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ABSTRACT

Automatic Speech Recognition and Understanding (ASRU) systems
can generally use temporal and situational context information to im-
prove their performance for a given task. This is typically done by
rescoring the ASR hypotheses or by dynamically adapting the ASR
models. For some domains such as Air Traffic Control (ATC), this
context information can be however, small in size, partial and avail-
able only as abstract concepts (e.g. airline codes), which are difficult
to map into full possible spoken sentences to perform rescoring or
adaptation. This paper presents a multi-modal ASRU system, which
dynamically integrates partial temporal and situational ATC context
information to improve its performance. This is done either by 1) ex-
tracting word sequences which carry relevant ATC information from
ASR N-best lists and then perform a context-based rescoring on the
extracted ATC segments or 2) by a partial adaptation of the language
model. Experiments conducted on 4 hours of test data from Prague
and Vienna approach showed a relative reduction of the ATC com-
mand error rate metric by 30% to 50%.

Index Terms— Automatic speech recognition, context-aware
systems, air traffic control, spoken language understanding.

1. INTRODUCTION

Automatic Speech Recognition and Understanding (ASRU) appli-
cations can generally benefit from the presence of task-related sit-
uational and temporal context (prior) information to improve their
performance [1]. This can be done either by 1) refining the ASRU
models, such as adapting the acoustic model to new acoustic con-
ditions or adapting the Language Model (LM) to a new domain,
or 2) by rescoring the ASR hypotheses using a domain-dependent
model. Early usage of situational context goes back to Young et
al.’s works [2, 3], who used sets of contextual constraints to gener-
ate several grammars for different contexts. Fiigen et al. [4] used
a dialogue-based context to update a Recursive Transition Network
(RTN) to improve ASR quality of a dialogue system. Everitt et al. [5]
proposed a dialogue system for gyms, which, based on the exer-
cise routine, would switch its ASR component between pre-existing
grammars tailored to different sports equipments.

While there is no doubt that context can significantly improve
ASRU performance, the information it provides however, can be
small in size, time-varying, partial and available only as machine-
generated abstract representations (e.g. airline codes on a radar
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screen), which are difficult to map back into full possible spoken
sentences to perform rescoring or adaptation. In particular, in or-
der to manage a given airspace, Air Traffic Controllers (ATCOs) is-
sue verbal commands to the pilots by interpreting and relying on
1) situational context acquired through multiple modalities such as,
radar derived aircraft state vectors comprising position, speed, al-
titude, etc., as well as 2) temporal context given by the sequence
of previously issued commands. Furthermore, verbal communica-
tion is the primary mode of communication between agents oper-
ating in the ATC domain, which inspires many ASRU-based appli-
cations to enhance the ATC technologies. The designed ASRU sys-
tems can also benefit from the same context information used by AT-
COs. Shore et al. [6] investigated this idea using lattice rescoring on
a small Context Free Grammar (CFG)-based simulated ATC setup,
whereas Schmidt et al. [7] proposed a dynamic finite state transducer
adaptation of a CFG-based LM. As an alternative to CFG solutions,
we have recently proposed a Levenshtein-based context integration
approach combined with a Statistical Language Model (SLM) [8].
More details about ASRU for ATC are presented in Section 2.

This paper extends and generalizes the work presented in [7, 8]
in different directions. That is, 1) in addition to situational context,
we propose a new model that also integrates temporal context (his-
tory of spoken commands) (Section 3). Then, 2) we combine the two
types of context in a generalization of [8] using N-best lists (Sec-
tion 4). Finally, 3) contrary to [7, 8], which evaluated their systems
on data collected from a simulator of Diisseldorf airport, this paper
evaluates the system on 4 hours of data collected from ATCOs per-
forming their daily tasks in Vienna and Prague airports (Section 6).
The obtained results show that the proposed context-aware ASRU
system reduces the ATC Command Error Rate (CmdER) metric by
30% to 50% compared to a standard ASRU system.

2. ASRU SYSTEMS FOR ATC DOMAIN

2.1. Air Traffic Control Assistance Systems

The task of air traffic control aims at maintaining a safe, orderly and
expeditious flow of air traffic. ATCOs apply strict separation rules to
direct aircraft safely and efficiently, both in their respective airspace
sector and on the ground. Since controllers have a significant re-
sponsibility and can face high workloads in busy sectors, different
planning systems have been proposed to assist them in managing
the airspace such as, the Arrival Manager (AMAN). These systems
mainly suggest an optimal sequence of commands (command advi-
sories), which are then issued in verbal radio communication from
the controller to the aircraft pilots.
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Fig. 1. Schematic view of an ASRU-based ATC system.

2.2. AcListant®: Active Listening Assistance System

For different reasons such as, emergency or weather conditions, the
controller may deviate from the advisory commands proposed by
the assistance system. The latter reacts slowly to such deviations
and may require the controller to enter the issued commands via
mouse/keyboard. Thus, indirectly increasing the workload that they
were mainly designed to reduce. As a solution to this problem, we
have recently proposed the AcListant®' [9] system, which extends
the planner to include a background ASRU system, ideally replacing
the mouse/keyboard feedback. Conversely, ASRU can also benefit
from the context information used by the assistant system [8, 10]
to improve its performance. We will refer to it as Assistance-based
ASRU (ABSRU) system in the rest of this paper. Fig. 1 shows the
information flow in an ASRU-based assistance system.

2.3. From AcListant® To MALORCA

Although the AcListant® system achieved a good performance in a
simulator of Diisseldorf airport, the cost of transferring such system
from the laboratory to real ops-rooms is very significant. Each model
in the ABSRU system must by manually adapted to the linguistic and
acoustic features of the new environment, which are due to new lo-
cal conditions such as, noise conditions, different accents, speaking
styles, deviations from standard phraseology [11], etc. Therefore,
the MALORCA? project is proposed as a generalization of AcLis-
tant® that aims at developing a general, cheap and effective solu-
tion to automate the re-learning, adaptation and customization pro-
cess to new environments. This will be done by taking advantage of
the large amount of un-transcribed speech data available on a daily
basis in the new ATC environment, which can be used in un/semi-
supervised learning approaches to automatically adapt the ABSRU
models to the respective environment. The work presented in this
paper describes the basic and general ABSRU systems, which will
be used as initial points in the bootstrap automatic adaptation cycle
for Vienna and Prague airports, respectively.

3. ATC CONTEXT-BASED RESCORING

This section introduces the different types of context we consider
and the mathematical models we designed to integrate them into an
ASRU system. Then, we show how these different models can be
combined in a unifying framework.

! AcListant®: http://www.AcListant.de
MALORCA: MAchine Learning Of speech Recognition models for
Controller Assistance: http://www.malorca-project.de

3.1. Situational Context Information

An ATC assistance system bases its proposed command sequence
on the state of a given airspace sector. This state is primarily derived
from radar information about the current situation of the airspace
and aviation domain knowledge. This is done by forming a search
space of all physically possible commands in the current airspace
situation in a first step, and then extracting the advisory sequence
of commands, shown to ATCOs, by optimizing a set of ATC crite-
ria. The formed search space summarizes the current situation in the
airspace. Thus, we will refer to it as situational context. For an
ASRU system, this context can be seen as a command-level search
space, which is 1) dynamic, i.e. changes every few seconds, 2) small
in size, i.e. few hundred/thousand of commands, and 3) available
only as partial standardized ICAO phraseology concepts [11] (see
example Table 1). In particular, a situational context information
contains an aircraft callsign (e.g. AFR2A 22 air france two alpha)
followed by a command type to execute and a command value to
achieve (e.g. REDUCE 220 = reduce speed two two zero knots).

Callsign Command Type Value

AFR2A REDUCE 220
DLH9000 DESCEND 120

BER256 RATE_OF_DESCENT 3000
KLM23RV | TURN_LEFT_HEADING 80

Table 1. Excerpt from situational context information generated by
a planning system. It shows an ICAO abstraction of four different
actions that can be issued by the controller to an aircraft.

Given the spoken language variability, it is very difficult to build
the word-level context space, which maps each command in the con-
text into the set of all possible spoken realizations of that command,
which can be issued by an ATCO to an aircraft pilot. Furthermore,
such process should be very fast given that the situational context
changes every few seconds. As a result, performing the standard
lattice rescoring or LM adaptation is not feasible in this case. The
next section introduces a partial rescoring approach, which considers
only the ATC segments in the recognized hypotheses.

3.2. Situational Context-based Rescoring (SCR)

The situational context model considers the context information as
an ASRU search space for ATC concepts. That is, it only targets se-
quence of words that carry some ATC information in the recognized
hypotheses. This partial rescoring approach follows these steps:
Step 1) Sequence Labeling: This step takes the raw ASR
hypothesis as input and automatically detects and extracts the
ATC concepts that it carries. For instance, the hypothesis “air

france two alpha hello reduce speed two three zero knots” is

mapped to “<callsign> air france two alpha </callsign>
hello <command=reduce> reduce speed <speed> two three
zero </speed> knots </command>". This step directly puts the
focus on the ATC information carried by the ASR hypotheses, which
is our primary target, and ignores the rest. Our experiments use a
CFG-based token tagger similar to the one used in [7, 8].

Step 2) Context-to-Word Mapping: The partial rescoring ap-
proach turns the problem of generating full spoken sentences (real-
izations) of the context into generating realization of short segments,
which can be extracted by the sequence labeler in the previous step.
For instance, instead of generating the full realization of the com-
mand “AFR2A REDUCE 2507, we only need to generate context-to-
word mapping for the callsign “AFR2A” and the speed value “250”.



Step 3) Situational Context-based Rescoring: We use here a
Weighted Levenshtein Distance (WLD) to rescore the ATC segments
extracted from the ASR hypotheses in Step 1, in the search space
formed by all verbalized context segments from Step 2. More details
about the WLD can be found in [8].

Formally, let A = {A¢s, {A%, }com } be the ATC segments
extracted from the ASR hypothesis using sequence labeling as de-
scribed in Step 1. We assume that each hypothesis contains (at
most) a single callsign A, in addition to one or multiple issued com-
mands {AZ,, }eom. Similarly, let C = Ucs{(Ces, {Conm }eom )} be
the set of all possible context-based ground truths resulting from the
context-to-word mapping described in Step 2. This set consists of all
callsigns in the context and the ATC commands applicable to them.
The situational context-based rescoring extracts the “corrected” ATC
segments H = {Hcs, { H }eom } according to

H = argmin{WLD(A, C)} (1)
cec
= argmin{WLD(Acs, Ccs) +Z
cec Apefacs 3

argmin WLD( Ay, C;)}
Cje{Cen}
More details about the WLD and the situational context-based
rescoring can be found in [8].

3.3. Temporal Context-based Rescoring (TCR)

Air traffic control assistance systems typically use the radar infor-
mation to generate the situational context. The resulting command
advisories are generated through a deterministic optimization pro-
cess, which takes into account a number of physical and local con-
straints about the operating airport. These constraints include way-
points, which play the role of “markers” in the airspace, location of
the runways for landing and departure, the landscape surrounding
the airport (see, mountains, etc), to name a few. Due to these con-
straints, a number of pre-defined trajectories and landing patterns
are frequently generated to guide aircraft from their current location
to the runways. For instance, most landing aircrafts will receive a
confirmation of identification as first command, and a handover as
last command. In particular, once an aircraft enters the controlled
airspace, the generated landing sequence for this aircraft is expected
to be closely similar to the ones generated for previous aircraft that
entered that airspace at close locations. Fig. 2 shows an example
of landing sequence and trajectory patterns that are expected to be
followed by different aircraft depending on their location.

Fig. 2. Expected landing sequences and trajectories for different air-
craft approaching Prague airport.

Based on these pre-defined patterns, we designed an “Airport
Flight Model”, which can predict the future commands to be spoken
to a given aircraft based on the history (temporal context) of the
previously issued commands to that aircraft.

In practice, this model is a Long-Short Term Memory (LSTM)
neural network [12, 13] trained on landing sequences of commands,
which are reconstructed from data collected in Prague or Vienna air-
ports. That is, we define the input to this model as the timely-ordered
sequence of commands, which were issued to a given aircraft since it
entered the controlled airspace and until it landed on the runway. The
next section shows how this temporal model can be combined with
the situational model to generalize the approach proposed in [13].

4. A GENERALIZED CONTEXT-AWARE ASRU SYSTEM

Although the SCR approach (Section 3.2) can significantly improve
the performance, it only operates on command values and callsigns.
More precisely, if the ASRU hypothesis confuses two commands
which take the same attribute but are of different types, the SCR will
not be able to correct this misrecognition. e.g. the sequence labeler
extracts a “SPEED 220” command instead of a “REDUCE 2307,
which both take a speed value as attribute. In this case, SCR would
be able to correct the command value “220” to “230” but cannot
correct the command type “SPEED” to “REDUCE”.

This problem can be solved using the TCR approach (Sec-
tion 3.3). In order to do so, we train this model only on command
types without command values, i.e. we only predict the probability
of a “REDUCE” command in a given context regardless of the speed
value that can be assigned to it. This in fact is a marginalization of
the full model (command type+value) on the complete range of val-
ues that this command can take. Furthermore, this decision is also
justified by the small amount of data available to train the full model,
which would result in a vocabulary size of few hundred/thousand,
resulting from the rich range of values that each command can take.
Building a model only for command types reduces drastically the
vocabulary size (40 to 60 different command types).

In order to combine the SCR and TCR models, we consider N-
best lists instead of 1-best hypothesis which was used in [8]. For-
mally, assuming the ASR system produces a list of N hypotheses,
let A= {A"}, = {{A%, {AS" }com } }21 be the set of ATC
segments extracted from these hypotheses using sequence labeling
(Section 3.2). The combination of SCR and TCR models is done
according to

H = argmin {argmin{p(A",C)}} )
n=1,...,N cecC

= argmin
n=1,...,N

DY

Are{Aom?

{ argmin{p* (AL, Ce0)}
cecC

argmin_ {p,(A7) - p* (A, C;)}
C;e{Ces5,,}

The probability p(A™, C') combines 1) a situational context based-
rescoring probability p°(., .), directly derived from the WLD scores
used in Section 3.2. This distribution operates on callsigns and com-
mand values as explained above, and 2) a temporal context based
score pL,(.), which estimates the probability distribution over the
command type space given the history of issued commands for a
callsign cs. In doing so, the situational and temporal context models
complement each other, which leads to a generalized model that can
successfully rescore callsigns, command types and command values.

5. PRAGUE AND VIENNA DATASETS

The proposed context-based rescoring system is evaluated using
recordings of actual ATCOs performing their daily tasks in Prague
and Vienna airports. This data was collected as part of the MAL-
ORCA? project. It consists of 8kHz ATC speech recordings of dif-
ferent noise levels and different radio transmission qualities. In par-



ASRU Systems Prague Results (Error Rates are in %) Vienna Results (Error Rates are in %)
WER | ConER| CmdER | CmdER | R:(s) || WER | ConER| CmdER | CmdER | R.(s)
SLM (no context) 10.9 17.5 30.9 21.9 1.25 13.2 22.3 41.4 30.4 0.90
SLM+Rescoring (N-best=1) 11.2 13.8 19.1 12.8 3.40 17.5 16.4 27.7 20.6 3.22
SLM+Rescoring (N-best=5) 8.9 11.6 16.5 12.7 4.65 15.5 15.5 26.3 19.8 3.63
CFG (no context) 18.0 33.1 50.5 37.5 1.02 22.1 38.5 58.9 43.1 0.77
CFG+Adaptation 17.8 21.9 30.9 23.4 3.57 26.7 29.7 44.1 30.4 1.43
CFG+Rescoring (N-best=1) 19.7 25.3 33.1 25.4 1.87 25.6 27.9 40.1 33.0 1.71
CFG+Rescoring (N-best=10) | 19.1 24.4 31.8 24.2 4.57 25.1 26.5 38.5 32.0 2.97

Table 2. ASRU results on 4h of test data from Prague and Vienna airports using different ASRU systems with and without context information.

ticular, the Vienna dataset is very noisy and it can be difficult to
understand for humans with no ATC expertise. All commands were
issued in English with a mild usage of Czech or Austrian German
languages, respectively. In particular for words which do not contain
any ATC information such as greetings. Different ATC sessions were
recorded over multiple days from each controller. Table 3 presents
recording statistics for these two datasets.

The situational context is updated every 5 seconds by the as-
sistant system [10]. Table 3 also reports the context accuracy, i.e.
context contains the actual spoken command, and the average con-
text size i.e. number of ATC commands per context file, which can
be compared to 239 and 359 used in [7] and [8], respectively.

Duration (h) # of Speakers Context
Train Test Train Test Size Acc.
Prague | 2.1h 1.5h 6 5 650 99.0%
Vienna | 5.0h 1.5h 13 6 1600 | 96.0%

Table 3. Recording statistics for Vienna and Prague datasets includ-
ing the context accuracy (i.e. contains the actual spoken commands).

6. EXPERIMENTAL SETUP AND ANALYSIS

ASR was performed using the KALDI software [14] and the ASR
confidence scores for WLD were generated based on the Minimum
Bayesian Risk (MBR) decoding approach [15]. The acoustic model
is a DNN/HMM (Deep Neural Network Hidden Markov Model),
trained on 150 hours of speech data from the publicly available LIB-
RISPEECH [16], ICSI[17], AMI [18] and TED-LIUM [19] datasets,
which have been extensively used in ASR of conversational speech,
and then adapted on Vienna or Prague training data in Table 3. More
details about this system can be found in [20]. The SLM is a trigram
model trained on a combination of the training data and synthetic
data generated from the CFG. The latter defines its rules based on
the standard ATC phraseology [11], in addition to most common de-
viations observed in the training data. The CFG design was guided
by the work done in [7, 8].

For evaluation, in addition to conventional WER and Recogni-
tion time (R:), the ATC-specific evaluation metrics Concept Error
Rate (ConER) and CmdER are used. ConER is restricted to the
ATC-relevant semantic concepts of a given utterance, which are ex-
tracted using the sequence labeling approach (Section 3.2). A con-
cept can be either a callsign or a command, e.g. AFR2A or RE-
DUCE_250. The CmdER metric requires the entire sequence of
concepts to be correct. In the case where the sequence labeling sys-
tem fails in extracting ATC segments, it returns NO_CALLSIGN
or NO_COMMAND, which are counted as misrecognition, even
though they have no impact on the planning system (no informa-
tion). Therefore, we also report the CmdER after excluding these
utterances (noted CmdER) to estimate the misrecognition rate which
negatively affects the planning system.

Table 2 reports the ASRU results for Vienna and Prague
test data with and without context information. The approach
“CFG+Adaptation” is the one proposed in [7]. Furthermore, using
an N-best=1 is equivalent to the system proposed in [8], which does
not use temporal context. In this case, the recognized ATC segment
contains (at most) one command type. Thus, the TCR is not used.

The results clearly confirm the conclusions reported in [8]. That
is, SLM clearly outperforms the CFG-based system with and with-
out context information. This observation highlights the importance
of the probability distribution learned by SLM but ignored by CFG,
which uses a uniform distribution over words and commands. More-
over, SLM automatically captures deviations from standard phrase-
ology present in the data, whereas CFG requires a manual addition.

We can also conclude from these results that context informa-
tion strongly improves the ATC-related metrics (ConER, CmdER
and CmdER), whereas it slightly improves or worsens the WER of
either system. This is an expected outcome given that the proposed
approach is mainly designed to improve the ConER (and therefore
also the CmdER), by directly extracting and correcting ATC seg-
ments from the recognized hypotheses. Correcting such segments,
however, does not necessarily mean improving the word-level recog-
nition. This is particularly true in cases where the controller deviates
from standard phraseology [11], which was used to build the context-
to-word mapping (Section 3.2), e.g. dropping the word “decimal”
while issuing the frequency 133.2 =*one three three decimal two”.
These cases were very common, particularly in Vienna data. Further-
more, increasing the N-best list size leads to further improvements
for all systems. This observation highlights the advantages of the
proposed generalized system compared to the one proposed in [8]
(N-best=1). In fact, testing the TCR component alone leads to an
accuracy (prediction of the command type) of 59% for Prague and
55% for Vienna, with a mean rank of 2.4 and 2.7, respectively.

These experiments also show that data and context quality are
very crucial. More particularly, the Prague speech data is less noisy
compared to Vienna data and largely benefits from the smaller and
more accurate situational context (Table 3). Moreover, comparing
CmdER and CmdER shows an average degradation of ~ 10%. This
reflects the need for a better sequence labeler to extract the ATC
segments. The recognition time R;, however, is within a real-time
range given that ATC utterances are ~ 3.7s long on average.

7. CONCLUSIONS AND FUTURE WORK

We proposed a context-aware ASRU system for ATC domain, which
combines situational context acquired through an ATC assistance
system, and temporal context given by the history of issued com-
mands. Experiments conducted on real data from Prague and Vi-
enna airports showed a significant reduction of the command error
rate. Our future work will focus on investigating different sequence
labeling approaches, which seem to be a cornerstone for improving
the performance of the overall system.
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