modeling the handshape subunits using skeleton
information.

III. PROPOSED APPROACH

In this section, we present the proposed dynamic handshape sub-
units modeling based on skeleton information. The proposed method
is inspired by the skeleton-based hand movement subunits modeling
proposed in [16], [18]. As illustrated in Figure 3, the proposed method
consists of three steps:

1) Skeletal feature extraction: This is done by extracting 21-
dimensional 3D skeleton joints of each hand using tools such
as, MediaPipe [15] or OpenPose [14], and aligning the hand
skeletons of each frame in the wrist-based coordinate center to
remove the hand movement of the produced sign. The dominant
and non-dominant hands space1 are then unified by mirroring

1In sign languages, the signer usually has a dominant hand (left or right)
for producing one-handed signs.

Fig. 2. Illustration of the assessment framework [16]. [z1,1 . . . zt,f . . . zT,F ]
is the stack of posterior estimates of F visual subunits obtained from the
test signer production. Each state ln of the reference KL-HMM model is
parameterized by the categorical distribution [y1,1 . . .yn,f . . .yN,F ]. The
DTW score is given by S(N,T ).

the non-dominant hand skeleton joints. It is worth mentioning
that the hand dominance is preserved at the model level. Finally,
since hand joints are highly related (hand-finger structure), a
60-dimensional decorrelated feature vector (20 joints × 3D) per
frame is extracted by applying Karhunen-Loeve transformation
(KLT) without dimensionality reduction. The KLT matrix is
estimated on the training set data.

2) HMM-based handshape subunits inference: This is done
by grouping the dominant and the non-dominant handshapes
of each sign in the vocabulary into handshape classes by
using the HamNoSys annotation [23]. More precisely, by
extracting the handshape symbols of the sign-based HamNoSys
annotation which describes how the sign should be produced
and grouping the HamNoSys annotations into a set of unique
handshapes. To this set of handshape classes, we added a
waiting class representing the non-dominant hand of the one-
handed sign. Each of the handshape class is then modelled by
left-to-right HMM/GMMs (Gaussian Mixture Models) using
the skeleton-based features as the feature observation and
handshape subunits are inferred through cross validation. More
precisely, by training HMM/GMMs with a fixed number of
states and mixtures per states for all the handshape classes and
selecting the setup that yields best handshape classification on
the development set. Similar to the case of hand movement
subunit extraction and modeling [16], [18], to better segment
the begin and end of the handshape movement, a three state
HMM common to all the handshape classes is added in the
beginning and end of the HMM. The resulting HMM states
serve as the handshape subunits.

3) Estimation of handshape subunits posterior probabilities



zt,hshp: This is done by aligning the handshape HMMs on
the training data and training a neural network based classifier
that takes the skeleton-based features as input and classifies the
HMM states of all handshape classes at the output. The neural
network is trained with cross entropy error criterion.

Fig. 3. Illustration of the proposed approach. Hshp stands for handshape, DH
for dominant hand and NDH for non-dominant hand.

IV. EXPERIMENTAL SETUP

This section presents the experimental setup to validate the pro-
posed skeleton-based handshape subunits extraction approach.

A. SMILE DSGS database

The SMILE Swiss German Sign Language database [24], referred
as SMILE DSGS database, is composed of 100 Swiss German Sign
Language (DSGS2) signs produced three times by 28 adult signers.
The data collection was done using the Microsoft Kinect v2 sensor.
In our experimental setup, we used the second pass out of the three
which was manually annotated through 6 categories that evaluates
the acceptability of a sign production according to linguistic criteria
(lexeme/sign, meaning and form) (see ‘Category of sign produced’
in [24]). The category 1 and 2, linguistically annotated as acceptable
signs, were used to build the different components of the proposed
systems and was partitioned in a signer-independent manner into 1125
training set samples from 13 signers, 509 development set samples
from 7 signers and 581 test set samples from 8 signers.

We used a DSGS HamNoSys dictionary to get the sign-based
HamNoSys annotations. Extraction of handshape symbols for each
sign and grouping them resulted in 28 unique handshape classes (Step
2 of the proposed approach).

B. Handshape subunit posterior zt,hshp estimation

Baseline (Hand SubUNet): We compare the proposed approach
against the image-based handshape subunits estimation approach that
was employed in [16]. More precisely, we used the off-the-shelf
handshape subunits neural network, originally proposed by Camgöz
et al. in [13] and trained on the One-Million-Hands dataset [25].
This neural network estimates 61 handshape subunits (including a
transitional subunit) posterior probabilities. For fair comparison, we
used the reduced channel of 31 handshape classes which contains all
the handshapes produced in SMILE DSGS dataset. For more details,
the reader is referred to [16].

Proposed: In the case of the proposed skeleton-based approach, in
Step 1, we used the MediaPipe [15] estimator to extract the handshape
skeletal joints. Step 2 resulted in 141 skeleton-based handshape
subunits (5 HMM states × 28 handshape classes + one transition
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state). In Step 3, a multilayer perceptron (MLP) classifier with
softmax non-linearity was trained with different numbers of hidden
layers (0, 1, 2, 3) and hidden units (600, 800, 1000) using Quicknet
software [26]. The MLP that yielded the best frame level accuracy
on the cross validation data was selected for zt,hshp estimation. The
resulting architecture was an input layer of dimension 540 (60 feature
dimension × (1 + 4 frames preceding + 4 frames following context))
and a softmax output layer of dimension 141.

C. Hand movement subunits posterior zt,hmvt estimation

For the hand movement subunits posterior estimation, we imple-
mented the method presented in [16] using the same skeleton joint es-
timator as for the proposed handshape estimator, i.e., MediaPipe [15]
estimator. Two separated estimators were developed for the dominant
and non-dominant hand. For the sake of completeness, we also
present experimental studies with Kinect 3D based hand movement
subunits posterior estimation, as done in the previous works [16],
[18].

D. Sign-level Reference Systems

The sign-level reference systems used in sign language recogni-
tion and assessment tasks were implemented using the KL-HMM
framework described in Section II. All the KL-HMM systems were
trained using 3 to 30 KL-HMM states and the system that yielded
the best recognition accuracy on the development set was chosen as
the reference. Three different systems were implemented depending
on which subunits were stacked and modeled to train the KL-HMM,
namely, the rlS system which refers to the handshape subunits only,
the rlM system for the hand movements subunits and the rlS+rlM
system for both subunits.

We conducted two different studies to validate the proposed
approach, namely, (a) sign language recognition study. In this case,
the performance is measured in terms of recognition accuracy and
(b) sign language assessement study, where we carry out sign-level
assessment and handshape form-level assessment. For both types of
assessment, the performance is measured in terms of F1 score. For
setting up the thresholds for sign-level assessment and form-level
assessment, we followed the same procedure as in [16]. Briefly, on
the development data, a set of correct sign scores by matching the
same sign instances and a set of incorrect match scores by matching
instances of different signs are obtained and a threshold that yields
the lowest F1 score on the development set is used.

To evaluate the sign language recognition study, we used the test
set composed by categories 1 and 2 according to ‘Category of sign
produced’ in [24]. To evaluate the sign-level assessment, we separated
correct/incorrect test data as the following: categories 1 to 4 were set
as correct target signs and categories 5 and 6 as incorrect target signs.
Since the incorrect set was imbalance, we created additional data by
matching each sample of the categories 1 and 2 with a randomly
wrong reference. To evaluate the handshape form-level assessment,
we followed the same setup with only categories 1 and 2 samples as
correct test set.

V. RESULTS

In this section, we first present results of sign language assess-
ment study. We then corroborate the findings of the sign language
assessment study through sign language recognition and handshape
recognition analysis.



A. Sign language assessment study

We conducted sign language assessment studies using System
rlS and combined System rlS+rlM, where System rlM is based
on MediaPipe. Table I presents the F1 scores of (i) the sign-level
assessment which verifies whether the produced sign is targeting the
correct reference sign and (ii) the handshape form-level assessment
which verifies whether the produced handshapes are correct. It can

TABLE I
F1 SCORES OF THE SIGN-LEVEL ASSESSMENT (SIGN) AND THE

HANDSHAPE FORM-LEVEL ASSESSMENT (HSHP) USING EITHER THE
PROPOSED APPROACH OR THE HAND SUBUNET ESTIMATOR FOR THE

HANDSHAPE SUBUNITS ESTIMATION. RLM IS BASED ON THE MEDIAPIPE
FEATURES

Sign-level Hshp-level
rlS rlS+rlM rlS rlS+rlM

Proposed 0.82 0.88 0.83 0.72
Hand SubUNet 0.76 0.84 0.69 0.64

be observed that the proposed skeleton-based handshape subunits
approach yields better systems for both sign-level and handshape
form-level assessment. Moreover, the comparison between System
rlS and rlS+rlM shows that the hand movement slighty helps in
sign-level assessment while it introduces confusion in hshp-level
assessment.

B. Sign language recognition analysis

Table II presents the sign language recognition (SLR) accuracy for
the baseline Hand SubUNet approach and for the proposed handshape
subunits modeling approach. For handshape alone modeling SLR

TABLE II
SIGN LANGUAGE RECOGNITION ACCURACIES USING EITHER THE

PROPOSED APPROACH OR THE HAND SUBUNET ESTIMATOR FOR THE
HANDSHAPE SUBUNITS ESTIMATION

KL-HMM References
rlM using MediaPipe rlM using Kinect

rlS rlM rlS+rlM rlM rlS+rlM
Proposed 68.0 35.6 80.7 57.1 87.4
Hand SubUNet 30.5 64.0 74.2

case (System rlS), we can observe that the proposed approach yields
significantly better SLR system than Hand SubUNet approach. For
hand movement alone modeling case (System rlM), modeling skeletal
information using Kinect yields better system than using MediaPipe.
However, with the proposed approach modeling handshape skeletal
information using MediaPipe, System rlS yields better system than
System rlM based on MediaPipe or Kinect, while this is not the case
with System rlS based on Hand SubUNet. Finally, as observed in pre-
vious SLR studies [16], [18], the system combining both handshape
and hand movement information, i.e. System rlS+rlM, consistently
yields better system than modeling handshape or hand movement
information alone. The improvements scale for both MediaPipe and
Kinect skeletal based hand movement modeling cases.

C. Handshape recognition analysis

As a second analysis, we conducted a frame-level handshape
recognition study. However, since the SMILE DSGS dataset only
contains sign-level handshape transcription (referred as true label(s))
not frame level annotations, we evaluated the handshape recognition
accuracy (RA) in the following manner: we supposed that each
sign production should contain the true label(s) and the transition
label. So, at the frame-level if a true label or a transition label was

predicted then we set it as correctly predicted. In the case of the Hand
SubUNet approach, we made a correspondence between the 31 output
handshape classes and the HamNoSys symbols of the 28 handshape
classes present in the SMILE DSGS dataset using a matching Table 3.
The first column of Table III gives the resulting handshape RA using
for the proposed handshape subunits estimator and the Hand SubUNet
estimator. The second and third columns of Table III further provides
the percentage split of each case separately.

TABLE III
HANDSHAPE RECOGNITION ACCURACIES OF THE TRUE LABEL(S) AND/OR

TRANSITION LABEL OF THE PROPOSED APPROACH AND THE HAND
SUBUNET SYSTEM

true & trans. labels trans. label true label
Proposed 92.1 58.3 33.8
Hand SubUNet 62.3 40.6 21.7

We can observe that both approaches follow similar proportion of
true and transition labels where a little over a third of the predicted
labels are true label(s). This similar proportion of splitting indicates
that the proposed approach significantly improves the handshape RA
for both transition and true label(s) handshape detection. Furthermore,
this suggests that each video, i.e. each production of isolated sign,
is roughly divided into three equal parts: begin transition (such as
going up), main part, end transition (such as going down). Further
analysis is needed to validate this supposition. In that direction, as
an insight, we manually labelled three videos: (i) the longest video
of the test set and 50% was labelled as true label(s), (ii) the shortest,
45% and (iii) one video with mean length, 33%.

VI. CONCLUSION

This paper developed an approach for modeling dynamically
handshape information using skeletal information for development of
sign language assessment systems. This approach combines both prior
knowledge and data to derive and model handshape subunits. More
precisely, HamNoSys prior is used to group signs into handshape
classes and subunits modeling the handshape classes are derived in a
data driven manner using HMMs. Sign language assessment study as
well as sign language recognition and handshape recognition analysis
on SMILE DSGS corpus show that the proposed approach yields
considerably better systems than image-based handshape classifica-
tion approach Hand SubUNet, where the handshape subunits are
based on prior knowledge alone. As evident from the present and
previous studies [16], [18], Hand SubUNet can be trained on sign
language independent data and utilized for sign language assessment
and recognition on other sign languages. Our future work will
investigate whether such sign language independence is exhibited
by the handshape subunits obtained through the proposed skeleton
information-based approach.
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