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Abstract

It is increasingly easy to automatically swap faces in images and video or morph two faces into one using generative
adversarial networks (GANs). The high quality of the resulted deep-morph raises the question of how vulnerable the current
face recognition systems are to such fake images and videos. It also calls for automated ways to detect these GAN-generated
faces. In this paper, we present the publicly available dataset of the Deepfake videos with faces morphed with a GAN-
based algorithm. To generate these videos, we used open source software based on GANs, and we emphasize that training
and blending parameters can significantly impact the quality of the resulted videos. We show that the state of the art face
recognition systems based on VGG and Facenet neural networks are vulnerable to the deep morph videos, with 85.62% and
95.00% false acceptance rates, respectively, which means methods for detecting these videos are necessary. We consider
several baseline approaches for detecting deep morphs and find that the method based on visual quality metrics (often
used in presentation attack detection domain) leads to the best performance with 8.97% equal error rate. Our experiments
demonstrate that GAN-generated deep morph videos are challenging for both face recognition systems and existing detection
methods, and the further development of deep morphing technologies will make it even more so.

1. Introduction
Recent advances in automated video and audio editing tools, generative adversarial networks (GANs), and social media

allow the creation and the fast dissemination of high quality tampered video content. Such content already led to appearance
of deliberate misinformation, coined ‘fake news’, which is impacting political landscapes of several countries [2]. A recent
surge of videos (started as obscene) called Deepfakes1, in which a neural network is used to train a model to replace faces
with a likeness of someone else, are of a great public concern2. Accessible open source software and apps for such face
swapping lead to large amounts of synthetically generated Deepfake videos appearing in social media and news, posing a
significant technical challenge for detection and filtering of such content.

Although the original purpose of GAN-based Deepfake is to swap faces of two people in an image or a video, the resulted
synthetic face is essentially a morph, i.e., a deep morph, of two original faces. The main difference from more traditional
morphing techniques is that deep-morph can seamlessly mimic facial expression of the target person and, therefore, can also
be successfully used to generate convincing fake videos of people talking and moving about. However, to understand how
threatening such videos can be in the context of biometric security, we need to find out whether these deep-morphed videos
pose a challenge to face recognition systems and whether they can be easily detected.

Traditional face morphing (Figure 1a illustrates the morphing process) has been shown to be challenging for face recog-
nition systems [3, 16] and several detection methods has been proposed since [10, 18, 9]. For the GAN-based deep-
morphing, until recently, most of the research was focusing on advancing the GAN-based face swapping [6, 8, 12, 14].
However, responding to the public demand to detect these synthetic faces, researchers started to work on databases and
detection methods, including image and video data [15] generated with a previous generation of face swapping approach
Face2Face [19] or videos collected using Snapchat3 application [1]. Several methods for detection of Deepfakes have also

International Conference on Biometrics for Borders
1Open source: https://github.com/deepfakes/faceswap
2BBC (Feb 3, 2018): http://www.bbc.com/news/technology-42912529
3https://www.snapchat.com/
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Figure 1: Overview of the proposed method.

target image, key points, and interpolation and inten-
sity values are known.

We demonstrate feasibility of the proposed mor-
phing method by applying it to faces of a standard
FERET face dataset [10], since faces are among the
most privacy sensitive regions. Location of each face
is first detected with Viola-Jones [12] face detection
algorithm. A set of key points, used as triangle ver-
tices in the morphing transformation, is constructed
from automatically detected eyes, nose, and mouth.
To determine reversibility, robustness, and security of
the method, we use Eigenfaces, Fisherfaces [1], and lo-
cal binary patterns histograms (LBPH) [6] based face
recognition algorithms. The recognition algorithms
were run on the morphed and recovered faces to de-
termine the e�ciency of the proposed visual privacy
protection tool. In an ideal scenario, a protected face
would be visible as a face but would not be correctly
identified by the recognition algorithm.

2. Morphing based privacy protection

In this section, we describe visual privacy protec-
tion method based on morphing. To demonstrate how
such privacy protection works, we assume face to be
a sensitive region to which the protection is applied.
The following is the summary, illustrated in Figure 1,
of morphing based privacy protection method:

• Automatically select key points in both original
source and target (e.g., a standard human face)
images by using face, eyes, nose, and mouth de-
tections;

• For each pair of the corresponding points in two
images determine some point in between, by using
a given level of interpolation value;

• Divide images using Delaunay triangulation [2]
with determined points as vertices of the triangles;

• Find coordinates of pixels in the final image by
interpolating both source and target images ac-

cording to each corresponding triangle;

• For each pixel in the final image, compute its in-
tensity as a weighted sum of intensities between
corresponding pixels in original source image and
target image. Weights are determined by a given
intensity strength value such as in

If = (1 � wi)Is + wiIt, (1)

where If , Is, It are final morphed, original source,
and target faces respectively, and wi is the inten-
sity strength value.

As can be noticed form the algorithm’s summary
and Figure 1, two main values determine the final mor-
phed face: interpolation level and intensity strength.
Figure 2 demonstrate the e↵ect of di↵erent such values
on the morphed image. When interpolation level and
intensity strength are zero, the resulted face is the same
as the original, but the closer these values are to one,
the more the resulted face looks like the target face. In
our demonstrations and experiment, an average male
face [4] was chosen as the target face, but, in practical
applications, it can be any other face or facial avatar.

In a surveillance scenario, when a protected face
needs to be recovered, an inverse of morphing opera-
tion, termed unmorphing, is applied. For the recovery
of the original source face, the key points and the tar-
get face need to be known. The recovery algorithm is
essentially the same as morphing, instead we simply
estimate a starting face (source) by using known the
‘middle’ (morphed) and the end (target) faces (see 1).

This morphing-based visual privacy protection
method is designed to overcome common shortcomings
of other privacy protection techniques. Since morph-
ing is simply a geometrical transformation of pixels,
with pixels interpolated into weighted sum of known
intensities, it is compression independent, as opposed
to scrambling, while retaining the main features of the
morphed region (such as face), as opposed to encryp-
tion privacy protection methods. Security of the pro-
posed method can be ensured by encrypting the key
points (the vertices of Dalaunay triangles) of the mor-
phing algorithm and randomizing interpolation level
and intensity strength values for each morphed trian-
gle (see Figure 2f for illustration), as we discuss in more
details in Section 2.2.

We use standard FERET dataset [10] (a subset of
100 faces) with provided ground truth for testing the
proposed morphing-based privacy protection. Morph-
ing was applied to faces in the dataset, which were de-
tected with Viola-Jones face detection [12] algorithm.
For vertices of Delaunay triangles, 18 key points were
automatically selected based on the detected eyes (5
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Figure 1: Comparing morphing and GAN-based face swapping techniques.

been proposed [7, 21, 5].
In this paper, we focus on evaluating the vulnerability of face recognition systems to Deepfake videos where real faces

are replaced by GAN-generated images trained on the faces of two people. The resulted synthetic face is essentially a deep
morph of two people. The database was created using the open source software with cyclic GAN model4 (see Figure 1b for
illustration), which is developed from the original autoencoder-based Deepfake algorithm1. We manually selected 16 similar
looking pairs of people from publicly available VidTIMIT database5. For each of 32 subjects, we trained two different models
(see Figure 2 for examples), referred to in the paper as the low quality (LQ) model, with 64 × 64 input/output size, and the
high quality (HQ) model, with 128×128 size. Since there are 10 videos per person in VidTIMIT database, we generated 320
videos corresponding to each version, resulting in total 620 videos with faces swapped. For the audio, we kept the original
audio track of each video, i.e., no manipulation was done to the audio channel.

We assess the vulnerability of face recognition to deep morph videos using two state of the art systems: based on VGG [13]
and Facenet6 [17] neural networks. For detection of the deep morphs, we applied several baseline methods from presentation
attack detection domain, by treating deep morph videos as digital presentation attacks [1], including simple principal com-
ponent analysis (PCA) and linear discriminant analysis (LDA) approaches, and the approach based on image quality metrics
(IQM) and support vector machine (SVM) [4, 20].

To allow researchers to verify, reproduce, and extend our work, we provide the database coined DeepfakeTIMIT of
Deepfake videos7, face recognition and deep morph detection systems with corresponding scores as an open source Python
package 8.

(g) Original 1 (h) Original 2 (i) LQ swap 1 → 2 (j) HQ swap 1 → 2 (k) LQ swap 2 → 1 (l) HQ swap 2 → 1

Figure 2: Screenshot of the original videos from VidTIMIT database and low (LQ) and high quality (HQ) deep morphs.

4https://github.com/shaoanlu/faceswap-GAN
5http://conradsanderson.id.au/vidtimit/
6https://github.com/davidsandberg/facenet
7https://www.idiap.ch/dataset/deepfaketimit
8Source code: https://gitlab.idiap.ch/bob/bob.report.deepfakes
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2. Database of deep morph videos
As the original data, we took video from VidTIMIT database5. The database contains 10 videos for each of 43 subjects,

which were shot in controlled environment with people facing camera and reciting predetermined short phrases. From these
43 subject, we manually selected 16 pairs in such a way that subjects in the same pair have similar prominent visual features,
e.g., mustaches or hair styles. Using GAN-based algorithm based on the available code4, for each pair of subjects, we
generated videos where their faces are replaced by a GAN-generated deep morphs (see the example screenshots in Figure 2).

For each pair of subjects, we have trained two different GAN models and generated two versions of the deep morphs:

1. The low quality (LQ) model has input and output image (facial regions only) of size 64× 64. About 200 frames from
the videos of each subject were used for training and the frames were extracted at 4 fps from the original videos. The
training was done for 10′000 iterations and took about 4 hours per model on Tesla P40 GPU.

2. The high quality (HQ) model has input/output image size of 128 × 128. About 400 frames extracted at 8 fps from
videos were used for training, which was done for 20′000 iterations (about 12 hours on Tesla P40 GPU).

Also, different blending techniques were used when generating deep morph videos using different models. With LQ
model, for each frame from an input video, generator of the GAN model was applied on the face region to generate the fake
counterpart. Then a facial mask was detected using a CNN-based face segmentation algorithm proposed in [12]. Using this
mask, the generated fake face was blended with the face in the target video. For HQ model, the blending was done based
on facial landmarks (detected with publicly available MTCNN model [22]) alignment between generated fake face and the
original face in the target video. Finally, histogram normalization was applied to the blended result to adjust for the lighting
conditions, which makes the result more realistic (see Figure 2).
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Figure 3: Histograms show the vulnerability of VGG and Facenet based face recognition to high quality deep morphs.

2.1. Evaluation protocol

When evaluating vulnerability of face recognition, for the licit scenario without the deep morph videos, we used the
original VidTIMIT5 videos for the 32 subjects for which we have generated corresponding deep morph videos. In this
scenario, we used 2 videos of the subject for enrollment and the other 8 videos as probes, for which we computed the
verification scores.

From the scores, for each possible threshold θ, we computed commonly used metrics for evaluation of classification
systems: false acceptance rate (FAR) and false reject rate (FRR). Threshold at which these FAR and FRR are equal leads to
an equal error rate (EER), which is commonly used as a single value metric of the system performance.

To evaluate vulnerability of face recognition, in tampered scenario, we use deep morph videos (10 for each of 32 subjects)
as probes and compute the corresponding scores using the enrollment model from the licit scenario. To understand if face
recognition perceives deep morphs to be similar to the genuine original videos, we report the FAR metric computed using
EER threshold θ from licit scenario. If FAR value for deep morph videos is significantly higher than the one computed in licit
scenario, it means the face recognition system cannot distinguish synthetic videos from originals and is therefore vulnerable
to deep morphs.



Table 1: Baseline detection systems for low (LQ) and high quality (HQ) deep morph videos. EER and FRR when FAR equal
to 10% are computed on Test set.

Database Detection system EER (%) FRR@FAR10% (%)

Pixels+PCA+LDA 39.48 78.10

LQ deep morph IQM+PCA+LDA 20.52 66.67

IQM+SVM 3.33 0.95

HQ deep morph IQM+SVM 8.97 9.05

When evaluating deep morph detection, we consider it as a binary classification problem and evaluate the ability of
detection approaches to distinguish original videos from deep morph videos. All videos in the dataset, including genuine
and fake parts, were split into training (Train) and evaluation (Test) subsets. To avoid bias during training and testing, we
arranged that the same subject would not appear in both sets. We did not introduce a development set, which is typically used
to tune hyper parameters such as threshold, because the dataset is not large enough. Therefore, for deep morph detection
system, we report the EER and the FRR (using the threshold when FAR = 10%) values on the Test set.

3. Vulnerability of face recognition
We used publicly available pre-trained VGG and Facenet architectures for face recognition. We used the fc7 and bottleneck

layers of these networks, respectively, as features and used cosine distance as a classifier. For a given test face, the confidence
score of whether it belongs to a pre-enrolled model of a person is the cosine distance between the average feature vector,
i.e., model, and the features vector of a test face. Both of these systems are state of the art recognition systems with VGG of
98.95% [13] and Facenet of 99.63% [17] accuracies on labeled faces in the wild (LFW) dataset.

We conducted the vulnerability analysis of VGG and Facenet-based face recognition systems on low quality (LQ) and
high quality (HQ) face swaps in VidTIMIT5 database. In a licit scenario when only original videos are present, both systems
performed very well, with EER value of 0.03% for VGG and 0.00% for Facenet-based system. Using the EER threshold from
licit scenario, we computed FAR value for the scenario when deep morph videos are used as probes. In this case, for VGG
the FAR is 88.75% on LQ deep morphs and 85.62% on HQ deep morphs, and for Facenet the FAR is 94.38% and 95.00%
on LQ and HQ deep morphs respectively. To illustrate this vulnerability, we plot the score histograms for high quality deep
morph videos in Figure 3. The histograms show a considerable overlap between deep morph and genuine scores with clear
separation from the zero-effort impostor scores (the probes from licit scenario).

From the results, it is clear that both VGG and Facenet based systems cannot effectively distinguish GAN-generated
synthetic faces from the original ones. The fact that more advanced Facenet system is more vulnerable is also consistent with
the findings about presentation attacks [11].

4. Detection of deep morph videos
We considered several baseline deep morph detection systems:

• Pixels+PCA+LDA: use raw faces as features with PCA-LDA classifier, with 99% retained variance resulting in 446
dimensions of transform matrix.

• IQM+PCA+LDA: IQM features with PCA-LDA classifier with 95% retained variance resulting in 2 dimensions of
transform matrix.

• IQM+SVM: IQM features with SVM classifier, each video has an averaged score from 20 frames.

The systems based on image quality measures (IQM) are borrowed from the domain of presentation (including replay
attacks) attack detection, where such systems have shown good performance [4, 20]. As IQM feature vector, we used 129
measures of image quality, which include such measures like signal to noise ratio, specularity, bluriness, etc., by combining
the features from [4] and [20].

The results for all detection systems are presented in Table 1. The results demonstrate that the IQM+SVM system has a
reasonably high accuracy of detecting deep morph videos, although videos generated with HQ model pose a more serious
challenge. It means that a more advanced techniques for face swapping will be even more challenging to detect.



5. Conclusion
In this paper, we demonstrated that state of the art VGG and Facenet-based face recognition algorithms are vulnerable

to the deep morphed videos from DeepfaTIMIT database and fail to distinguish such videos from the original ones with up
to 95.00% equal error rate. We also evaluated several baseline detection algorithms and found that the techniques based on
image quality measures with SVM classifier can detect HQ deep morph videos with 8.97% equal error rate.

However, the continued advancements in development of GAN-generated faces will result in more challenging videos,
which will be harder to detect by the existing algorithms. Therefore, new databases and new more generic detection methods
need to be developed in the future.
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[15] A. Rössler, D. Cozzolino, L. Verdoliva, C. Riess, J. Thies, and M. Nießner. Faceforensics: A large-scale video dataset for forgery

detection in human faces. arXiv.org, 2018.
[16] U. Scherhag, C. Rathgeb, J. Merkle, R. Breithaupt, and C. Busch. Face recognition systems under morphing attacks: A survey. IEEE

Access, 7:23012–23026, Feb. 2019.
[17] F. Schroff, D. Kalenichenko, and J. Philbin. FaceNet: A unified embedding for face recognition and clustering. In IEEE Conference

on Computer Vision and Pattern Recognition (CVPR), pages 815–823, June 2015.
[18] C. Seibold, W. Samek, A. Hilsmann, and P. Eisert. Detection of face morphing attacks by deep learning. In C. Kraetzer, Y.-Q.

Shi, J. Dittmann, and H. J. Kim, editors, Digital Forensics and Watermarking, pages 107–120, Cham, 2017. Springer International
Publishing.

[19] J. Thies, M. Zollhfer, M. Stamminger, C. Theobalt, and M. Niener. Face2Face: Real-time face capture and reenactment of RGB
videos. In IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pages 2387–2395, June 2016.

[20] D. Wen, H. Han, and A. K. Jain. Face spoof detection with image distortion analysis. IEEE Transactions on Information Forensics
and Security, 10(4):746–761, April 2015.

[21] X. Yang, Y. Li, and S. Lyu. Exposing deep fakes using inconsistent head poses. In IEEE International Conference on Acoustics,
Speech and Signal Processing (ICASSP), pages 8261–8265, May 2019.

[22] K. Zhang, Z. Zhang, Z. Li, and Y. Qiao. Joint face detection and alignment using multitask cascaded convolutional networks. IEEE
Signal Processing Letters, 23(10):1499–1503, Oct 2016.


