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Abstract

In surveillance videos, the task of tracking multiple peo-
ple is of primary importance and is often a preliminary
step before applying higher-level algorithms, e.g. to an-
alyze interactions or to recognize behaviors. In this pa-
per, we take a tracking-by-detection approach and formu-
late multi-person tracking as a statistical data association
problem which seeks for the optimal label field in which de-
tections belonging to the same person have the same la-
bel. Specifically, unlike most previous works that rely on
generative approaches, we use a Conditional Random Field
(CRF) model, whose pairwise detection factors, defined for
both distance and color features, are modeled using a two-
hypothesis framework: a pair of detections corresponds ei-
ther to the same person or not. Parameters of these two-
hypothesis model factors are learned in a fully unsupervised
way from data. Optimization is conducted using a determin-
istic sliding window method. Qualitative and quantitative
results on several different surveillance datasets show that
our method can generate robust and accurate tracks in spite
of the noisy output of the human detector and of occlusions.

1. Introduction

In video surveillance context, multi-person tracking is a
very important topic. Its solving can benefit many applica-
tions. For example, knowing the location of different people
over time can greatly help the semantic analysis of video,
such as group/interaction detection [17, 16], scene under-
standing [18] and so on. On the other hand, the output of a
multi-person tracker can be fed to some higher level process
such as behavior cue extraction for action/event recognition
[8]. However, multi-human tracking remains a challeng-
ing task, especially in single camera tracking situations, or
in multi-camera cases with small overlap or high crowd-
ing, notably due to low image quality, sensor noise, dimen-
sion loss due to projection of 3D objects in image planes,
occlusions, clutter, unpredictable motions and appearance

Figure 1. Examples of detector outputs showing (left) a missed
detection and a false alarm; (right) detection accuracy issues, like
legs cut or extended due to projected shadows on the floor.

changes of people.
As task-specific object detectors become more and more

reliable, one approach for multi-person tracking is to rely
solely on the output of human detectors, which is called
“tracking-by-detection“ or ”detection-based tracking”. In
this paradigm, human detection is performed first on the
images. Then, the tracking step attempts at associating the
detections corresponding to the same person by assigning
labels to the detection outputs. The main advantage is that
discriminatively trained detectors are often more powerful
at assessing the presence of humans in an image compared
to standard generative models. Another advantage is that
no manual (re-)initialization is needed since it is implic-
itly handled through the use of the detector output at every
frame. However, to be successful, it is important to deal
with human detector inherent flaws: missed detections and
false alarms, but also unprecise localization and size due to
the presence of projected shadows or partial occlusion for
instance. Another more general challenge lies in the fact
that people often have similar appearances. Some of these
different challenges are illustrated in Figure 1.

In this paper we propose a new detection-based multi-
person tracking method. The relationships between human
detections are modeled using a CRF model whose factor
terms encapsulate the likelihoods of detection pairs within
a short-time interval. As a consequence, unlike almost all
previous methods, the association of detection pairs is not
only based on a similarity measure but on a dissimilarity
measure as well. In addition, the parameters of the CRF



factors are learned automatically in an unsupervised man-
ner, allowing the model to adapt itself to different settings.
The main contributions of this paper are the following:
• embedding of the multi-person tracking problem into

a CRF framework with pairwise similarity and dissim-
ilarity hypotheses;
• an unsupervised way to learn model parameters; and
• an efficient sliding window optimization algorithm to

perform the labeling.
Qualitative and quantitative experiments on surveillance
data validate our method.

The rest of the paper is organized as follows. Section 2
discusses related works. Section 3 elaborates on our CRF
model and parameter learning. Section 4 explains our op-
timization procedures, while Section 5 presents our experi-
mental results. Section 6 concludes the paper.

2. Related Work
Several approaches to multi-object tracking have been

proposed in the literature. One class of methods relies on a
Bayesian framework in which the states are recursively es-
timated using sequences of observations [12] [20]. In this
section however, we will focus on summarizing the state-
of-the-art detection-based multiple-object tracking papers
which are directly related to our work.

Conventionally, the deterministic approach to multi-
object tracking based on detections attributes a cost to
each association between the detected objects in successive
frames based on motion constraints [21] and object descrip-
tors such as color. The problem is then formulated as a com-
binatorial optimization and can be solved for example with
optimal assignment methods like the Hungarian algorithm
or greedy search methods. However, this one-to-one corre-
spondence scheme is very sensitive to local ambiguities and
cannot handle directly occlusions, entries or exits.

Instead of solving a frame-to-frame correspondence
problem, the association can also be performed on a multi-
frame basis [10, 22, 3]. Dependencies are then often mod-
eled using graphs, and the optimization problem then con-
sists in finding the best paths between all the detections in
separate frames. The process can be applied on potentially
large time windows, so as to overcome the sparsity in the
detection sets induced by missed detections and also to deal
with false alarms, but the complexity of the optimization
increases rapidly.

Alternatively, to reduce the computational cost and pro-
gressively increase the temporal range for correspondences,
hierarchical approaches can be considered. For instance, in
[11], the lower level associates pairs of detections based on
their similarity in position, size and appearance. The result-
ing tracklets are fed into a Maximum A Posteriori (MAP)
association problem which is solved by the Hungarian al-
gorithm, and further refined at a higher level to model scene

exits and occluders. As there are fewer tracklets than de-
tections, the complexitiy of the optimization is reduced, but
any wrong association made at the low-level is then propa-
gated to the next level.

In terms of optimization, flow-based techniques have no-
tably been used. In [23], the authors use the same MAP
formulation as in [11] but embed it in a network framework
where min-cost flow algorithm can be applied. The authors
of [6] directly formulate the problem as finding the flow of
humans on a discrete grid space that maximizes the cost of
going through the detections. This formulation yields an
objective function which is a linear expression of the esti-
mated number of objects at each time and location of the
grid. The main advantage is that by assuming a continuous
version of the problem, Linear Programming techniques can
be applied and the global optimum can be reached. Impres-
sive results are obtained, but only results in overlapped mul-
tiview indoor room scenarios are shown, where relatively
clean detections from background subtraction images are
used. This use of multiple cameras to tackle the occlusion
issue that typically arises as the video is more crowded is
quite usual. However, in surveillance applications, this is
often not the common case, and it poses the problem of data
integration and synchronization between several sensors.

To the contrary of the methods described above, by for-
mulating the tracking as a CRF problem, our approach does
not only optimize the label field on a similarity hypothe-
sis basis, but also relies on a dissimilarity information to
assess the labeling. By contrasting the two hypotheses for
each detection pair, the model it more robust to assess the
appropriateness of a given association. This effect is rein-
forced by connecting detection pairs not only between adja-
cent frames, but between frames within a short time interval
(from±0.5s to±2s). Our method takes inspiration from the
framework of [13], which addresses the problem of tracking
sound sources in a one dimensionnal space and showed that
robust short-time clusters can be obtained.

Note that recently the authors of [4] also used a CRF in
a tracking-by-detection context. However, their approach
is different insofar as they model the affinities and depen-
dencies between tracklets and do not work at the detection
level. Moreover, the optimization they propose works of-
fline, they do not model dissimilarities explicitly, and the
model parameters are learned through supervised training
rather than using an unsupervised data-driven approach as
we do.

3. CRF Modeling with Two-Hypothesis Factors

In this Section we first introduce the model and then
present its components.



3.1. Problem Formulation

Let us assume that the human detection step has been
performed on each frame of a video sequence. The set
of detection outputs R = {ri}i=1:Nr

is the input to our
tracker, where Nr is the total number of detections. Each
detection ri consists of a set of observations, which in-
clude an occurrence time ti (or frame number), as well as
some features. In this paper, two features are used : Xi,
the position of the detection expressed in the ground plane,
and hi, the color descriptor. Xi is calculated by projecting
the bottom center of the detection bounding box into the
ground plane, assuming the camera calibration or ground
plane homography is available. As color descriptor hi, we
used the multi-resolution color histogram in the HSV color
space. We use multi-resolution color histogram to reduce
the quantization effects. Morover, to avoid taking many pix-
els from the background, the color histograms are computed
within an elliptical region enclosed in the detection bound-
ing boxes. Additional features like optical flow could be in-
corporated in future work. Thus, a detection is represented
by ri = (ti, Xi, hi).

The task of multi-object tracking consists in linking
those detections across frames, using some similarity mea-
sures. This task can be formulated as a labeling problem,
where we want to assign labels to detections according to
the identity of the object they represent. Let us define the la-
bel field L = {li}i=1:Nr

for that purpose, where li denotes
the label identity for detection ri. Detections corresponding
to the same object should possess the same label, meaning
there would be ideally one label per track.

We want to find the label field which maximizes the
posterior probability p(L|R). In a traditional generative
model, we can use a Maximum A Posteriori (MAP) formu-
lation, and can equivalently maximize p(R|L)p(L). Typi-
cally, p(L) defines a prior over the label field and is often
modeled as Markov Random Fields (MRF) decomposed as
a product of potential functions over the maximal cliques,
and assuming conditional independences of the detections,
p(R|L) =

∏
i p(ri|li) denotes the data likelihood. Note that

such an approach is not appropriate for association, since
we do not know in advance the number of classes and the
term p(r|l) only involves one detection and cannot be de-
fined in advance. Rather, in this paper, we adopt a Con-
ditional Random Field (CRF) formulation [15], and model
directly the conditional probability as follows:

p(L|R) =
1

Z(R)

∏
(i,j)

Nf2∏
k=1

Φk(li, lj , ri, rj)

 ·
(∏

i

N1∏
l=1

Ψl(li, ri)

)
· Ω(L)

(1)

where the Φk denote the Nf2 pairwise factors, the Ψl de-

Figure 2. Factors of our Graphical Model. Shaded nodes denote
observed variables, whereas unshaded node represent hidden ones.

note the N1 unitary factors, and Z(R) is a normalization
term which does not depend on L, and Ω(L) is a factor on
the whole label field. Figure 2 illustrates the factor graph
of our model. Unlike the generative approach which rep-
resents the joint probability distribution, CRFs present the
advantage that no assumptions on the dependencies among
the observed variables ri need to be specified, as we directly
model the label field conditional distribution.

Given this global model, the main technical points to ad-
dress are the definition of the Φk functions, the learning of
their parameters, and the optimization procedure. They are
described next.

3.2. Two-Hypothesis Factors Φk

In this paper, we only consider the pairwise factors and
omit the other terms. The definition of the pairwise fac-
tors follows a two hypotheses short-term framework. More
precisely, each pair of detections in the factor is supposed
to follow either one of two hypotheses, namely, either the
pair corresponds to a same object (hypothesis H1) or not
(hypothesis H0). And we only consider a predefined short
term horizon Tshort and impose Φk(li, lj , ri, rj) = 1 if
|ti − tj | > Tshort. In other words, in the graph there is
no link between two detection nodes if they are more than
Tshort frames apart. Following this approach, the factors
are defined as:

Φk(li, lj , ri, rj) = pk(fk(ri, rj)|H(li, lj))

if 1 ≤ |ti − tj | ≤ Tshort
(2)

where H(li, lj) = H0 if li 6= lj , H(li, lj) = H1 if li = lj ,
and fk(ri, rj) denotes a similarity measure between detec-
tions for the kth factor.

We use Nf2 = 2 similarity functions, one for each of
our features. For the position, the similarity is simply the
Euclidean distance in the ground plane. For the color, the
similarity is evaluated as the Bhattacharyya distanceDh be-
tween the multi-resolution histograms of the two detections:{

f1(ri, rj) = Xi −Xj

f2(ri, rj) = Dh(hi, hj)
(3)

Finally, the probability distributions for each feature type
are defined as follows. For the position feature, we assume



Algorithm 1 Position model parameter learning
for T = 1 to Tshort do

Initialize empty set ST1
for i = 1 to Nr do
j = arg mink s.t. |tk−ti|=T |Xi −Xk|
m = arg mink s.t. tk=tj and k 6=j |Xi −Xk|
Add f1(ri, rj) and f1(ri, rm) to the set ST1

end for
Learn parameters Σdiff

T , Σsame
T through EM from ST1

end for

that it follows a Gaussian distribution whose Covariance de-
pends on the two label hypotheses H0 or H1, and also on
the time gap |ti − tj |:{

p(f1(ri, rj)|H0) = N (Xi −Xj ; 0,Σdiff
|ti−tj |)

p(f1(ri, rj)|H1) = N (Xi −Xj ; 0,Σsame
|ti−tj |)

(4)

For the color feature, we use a non-parametric model. More
precisely, we discretize the Bhattacharrya measure, and its
probability using a multinomial over these indices:{

p(f2(ri, rj)|H0) = mdiff
|ti−tj |(Dh(hi, hj))

p(f2(ri, rj)|H1) = msame
|ti−tj |(Dh(hi, hj))

(5)

where m(D) denotes the probability of the multinomial for
the index D. In the next paragraph, we explain how we
learn these model parameters from training data in an unsu-
pervised way. In summary, following all our assumptions,
the posterior probability we want to maximize is defined as:

p(L|R) =
1

Z(R)

∏
(i,j)

|ti−tj |≤Tshort

Nf2∏
k=1

p(fk(ri, rj)|H(li, lj))

(6)
Since we maximize over the label field L, the normalization
term Z(R) can be omitted during the optimization.

3.3. Unsupervised Model Training

The goal of the training phase is to learn model pa-
rameters automatically from the data to avoid manual set-
ting. In practice, for a given time interval T , we collect
for all detections the ground-plane distances to their clos-
est and second closest detections separated by T time steps,
from which we learn the parameters of the assumed two-
component Gaussian Mixture Model through Expectation-
Maximization (EM). The means are constrained to zero and
only the covariances (Σdiff

T ,Σsame
T ) are trained. Algorithm 1

sums up the automatic learning procedure for this model.
Figure 3 shows the learning result for T = 3. We can see

that the Gaussian distribution representing hypothesisH1 is
more peaky, which makes sense because under a short time

Figure 3. Learned position model for T=3: H1 (left) and H0

(right)

Figure 4. Learned histogram of Bhattacharyya distances for T=3:
H1 (red) and H0 (blue)

interval, detections representing the same object are more
likely to be close than to be far apart. In addition (not shown
here), we notice that the spread of the covariances increases
w.r.t. the interval T for hypothesisH1 but not for hypothesis
H0, as one would expect.

A similar approach is used to learn the multinomial
parameters (equivalent to an histogram of Bhattacharyya
distances) of the color model. However, given the non-
parametric nature of the model, collecting all the measures
and assuming they follow a two-component model is not
possible for training. We thus adopt a more straightfor-
ward method. For each time interval T , and for each de-
tection, we assume that its closest detection (if it exists)
in the ground plane from all detections T frames apart
in the past and the future corresponds to the same object.
The Bhattacharyya distance between their respective color
histograms is thus added (after discretization) to the cor-
responding multinomial histogram under hypothesis H1.
Similarly, the second closest detections are used to estimate
the color model parameter under hypothesis H0. The re-
sulting histograms are then smoothed by applying a mov-
ing average algorithm to account for the limited amount of
training data. Figure 4 illustrates the result for T = 3. We
see that under hypothesis H1, pairs are more likely to be
very similar in terms of color.



4. Optimization
4.1. Energy Minimization Formulation

At testing time, the goal is to find the optimal label field
by maximizing our objective function given in Equation 6.
It can be shown that it is equivalent to minimizing the en-
ergy function [9]:

U(L) =
∑
(i,j)

|ti−tj |≤Tshort

βpotts
ij .δ(li − lj) (7)

where δ(.) denotes the Kronecker function (δ(a) = 1 if a =
0, 0 otherwise), and the potentials between each pair (also
called Potts coefficient) are defined by:

βpotts
ij = log

[∏Nf2
k=1 p(fk(ri, rj)|H0)∏Nf2
k=1 p(fk(ri, rj)|H1)

]
(8)

The interpretation is the following. If βpotts
ij is negative, the

minimization encourages to have δ(li − lj) = 1, which
means that the pair (ri, rj) is more likely to correspond to
the same object (hypothesis H1 prevails) to an extent re-
lated to the amplitude of βij . On the contrary, when βpotts

ij is
positive, hypothesis H0 prevails.

4.2. Sliding Window Solution

There exist several methods to optimize the energy func-
tion in Equation 7. In this paper, we propose to use an online
Sliding Window (SW) algorithm, which performs the opti-
mization in an iterative manner. We have also tested a global
stochastic method, namely Simulated Annealing (SA), but
in addition to being offline and computational intensive, it
did not produce better results.

The SW algorithm works as follows. Let Ft denote all
the detections in frame t, and Pt denote all past detections
from frame t − Tshort to frame t − 1. That is, Ft con-
tains the detections we want to assign labels to in the cur-
rent step, and Pt contains all the detections which already
have a label and which have a link to detections in Ft under
the Tshort horizon constraint. Note that for each detection
ri in Ft, the potential label pot(ri) can either be one of the
labels in Pt (indicating an existing tracklet), or a new la-
bel (indicating the emergence of a new person, or noise):
pot(ri) = {unique(lPt)} ∪ {lnew}, where lPt is the set of
labels in Pt.

The method works in two steps. First, we evaluate all
possible labeling combinations for the detections in Ft. In
practice, this can be achieved quickly by building a second
graph between the detections in Ft and the potential labels,
as illustrated in Figure 5. Algorithm 2 shows how to com-
pute the log-likelihood terms involved in each link of this
graph. Then, in a second step, we apply a standard ICM
optimization step (SA algorithm with temperature 0) to all

Algorithm 2 Algorithm to build new graph
for ri ∈ Ft do

for l ∈ pot(ri) do
LLi(l) =

∑
rj∈Pt log(

∏
k p(fk(ri, rj)|H(l, lj)))

end for
end for

Figure 5. Graph containing the log-likelihood of each possible la-
bel for each detection in Ft

detections in Ft ∪ Pt to allow taking into account more re-
cent detections in the labeling of past detections.

5. Experimental Results
5.1. Datasets

Surveillance data, even though recorded daily at a mas-
sive scale all around the world, are seldom made available
for public research, especially with annotations. Their us-
ability poses the ethical problem of privacy and personal-
ity rights. Therefore, a few freely available datasets like
CAVIAR [1] have been extensively used for various com-
puter vision tasks and present the advantage to provide
ground truth for several interesting features. In this dataset,
challenges arise from occlusions and also specular reflec-
tion. We used the shopping mall corridor view of this
dataset, which comprises 26 videos. We also used videos
from Torino metro stations. The method presented in [19]
has been used to perform human detection on video se-
quences from CAVIAR and Torino.

We also tested our algorithms on the laboratory sequence
from EPFL [2]. In this case, however, we used the out-
put from a multi-view detector [5], which overall provides
cleaner detection results.

5.2. Performance Measures

It is often difficult to compare results to other approaches
because no common evaluation established benchmark has
been adopted by the research community. Although at-
tempts have been made to define evaluation measures for
multiple object tracking [14] [7] there are no unique perfor-



mance measures. In this paper, we used tracker purity TP
and object purity OP as performance measures.

Introduced in [14], they can be interpreted as preci-
sion and recall measures. To obtain TP , we first iden-
tify for each estimated tracklet εi the ground truth track
GTĵi it spends the most time with, and measure its pu-
rity TPi as the percentage of time εi spends with GTĵi .
More precisely, given an estimate εi, we compute at each
time instant t its overlap F ti,j with each GTj and com-
pare it to a coverage threshold tC . GTĵi is then chosen as
ĵi = arg maxj

∑
t 1(F ti,j > tC) where 1 is the indicator

function. Denoting by ni the total number of frames εi ex-
ists, we have:

TPi =

∑
t 1(F t

i,ĵi
> tC)

ni
(9)

and the overall tracker purity is obtained by averaging
over the number Nε of estimates:

TP =
1

Nε

Nε∑
i=1

TPi (10)

Reversely, object purity can be computed by looking for
each GTj to the track εîj it spends the most time with.

These measures give an insight into how much the esti-
mates are associated to a single ground truth track. In the
absence of identity switches, the tracker purity is 1. On
the other hand, the object purity drops with the increase of
mis-detections and if their largest associated estimates are
short-lived.

5.3. Learning Procedure and Optimization

For CAVIAR, a two-fold approach was used, in which
unsupervised training of model parameters was done on half
of the videos and then used on the remaining videos. For
Torino data, we performed training on 2 clips for a total of
2385 frames. In the case of the EPFL data, the unsuper-
vised training was conducted on the given video. Since the
ground-plane coordinates of detection outputs from [5] are
quantized on a grid, we added noise to the ground-plane po-
sitions while performing training in order to take the uncer-
tainty on the real position into account. We chose a short-
term horizon Tshort = 10 frames for all the datasets, and
applied our Sliding Window algorithm for optimization.

5.4. Results and Discussion

Table 1 gives the average measures and their standard de-
viations over all the testing videos of CAVIAR. We observe
a high tracker purity with a low variability across the tested
videos. The variations of the object purity around the mean
are quite large and depend mainly on the complexity of the
sequences.

Table 1. Performance evaluation on CAVIAR

average tracker purity TP 0.97 (0.04)
average object purity OP 0.51 (0.13)

Figure 6. Example of long-term occlusion effect: before occlusion
(left), after occlusion (right).

The results show that reliable tracklets with an average
tracker purity close to 1 can be built on CAVIAR data using
our approach. However, long occlusions (i.e. absence of de-
tections) beyond Tshort result in a significant object purity
drop. Figure 6 shows how occlusions can affect the perfor-
mance. The two persons in the back are being occluded by
another one passing in the foreground. The person in the
foreground correctly keeps his label, but as the occlusion
is longer than Tshort frames, the occluded people are given
new labels when they reappear (i.e. they are detected again).

Figure 7 shows the output of our tracker on a more
crowded sequence from CAVIAR. It shows that people with
labels 1 and 9 are correctly tracked with a single label from
the moment they are detected. The target labeled 2 is cor-
rectly tracked as well and then exits the scene to enter the
shop on the left. For some other targets, the tracks are more
fragmented, for example for label 4 which becomes 24 later.

Figure 8 shows the output of our tracker on the Torino
data. As with CAVIAR, without heavy occlusions, the
tracker is able to keep track of people correctly. One im-
age also shows that a false alarm is treated correctly by the
tracker which assigns a new label to it, that does not live
long. This illustrates that false alarms are not a problem
for the tracker, as we can observe from all used sequences.
We also observe some missed detections on the top-right.
Again, if some targets are missed by the detector on more
than Tshort successive frames, they will be assigned new
labels when they reappear.

Training the model with a longer Tshort has shown that
it can resolve longer short-time occlusions during testing,
but at the cost of a higher complexity of the graph. In order
to get a higher object purity in monocular scenes, it will
be necessary to deal with long-term occlusions. Long-term
association can be considered by merging tracklets further
apart in time, provided they present motion and appearance
similarities. We are currently investigating this issue.

However, when given multiple cameras, we can use a
multi-view detector that resolves the uncertainty due to oc-



Figure 7. Example of tracker output on a more complex sequence from CAVIAR at t = 509, 592, 675, 758.

Figure 8. Examples of tracking output on typical surveillance data
from a Torino metro station (each row is taken from a different
sequence)

clusion by combining the views. In this context, we can
expect to observe longer accurate tracks, which means a
higher object purity. This is what we observe in the EPFL
data, in which we apply our algorithm using the position
feature alone. Figure 9 provides the output that we obtain in
this case. The 6 targets are indeed correctly followed most
of the time. For example, the persons with labels 6 and 30
are correctly tracked over the whole sequence, in spite of
the numerous occlusions. Still, as the model is based on a
short-term association, if some targets exit the field of view
or are not detected for more than Tshort frames, they are
assigned a new label when they reenter the scene or are de-
tected again. Because of exits of the scene and re-entries, 35
becomes 38, 43 becomes 54 and 58 becomes 64. Because
of missed detection for more than Tshort successive frames,
50 becomes 51 and 59 becomes 62. Some tracks are also
fragmented for other reasons. For instance, 14 becomes 42
at one point where there is an abrupt change in the bound-
ing box location. We also observe one instance of identity
switch, as label 38 switches with label 51. However, track-
ing was performed using position alone. Other cues could
hopefully help overcome this wrong association.

Computational cost. Given the detections, the time to

extract the color features, build the graph and to perform the
optimization takes around 200 milliseconds on the CAVIAR
data.

6. Conclusion
We have formulated the multi-person tracking task as

an association problem between detections. The associa-
tion was expressed as a labeling process using a Condi-
tional Random Field framework. The CRF encapsulates
short-term dependencies between pairs of detections in the
factor terms of the graph and are defined as probabilities
of similarity measurements between detection pairs under
two distinct hypotheses that they correspond to the same
object (H1) or not (H0). Despite the use of simple fea-
tures (location difference, Bhattacharyya color distance)
and noisy detection, very good real-time performance has
been achieved. Dynamic trajectory information could be in-
corporated in the framework, though it would require doing
filtering and therefore increase the computational complex-
ity. One limitation of our method is that it does not cope
with long term occlusions. Current and future work will ad-
dress the short-term limitation of our method, by merging
tracklets using longer term motion and appearance models.
Another improvement could consist in interpolating tracks
to correct missed detections. We also plan to conduct more
extensive evaluations.
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