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Abstract
MLP based front-ends have evolved in different ways in re-
cent years beyond the seminal TANDEM-PLP features. This
paper aims at providing a fair comparison of these recent pro-
gresses including the use of different long/short temporalin-
puts (PLP,MRASTA,wLP-TRAPS,DCT-TRAPS) and the use
of complex architectures (bottleneck, hierarchy, multistream)
that go beyond the conventional three layer MLP. Furthermore,
the paper identifies which of these actually provide advantages
over the conventional TANDEM-PLP . The investigation is car-
ried on an LVCSR task for recognition of Mandarin Broadcast
speech and results are analyzed in terms of Character Error Rate
and phonetic confusions. Results reveal that as stand alone
features, multistream front-ends can outperform by10% con-
ventional MFCC while TANDEM-PLP only improve by1% .
On the other hand, when used in concatenation with MFCC
features, hierarchical/bottleneck front-ends reduce thecharacter
error rate by+18% relative compared to+14% relative from
TANDEM-PLP. The various input long-term representations re-
cently developed provide comparable performances.
Index Terms: TANDEM features, Multilayer Perceptron,
Acoustic features, GALE project, LVCSR.

1. Introduction
Since the original work of Hermansky and colleagues [1], a
large number of Multilayer Perceptron (MLP) front-ends have
been proposed for Automatic Speech Recognition (ASR). The
first MLP based front-end [1] consisted of a three-layer MLP
trained on nine consecutive frames of PLP features as in-
put. The MLP outputs represent phonetic posterior probabil-
ities, which, after a Log/KLT transform, are used as conven-
tional features in HMM/GMM recognition systems. In recent
times, MLP front-ends have significantly progressed along two
main directions:1- the use of different input representations
to the MLP and 2- the use of complex MLP architectures be-
yond the conventional three-layer perceptron. The first direc-
tion includes speech representations that aim at using informa-
tion from long speech temporal trajectories which could cap-
ture phenomena such as co-articulation and provide comple-
mentarity to MFCC or PLP features [2]. Because of the large
dimension of these time windows, a number of techniques for
efficiently encoding the information have been proposed like
MRASTA [3], DCT-TRAPS [4], and wLP-TRAPS [5]. The sec-
ond direction includes a number of heterogeneous techniques
that aim at overcoming the pitfalls of the three-layer MLP clas-
sifier, including bottleneck architectures [6], hierarchical archi-
tectures [7], and multi-stream approaches [8].

In our previous related work [7], we investigated a subset
of these techniques, namely, the MRASTA processing and its
hierarchical version in a Mandarin broadcast LVCSR system

developed in the framework of the GALE project1. This paper
aims at complementing that study including other MLP input
features (DCT-TRAPS and wLP-TRAPS) as well as Bottleneck
architectures in order to cover all the front-ends that havebeen
proposed and integrated into LVCSR systems. Furthermore, the
paper investigates which of these techniques actually improve
over the conventional TANDEM-PLP.

The study is carried on the same Mandarin Broadcast sys-
tem described in [7] and we examined the MLP feature per-
formances as stand-alone front ends and in concatenation with
spectral features (MFCC). The remainder of this work is orga-
nized as follows. Section 2 describes the baseline system and
the experimental setup. Section 3 experiments with long tem-
poral input in a three-layer MLP architecture. Section 4 exper-
iments with long temporal input in more complex architectures
such as bottleneck and hierarchies and the results are analyzed
in terms of phonetic confusions. The results are then summa-
rized and discussed in Section 5.

2. Experiments setup
The following studies are based on a simplified version of the
large vocabulary ASR system for transcription of Mandarin
broadcast described in [9], developed by SRI/UW/ICSI for the
GALE project. Recognition is performed using the SRI Deci-
pher recognizer and results are reported in terms of Character
Error Rate (CER). The training is done using approximatively
100 hours of broadcast news and conversation data manually
transcribed including speaker labels. Results are reported on
the DARPA GALE 2006 evaluation test set (eval06). The base-
line system uses 13 standard MFCC plus smoothed log-pitch
estimate as described in [10] as Mandarin is a tonal language.
Furthermore, they are augmented with first and second order
temporal derivatives resulting in a feature vector of dimension
42. Vocal Tract Length Normalization (VTLN) and speaker
level mean-variance normalizations are applied. The training
consists of conventional Maximum Likelihood training. The
decoding phase consists of two decoding passes, speaker inde-
pendent (si) decoding followed by a speaker adapted (sa) de-
coding. The performance of this baseline system on eval06 data
is reported in Table 1.

Let us first examine the TANDEM-PLP features perfor-
mances, where the input to the MLP is 9 consecutive frames of
mean-variance speaker normalized PLP features. Furthermore,
this representation is augmented with 9 consecutive framesof
the log pitch estimate [10] with its temporal derivatives, pro-
ducing a42× 9 dimensional input feature vector. The training
is done on a toneme set composed of 71 tonemes. The total
number of parameters in the MLP is equal to one million. Af-
ter PCA, a dimensionality reduction accounting for 95% of the

1http://www.darpa.mil/ipto/programs/gale/gale.asp



total variability is applied, resulting in a feature vectorof di-
mensions 35. TANDEM-PLP feature performance is reported
in Table 1. While comparable to the MFCC baseline as stand
alone features, the MLP front-end produces an improvement of
14% relative when concatenated with spectral features. Next,
we investigate the use of different input features while keep-
ing constant the total number of parameters in the MLP to one
million.

Table 1: Performances of the MFCC baseline system,
TANDEM-9frames PLP and their concatenation. The relative
improvement w.r.t. the baseline is reported in the parentheses.

MFCC TANDEM MFCC+TANDEM
CER 25.8 25.5 (+1%) 22.2 (+14%)

3. Long Temporal Inputs
We replaced the 9frames-PLP input to the MLP with a Tem-
poral Pattern or TRAPS [11], i.e., a long-time span of speech
signal. Given the high dimensionality of the TRAPS, several
techniques for efficiently extracting information have been pro-
posed.

The Multiple RASTA (MRASTA) filtering [3] is an ex-
tension of RASTA filtering consistent with human perceptionof
modulation frequencies modeled using a bank of filters equally
spaced on a logarithmic scale. This bank of filters subdivides
the available modulation frequency range into separate channels
with a decreasing resolution moving from slow to fast modu-
lations. The feature extraction is composed of the following
parts: 19 critical band auditory spectrum is extracted fromShort
Time Fourier Transform of a signal every 10 ms. A 600 ms
long temporal trajectory in each critical band is filtered with a
bank of band-pass filters. These filters represent first derivatives
and second derivatives of Gaussian functions with varianceσi

varying in the range 8-60 ms. After MRASTA filtering, fre-
quency derivatives across three consecutive critical bands are
introduced. The total number of features used as input for a
three-layer MLP is432.

The DCT-TRAPS aims at reducing the dimension of the
trajectories using a Discrete Cosine Transform (DCT) [4]. The
critical band auditory spectrum is extracted from Short Time
Fourier Transform of a signal every 10 ms. Then 500 ms long
energy trajectories are extracted for each of the 19 critical bands
that compose the spectrogram. Those are projected on the first
16 coefficients of a DCT transform resulting in a vector of size
19 × 16 = 304, which is then used as input to the MLP. In
contrary to the MRASTA, they do not emulate any sensitivity of
the hearing properties to the different modulation frequencies.

wLP-TRAPS [5] represents a third alternative which does
not use the short term spectrum. These features are obtained
by warping the temporal axis after LP-TRAP features calcu-
lation [12]. The feature extraction is composed of the fol-
lowing steps: first, linear prediction is used to model the
Hilbert envelops of pre-warped 500ms long energy trajectories
in auditory-like frequency sub-bands. The warping ensuresthat
more emphasis is given to the center of the trajectories com-
pared to the borders [5], thus emulating again human percep-
tion. 25 LPC coefficients in 19 frequency bands are then used
as input to the MLP, producing a feature vector of dimension
19× 25 = 475.

As Mandarin is a tonal language, those representations can
be augmented with the smoothed log-pitch estimate [10] and
with the value of the critical band energy (19 features per
frame). In the following, we will refer to these as Augmented

Table 2: CER for MLP features making use of long time spans
of the signal as stand alone features and in concatenation with
MFCC. The relative improvement w.r.t. the baseline is reported
in parentheses.

MLP MFCC+MLP
MRASTA 30.7 (-19%) 23.1 (+10%)

DCT-TRAPS 31.7 (-23%) 23.2 (+10%)
wLP-TRAPS 28.2 (-9%) 23.0 (+11%)

A-MRASTA 26.6 (-3%) 22.2 (+14%)
A-DCTTRAPS 28.9 (-12%) 22.5 (+13%)
A-wLPTRAPS 27.3 (-6%) 22.2 (+14%)

features (A-MRASTA, A-DCT-TRAP, A-wLP-TRAPS).
Table 2 reports the performances of MLP features obtained

from training on those long temporal inputs. They perform quite
poorly as stand alone features but they still provide improve-
ments around10% relative in concatenation with the MFCC. As
stand-alone front-end, the wLP-TRAPS outperforms the other
two (DCT-TRAPS and MRASTA). While in concatenation with
spectral features and after adaptation, the three representations
are comparable. Table 2 also reports performances of aug-
mented features. Also in this case the three representations
have comparable performances in concatenation with MFCC.
In summary, as stand alone features and in concatenation with
MFCC, long temporal window inputs do not outperform con-
ventional TANDEM-PLP whenever a three-layer MLP is used.

In order to understand the differences between the various
MLP front-ends, we analyzed the errors they produce in terms
of broad phonetic classes (Vowels, Stops, Fricatives, Affrica-
tives, Approximants, Nasals). Figure 1 plots the per-classac-
curacy in case of MLP trained using 9frames-PLP and DCT-
TRAPS inputs. The overall performance of the former is su-
perior to the overall performance of the latter. However, the
DCT-TRAPS outperforms the TANDEM-PLP on almost all the
stop consonants ’p’, ’t’, ’k’, ’b’, ’d’ and the affricative ’ch’.
Stop consonants are short sounds known to be prone to strong
co-articulation from the following vowel and their recognition
can be largely improved considering information from the fol-
lowing vowel. Vowels and other consonants are still better rec-
ognized from the short term features. These facts are verified
also on MLPs trained on MRASTA and wLP-TRAPS. In sum-
mary, training MLPs using short-term spectral input outper-
forms training using long term temporal input on most of the
phonetic classes apart plosives and affricatives. After augmen-
tation with pitch and energy, the performances of long and short
temporal inputs are comparable.

4. MLP architectures
The other direction in which MLP front-ends have evolved is
the use of more complex architectures beyond the three layer
MLP. The main alternatives to the three-layer architectures in-
clude the following.

Bottleneck features are recently introduced MLP non-
probabilistic features [13]. The conventional three-layer MLP
is replaced with a four- or five-layer MLP where the first layer
is the input features and the last layer is the phonetic targets.
In the five-layer case, the size of the second layer is large to
provide enough modeling power, the size of the third layer is
small, typically equal to the desired feature dimension, while
the size of the fourth one is approximatively half of the second
layer [13]. Instead of using the output of the MLP, features
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Figure 1: (Left plot) Phonetic-class accuracy obtained by the TANDEM-9framesPLP and DCT-TRAPS input. The former outperforms the latter on
most of the classes apart from stops and affricatives. (Right plot) Phonetic-class accuracy obtained by the MRASTA and the Hierarchical MRASTA.

Table 3: CER for MLP features making use of bottleneck architec-
tures as stand alone features and in concatenation with MFCC. The rel-
ative improvement w.r.t. the baseline is reported in parentheses.

MLP MFCC+MLP
bottleneck-MRASTA 25.9 (+0%) 21.5 (+17%)

bottleneck-DCTTRAPS 25.7 (+0%) 22.0 (+15%)
bottleneck-wLPTRAPS 24.9 (+3%) 21.5 (+17%)

A-bottleneck-MRASTA 24.0 (+6%) 21.2 (+18%)
A-bottleneck-DCTTRAPS 24.9 (+3%) 21.5 (+17%)
A-bottleneck-wLPTRAPS 24.1 (+6%) 21.2 (+18%)

are obtained from the linear activation of the third layer. Bot-
tleneck features do not require a dimensionality reduction, as
the desired dimension can be obtained fixing the size of the bot-
tleneck layer. Furthermore, the linear activations are already
Gaussian distributed thus they do not require any Log trans-
form. Performances obtained replacing the three-layer MLP
with a bottleneck architecture are reported in Table 3. While
keeping constant the number of total parameters, the bottleneck
produces a reduction in the errors both with and without MFCC.
Furthermore, in their augmented version, the long temporalin-
puts coupled with the bottleneck architectures outperformthe
conventional TANDEM-PLP with and without spectral feature
concatenation.

Beside increasing the number of layers in the MLP, hier-
archies of classifiers have also been proposed in literatureas
alternative. In theHierarchical MRASTA features, the gaus-
sian filter-banks are split in two separate filter banks that fil-
ter respectively fast and slow modulation frequencies, or equiv-
alently the filters with short and long temporal support. The
cutoff frequency for both filter-banks is approximatively 10Hz.
The output of the MRASTA filtering is then processed accord-
ing to a hierarchy of MLPs progressively moving from high to
low modulation frequencies or equivalently from short to long
temporal context [7]. The effect of this sequential processing
is that the first MLP trained on short temporal context is ef-
fective on most of the phonetic classes apart stops and affrica-
tives. Those estimates are then corrected from the second MLP
using the information from longer temporal context. Figure1
plots the phonetic class accuracy obtained by the three-layer
MLP trained using the MRASTA input and the hierarchical ap-
proach. It is noticeable that the second outperforms the first on
all the targets. Performances of Hierarchical MRASTA and its
augmented version (A-Hier) are reported in Table 4. Again the
total number of parameters in the architecture is kept constant
to one million. Results reveal that hierarchical processing con-
siderably improves the performances obtained from training on
long temporal inputs. Furthermore, after augmentation, the ap-

Table 4: CER for MLP features making use of architectures be-
yond the three-layer models as stand alone features and in concatenation
with MFCC. The relative improvement w.r.t. the baseline is reported in
parentheses.

MFCC MFCC+MLP
Hier 26.5 (-3%) 21.9 (+15%)

A-Hier 24.1 (+6%) 21.2 (+18%)
Multi-stream 23.1 (+10%) 21.7 (+16%)

proach appears superior to the TANDEM-PLP. Although based
on two different rationales, hierarchical and bottleneck archi-
tectures provide comparable performances.

A third alternative architecture is theMulti-stream
model [8]. The MLP outputs are phonetic target posterior prob-
abilities that can be combined into a single estimate using prob-
abilistic rules. The rationale behind it consists in the fact that
MLPs trained using different input representations, e.g.,short
and long temporal windows, will perform differently in mul-
tiple conditions. Dynamically weighting the posterior streams
should take advantage of both representations. Thus posteri-
ors obtained from MLPs trained on spectral features (9frames-
PLP) and long signal time spans (MRASTA) are combined us-
ing the Dempster-Shafer method [14] and used as features after
a Log/PCA transform. Multi-stream comes at the obvious cost
of doubling the total number of parameters in the system. Re-
sults reported in table 4 reveals that multi-stream reducesthe
CER by10% relative when used as stand alone and by16%

relative when used in concatenation with MFCC.
Another interesting finding is the fact that as stand-alone

features, the multi-stream approach has the largest CER im-
provement (10% relative over MFCC), while in concatenation
with MFCC, the hierarchical or bottleneck architectures pro-
duce the largest CER reduction . This suggests that the best
MLP features may not be the most complementary. The ef-
fect can be explained by the fact that the multi-stream approach
makes use of spectral information (through the 9frame PLP)
while the hierarchical/bottleneck architectures do not. This in-
formation produces a large improvement whenever MLP fea-
tures alone are used but does not appear complementary to the
MFCC features as they both represent spectral information.On
the other hand, the hierarchical/bottleneck architectures which
do not use any spectral information, appears more complemen-
tary when used in concatenation with the MFCC.

5. Summary and Discussion
Following the original work of Hermansky and colleagues [1],
a large number of different input representations have beenpro-
posed in the context of MLP based feature extraction. They
are often coupled with architectures that go beyond the simple
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Figure 2:(Top plot) Stand-alone feature performance of various speech signal representations (noted on the X-axis) when used asinput to three-layer
MLP, bottleneck, hierarchical and multi-stream architectures. The down plot reports the feature performances when used in concatenation with MFCC.

three-layer perceptron. The performances of the various MLP
front-ends are summarized in Figures 2 as stand-alone features
(top plot) and in concatenation with MFCC (down plot).

Figure 2 (top plot) reveals that, when a three-layer MLP
is used, none of the long temporal inputs (MRASTA, DCT-
TRAPS, wLP-TRAPS, and their augmented versions) outper-
form the conventional TANDEM-PLP nor the MFCC base-
line. On the other hand, replacing the three-layer MLP with a
bottleneck or hierarchical architecture (while keeping constant
the total number of parameters) considerably reduces the error,
achieving a CER lower than the MFCC baseline. The lowest
CER is obtained by the multi-stream architecture which com-
bines outputs of MLPs trained on long and short temporal con-
texts improving by10% relative over the MFCC baseline.

Figures 2 (down plot) reports CER obtained in concate-
nation with MFCC and reveals that, even when their perfor-
mances are poor as stand-alone front-end, three-layer MLP
features based on long temporal spans always appear to pro-
vide complementary information to the MFCC with improve-
ments in the range of10-14% relative. When the three-
layer MLP is replaced with bottleneck or hierarchical archi-
tectures, the improvements are increased to the range of16-
18%. The various methods for encoding the information (DCT-
TRAPS, MRASTA, wLP-TRAPS) perform equally well when
augmented with pitch and energy. It is interesting to noticethat,
in concatenation with MFCC, the lowest CER is obtained by
the bottleneck/hierarchical architectures rather then the multi-
stream features (see previous section for explanation).

Table 5 summarizes the improvements that modifications
to the three-layer MLP can produce with respect to the original
TANDEM-PLP features. As stand-alone front-end, the lowest
CER is produced by multi-stream features (+10% relative over
the MFCC baseline, compared to +1% obtained by TANDEM-
PLP); in concatenation with MFCC, the lowest CER is pro-
duced by bottleneck/hierarchical architectures (+18% relative,
compared to +14% obtained by TANDEM-PLP, over the MFCC
baseline)2.

2This work was supported by the the Defense Advanced Research
Projects Agency (DARPA) under Contract No. HR0011-06-C-0023 and
by the Swiss National Science Fundation through IM2 grant. Authors
would like to thanks colleagues involved in the GALE projectat IDIAP,

Table 5: Summary Table of CER and improvements.
TANDEM Multistream

MLP 25.5 (+1%) 23.1 (+10%)
TANDEM Hier/Bottleneck

MLP+MFCC 22.2 (+14%) 21.2 (+18%)
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