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Abstract

We propose the Recursive Non-autoregressive

Graph-to-Graph Transformer architecture

(RNGTr) for the iterative refinement of arbi-

trary graphs through the recursive application

of a non-autoregressive Graph-to-Graph Trans-

former and apply it to syntactic dependency

parsing. We demonstrate the power and effec-

tiveness of RNGTr on several dependency

corpora, using a refinement model pre-trained

with BERT. We also introduce Syntactic

Transformer (SynTr), a non-recursive parser

similar to our refinement model. RNGTr can

improve the accuracy of a variety of initial

parsers on 13 languages from the Universal

Dependencies Treebanks, English and Chinese

Penn Treebanks, and the German CoNLL2009

corpus, even improving over the new state-of-

the-art results achieved by SynTr, significantly

improving the state-of-the-art for all corpora

tested.

1 Introduction

Self-attention models, such as Transformer

(Vaswani et al., 2017), have been hugely suc-

cessful in a wide range of natural language pro-

cessing (NLP) tasks, especially when combined

with language-model pre-training, such as BERT

(Devlin et al., 2019). These architectures contain

a stack of self-attention layers that can capture

long-range dependencies over the input sequence,

while still representing its sequential order using

absolute position encodings. Alternatively, Shaw

et al. (2018) propose to define sequential order

with relative position encodings, which are input

to the self-attention functions.

Recently, Mohammadshahi and Henderson

(2020) extended this sequence input method to the

input of arbitrary graph relations via the self-

attention mechanism, and combined it with an

attention-like function for graph relation predic-

tion, resulting in their proposed Graph-to-Graph

Transformer architecture (G2GTr). They demon-

strated the effectiveness of G2GTr for transition-

based dependency parsing and its compatibility

with pre-trained BERT (Devlin et al., 2019). This

parsing model predicts one edge of the parse graph

at a time, conditioning on the graph of previous

edges, so it is an autoregressive model.

The G2GTr architecture could be used to

predict all the edges of a graph in parallel, but

such predictions are non-autoregressive. They

thus cannot fully model the interactions between

edges. For sequence prediction, this problem has

been addressed with non-autoregressive iterative

refinement (Novak et al., 2016; Lee et al., 2018;

Awasthi et al., 2019; Lichtarge et al., 2018).

Interactions between different positions in the

string are modeled by conditioning on a previous

version of the same string.

In this paper, we propose a new graph prediction

architecture that takes advantage of the full graph-

to-graph functionality of G2GTr to apply a G2GTr

model to refine the output graph recursively. This

architecture predicts all edges of the graph in

parallel, and is therefore non-autoregressive, but

can still capture any between-edge dependency by

conditioning on the previous version of the graph,

like an auto-regressive model.

This proposed Recursive Non-autoregressive

Graph-to-Graph Transformer (RNGTr) architec-

ture has three components. First, an initialization

model computes an initial graph, which can be

any given model for the task, even a trivial one.

Second, a G2GTr model takes the previous graph

as input and predicts each edge of the target graph.

Third, a decoding algorithm finds the best graph

given these edge predictions. The second and third

components are applied recursively to do iterative

refinement of the output graph until some stop-

ping criterion is met. The final output graph is the

graph output by the final decoding step.

The RNG Transformer architecture can be

applied to any task with a sequence or graph as
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input and a graph over the same set of nodes as

output. We evaluate RNGTr on syntactic depen-

dency parsing because it is a difficult structured

prediction task, state-of-the-art initial parsers

are extremely competitive, and there is little

previous evidence that non-autoregressive models

(as in graph-based dependency parsers) are not

sufficient for this task. We aim to show that

capturing correlations between dependencies with

non-autoregressive iterative refinement results in

improvements, even in the challenging case of

state-of-the-art dependency parsers.

The evaluation demonstrates improvements

with several initial parsers, including previous

state-of-the-art dependency parsers, and the empty

parse. We also introduce a strong Transformer-

based dependency parser pre-trained with BERT

(Devlin et al., 2019), called Syntactic Transformer

(SynTr), using it both for our initial parser and as

the basis of our refinement model. Results on

13 languages from the Universal Dependencies

Treebanks (Nivre et al., 2018), English and

Chinese Penn Treebanks (Marcus et al., 1993;

Xue et al., 2002), and the German CoNLL 2009

corpus (Hajič et al., 2009) show significant im-

provements over all initial parsers and the state-

of-the-art.1

In this paper, we make the following

contributions:

• We propose a novel architecture for the

iterative refinement of arbitrary graphs

(RNGTr) that combines non-autoregressive

edge prediction with conditioning on the

complete graph.

• We propose a RNGTr model of syntactic

dependency parsing.

• We demonstrate significant improvements

over the previous state-of-the-art dependency

parsing results on Universal Dependency

Treebanks, Penn Treebanks, and the German

CoNLL 2009 corpus.

2 Dependency Parsing

Syntactic dependency parsing is a critical com-

ponent in a variety of natural language under-

standing tasks, such as semantic role labeling

(Marcheggiani and Titov, 2017), machine transla-

1Our implementation is available at: https://github

.com/idiap/g2g-transformer.

tion (Chen et al., 2017), relation extraction (Zhang

et al., 2018), and natural language interfaces

(Pang et al., 2019). There are several approaches

to compute the dependency tree. Transition-based

parsers predict the dependency graph one edge

at a time through a sequence of parsing actions

(Yamada and Matsumoto, 2003; Nivre and Scholz,

2004; Titov and Henderson, 2007; Zhang and

Nivre, 2011). As in our approach, transformation-

based (Satta and Brill, 1996) and corrective

modeling parsers use various methods (e.g.,

Knight and Graehl, 2005; Hall and Novák, 2005;

Attardi and Ciaramita, 2007; Hennig and Köhn,

2017; Zheng, 2017) to correct an initial parse. We

take a graph-based approach to this correction.

Graph-based parsers (Eisner, 1996; McDonald

et al., 2005a; Koo and Collins, 2010) compute

scores for every possible dependency edge

and then apply a decoding algorithm to find

the highest scoring total tree. Typically, neural

graph-based models consist of two components:

an encoder that learns context-dependent vector

representations for the nodes of the dependency

graph, and a decoder that computes the depen-

dency scores for each pair of nodes and then

applies a decoding algorithm to find the highest-

scoring dependency tree.

There are several approaches to capture corre-

lations between dependency edges in graph-based

models. In first-order models, such as Maximum

Spanning Tree (MST) (Edmonds, 1967; Chu and

Liu, 1965; McDonald et al., 2005b), the score

for an edge must be computed without being sure

what other edges the model will choose. The model

itself only imposes the discrete tree constraint

between edges. Higher-order models (McDonald

and Pereira, 2006; Carreras, 2007; Koo and

Collins, 2010; Ma and Zhao, 2012; Zhang and

McDonald, 2012; Tchernowitz et al., 2016) keep

some between-edge information, but require more

decoding time.

In this paper, we apply first-order models,

specifically the MST algorithm, and show that

it is possible to keep correlations between edges

without increasing the time complexity by recur-

sively conditioning each edge score on a previous

prediction of the complete dependency graph.

3 RNG Transformer

The RNG Transformer architecture is illustrated

in Figure 1, in this case, applied to dependency
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Figure 1: The Recursive Non-autoregressive Graph-to-

Graph Transformer architecture.

parsing. The input to a RNGTr model specifies

the input nodes W = (w1, w2, . . . , wN ) (e.g., a

sentence), and the output is the final graph GT

(e.g., a parse tree) over this set of nodes. The first

step is to compute an initial graph of G0 over W ,

which can be done with any model. Then each

recursive iteration takes the previous graph Gt−1

as input and predicts a new graph Gt.

The RNGTr model predicts Gt with a

novel version of a Graph-to-Graph Transformer

(Mohammadshahi and Henderson, 2020). Unlike

in the work of Mohammadshahi and Henderson

(2020), this G2GTr model predicts every edge of

the graph in a single non-autoregressive step. As

previously, the G2GTr first encodes the input

graph Gt−1 in a set of contextualized vector

representations Z = (z1, z2, . . . , zN ), with one

vector for each node of the graph. The decoder

component then predicts the output graph Gt by

first computing scores for each possible edge

between each pair of nodes and then applying a

decoding algorithm to output the highest-scoring

complete graph.

The RNGTr model can be formalized in terms

of an encoder ERNG and a decoder DRNG:

{

Zt = ERNG(W,P,Gt−1)

Gt = DRNG(Zt)
t = 1, . . . , T (1)

where W = (w1, w2, , . . . , wN ) is the input

sequence of tokens, P = (p1, p2, , . . . , pN ) is

their associated properties, and T is the number of

refinement iterations.

In the case of dependency parsing, W are the

words and symbols, P are their part-of-speech

tags, and the predicted graph at iteration t is

specified as:

Gt = {(i, j, l), j = 3, . . . , N−1}
where 2 ≤ i ≤ N−1, l ∈ L

(2)

Each word wj has one head (parent) wi with

dependency label l from the label set L, where

the parent can also be the ROOT symbol w2 (see

Section 3.1.1).

The following sections describe in more detail

each element of the proposed RNGTr dependency

parsing model.

3.1 Encoder

To compute the embeddings Zt for the nodes of

the graph, we use the Graph-to-Graph Transformer

architecture proposed by Mohammadshahi and

Henderson (2020), including a similar mechanism

to input the previously predicted dependency

graphGt−1 to the attention mechanism. This graph

input allows the node embeddings to include both

token-level and relation-level information.

3.1.1 Input Embeddings

The RNGTr model receives a sequence of input

tokens (W ) with their associated properties (P )

and builds a sequence of input embeddings

(X). For compatibility with BERT’s input token

representation (Devlin et al., 2019), the sequence

of input tokens starts with CLS and ends with

SEP symbols. For dependency parsing, it also

adds the ROOT symbol to the front of the sentence

to represent the root of the dependency tree. To

build token representation for a sequence of input

tokens, we sum several vectors. For the input

words and symbols, we sum the token embeddings

of a pre-trained BERT model EMB(wi), and

learned representations EMB(pi) of their Part-of-

Speech tags pi. To keep the order information
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of the initial sequence, we add the position

embeddings of pre-trained BERT Fi to our token

embeddings. The final input representations are

the sum of the position embeddings and the token

embeddings:

xi = Fi +EMB(wi) +EMB(pi), i = 1, 2, ..., N
(3)

3.1.2 Self-Attention Mechanism

Conditioning on the previously predicted output

graph Gt−1 is made possible by inputting relation

embeddings to the self-attention mechanism. This

edge input method was initially proposed by

Shaw et al. (2018) for relative position encoding,

and extending to unlabeled dependency graphs

in the Graph-to-Graph Transformer architecture

of Mohammadshahi and Henderson (2020). We

use it to input labeled dependency graphs, by

adding relation label embeddings to both the value

function and the attention weight function.

Transformers have multiple layers of self-

attention, each with multiple heads. The RNGTr

architecture uses the same architecture as

BERT (Devlin et al., 2019) but changes the

functions used by each attention head. Given the

token embeddings X at the previous layer and

the input graph Gt−1, the values A=(a1, . . . , aN )
computed by an attention head are:

ai =
∑

j

αij(xjW
V + rt−1ij W

L
2
) (4)

where rt−1ij is a one-hot vector that represents

the labeled dependency relation between i and

j in the graph Gt−1. As shown in the matrix in

Figure 2, each rt−1ij specifies both the label and

the direction of the relation (idlabel for i → j

versus idlabel + |L| for i ← j, where |L| is

the number of dependency labels), or specifies

NONE (as 0). WL
2
∈ R(2|L|+1)×d are the learned

relation embeddings. The attention weights αij

are a Softmax applied to the attention function:

αij =
exp(eij)

∑

exp(eij)

eij =
(xiW

Q)(xjW
K + LN(rt−1ij W

L
1
))

√
d

(5)

where W
L
1
∈ R(2|L|+1)×d are different learned

relation embeddings. LN(·) is the layer normal-

ization function, used for better convergence.

Figure 2: Example of inputting dependency graph to

the self-attention mechanism.

Equations (4) and (5) constitute the mechanism

by which each iteration of refinement can con-

dition on the previous graph. Instead of the more

common approach of hard-coding some attention

heads to represent a relation (e.g., Ji et al., 2019),

all attention heads can learn for themselves how

to use the information about relations.

3.2 Decoder

The decoder uses the token embeddings Zt pro-

duced by the encoder to predict the new graph Gt.

It consists of two components, a scoring function,

and a decoding algorithm. The graph found by

the decoding algorithm is the output graph Gt

of the decoder. Here we propose components for

dependency parsing.

3.2.1 Scoring Function

We first produce four distinct vectors for each

token embedding zti from the encoder by passing

it through four feed-forward layers.

z
t,(arc−dep)
i = MLP(arc−dep)(zti)

z
t,(arc−head)
i = MLP(arc−head)(zti)

z
t,(rel−dep)
i = MLP(rel−dep)(zti)

z
t,(rel−head)
i = MLP(rel−head)(zti)

(6)
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where the MLPs are all one-layer feed-forward

networks with LeakyReLU activation functions.

These token embeddings are used to compute

probabilities for every possible dependency re-

lation, both unlabeled and labeled, similarly to

Dozat and Manning (2016). The distribution of the

unlabeled dependency graph is estimated using,

for each token i, a biaffine classifier over possible

heads j applied to z
t,(arc−dep)
i and z

t,(arc−head)
j .

Then for each pair i, j, the distribution over

labels given an unlabeled dependency relation

is estimated using a biaffine classifier applied to

z
t,(rel−dep)
i and z

t,(rel−head)
j .

3.2.2 Decoding Algorithms

The scoring function estimates a distribution over

graphs, but the RNGTr architecture requires the

decoder to output a single graph Gt. Choosing this

graph is complicated by the fact that the scoring

function is non-autoregressive. Thus the estimate

consists of multiple independent components, and

there is no guarantee that every graph in this

distribution is a valid dependency graph.

We take two approaches to this problem, one

for intermediate parses Gt and one for the final

dependency parse GT . To speed up each refine-

ment iteration, we ignore this problem for inter-

mediate dependency graphs. We build these

graphs by simply applying argmax independently

to find the head of each node. This may result

in graphs with loops, which are not trees,

but this does not seem to cause problems for

later refinement iterations.2 For the final output

dependency tree, we use the maximum spanning

tree algorithm, specifically the Chu-Liu/Edmonds

algorithm (Chi, 1999; Edmonds, 1967), to find

the highest scoring valid dependency tree. This

is necessary to avoid problems when running the

evaluation scripts. The asymptotic complexity of

the full model is determined by the complexity of

this algorithm.3

3.3 Training

The RNG Transformer model is trained separately

on each refinement iteration. Standard gradient

2We leave to future work the investigation of different

decoding strategies that keep both speed and well-formedness

for the intermediate predicted graphs.
3The Tarjan variation (Karger et al., 1995) of the Chu-Liu

/Edmonds algorithm computes the highest-scoring tree in

O(n2) for dense graphs, which is the case here.

descent techniques are used, with cross-entropy

loss for each edge prediction. Error is not

backpropagated across iterations of refinement,

because no continuous values are being passed

from one iteration to another, only a discrete

dependency tree.

Stopping Criterion: In the RNG Transformer

architecture, the refinement of the predicted graph

can be done an arbitrary number of times, since

the same encoder and decoder parameters are

used at each iteration. In the experiments below,

we place a limit on the maximum number of

iterations. But sometimes the model converges

to an output graph before this limit is reached,

simply copying this graph during later iterations.

During training, to avoid multiple iterations where

the model is trained to simply copy the input

graph, the refinement iterations are stopped if

the new predicted dependency graph is the same

as the input graph. At test time, we also stop

computation in this case, but the output of the

model is not affected.

4 Initial Parsers

The RNGTr architecture requires a graph G0 to

initialize the iterative refinement. We consider

several initial parsers to produce this graph. To

leverage previous work on dependency parsing

and provide a controlled comparison to the state-

of-the-art, we use parsing models from the recent

literature as both baselines and initial parsers. To

evaluate the importance of the initial parse, we

also consider a setting where the initial parse is

empty, so the first complete dependency tree is

predicted by the RNGTr model itself. Finally, the

success of our RNGTr dependency parsing model

leads us to propose an initial parsing model with

the same design, so that we can control for the

parser design in measuring the importance of the

RNG Transformer’s iterative refinement.

SynTr model We call this initial parser the

Syntactic Transformer (SynTr) model. It is the

same as one iteration of the RNGTr model shown

in Figure 1 and defined in Section 3, except that

there is no graph input to the encoder. Analogously

to (1), G0 is computed as:

{

Z0 = ESYNTR(W,P )

G0 = DSYNTR(Z0)
(7)
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where ESYNTR and DSYNTR are the SynTr encoder

and decoder, respectively. For the encoder, we use

the Transformer architecture of BERT (Devlin

et al., 2019) and initialize with pre-trained para-

meters of BERT. The token embeddings of the

final layer are used for Z0. For the decoder, we

use the same scoring function as described in

Section 3.2, and apply the Chu-Liu/Edmonds de-

coding algorithm (Chi, 1999; Edmonds, 1967) to

find the highest scoring tree.

This SynTr parsing model is very similar to the

UDify parsing model proposed by Kondratyuk

and Straka (2019). One difference that seems to

be important for the results reported in Section 6.2

is in the way BERT token segmentation is

handled. When BERT segments a word into sub-

words, UDify seems only to encode the first

segment, whereas SynTr encodes all segments

and only decodes with the first segment, as

discussed in Section 5.3. Also, UDify decodes

with an attention-based mixture of encoder layers,

whereas SynTr only uses the last layer.

5 Experimental Setup

5.1 Datasets

To evaluate our models, we apply them on several

kinds of datasets, namely, Universal Dependency

(UD) Treebanks, Penn Treebanks, and the German

CoNLL 2009 Treebank. For our evaluation on

UD Treebanks (UD v2.3) (Nivre et al., 2018), we

select languages based on the criteria proposed in

de Lhoneux et al. (2017), and adapted by Smith

et al. (2018). This set contains several languages

with different language families, scripts, character

set sizes, morphological complexity, and training

sizes and domains. For our evaluation of Penn

Treebanks, we use the English and Chinese Penn

Treebanks (Marcus et al., 1993; Xue et al., 2002).

For English, we use the same setting as defined

in Mohammadshahi and Henderson (2020). For

Chinese, we apply the same setup as described

in Chen and Manning (2014), including the use

of gold PoS tags. For our evaluation on the

German Treebank of the CoNLL 2009 shared

task (Hajič et al., 2009), we apply the same setup

as defined in Kuncoro et al. (2016). Following

Hajič et al. (2009); Nivre et al. (2018), we keep

punctuation for evaluation on the UD Treebanks

and the German corpus and remove it for the Penn

Treebanks (Nilsson and Nivre, 2008).

5.2 Baseline Models

For UD Treebanks, we compare to several baseline

parsing models. We use the monolingual parser

proposed by Kulmizev et al. (2019), which uses

BERT (Devlin et al., 2019) and ELMo (Peters

et al., 2018) embeddings as additional input

features. In addition, we compare to the multilin-

gual multitask models proposed by Kondratyuk

and Straka (2019) and Straka (2018). UDify

(Kondratyuk and Straka, 2019) is a multilingual

multitask model. UDPipe (Straka, 2018) is one of

the winners of CoNLL 2018 Shared Task (Zeman

et al., 2018). For a fair comparison, we report the

scores of UDPipe from Kondratyuk and Straka

(2019) using gold segmentation. UDify is on

average the best performing of these baseline

models, so we use it as one of our initial parsers

in the RNGTr model.

For Penn Treebanks and the German CoNLL

2009 corpus, we compare our models with pre-

vious state-of-the-art transition-based, and graph-

based models, including the biaffine parser (Dozat

and Manning, 2016), which includes the same

decoder as our model. We also use the biaffine

parser as an initial parser for the RNGTr model.

5.3 Implementation Details

The encoder is initialized with pre-trained BERT

(Devlin et al., 2019) models with 12 self-attention

layers. All hyper-parameters are provided in

Appendix A.

Since the wordpiece tokenizer (Wu et al., 2016)

of BERT differs from that used in the dependency

corpora, we apply the BERT tokenizer to each

corpus word and input all the resulting sub-words

to the encoder. For the input of dependency

relations, each dependency between two words

is specified as a relationship between their first

sub-words. We also input a new relationship

between each non-first sub-word and its associated

first sub-word as its head. For the prediction of

dependency relations, only the encoder embedding

of the first sub-word of each word is used by the

decoder.4 The decoder predicts each dependency

as a relation between the first sub-words of

the corresponding words. Finally, for proper

evaluation, we map the predicted sub-word heads

4 In preliminary experiments, we found that predicting

dependencies using the first sub-words achieves better or

similar results compared to using the last sub-word or all

sub-words of each word.
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and dependents to their original word positions in

the corpus.

6 Results and Discussion

After some initial experiments to determine the

maximum number of refinement iterations, we

report the performance of the RNG Transformer

model on the UD Treebanks, Penn Treebanks,

and German CoNLL 2009 Treebank.5 The

RNGTr models perform substantially better than

previously proposed models on every dataset, and

RNGTr refinement improves over its initial parser

for almost every dataset. We also perform various

analyses to understand these results better.

6.1 The Number of Refinement Iterations

Before conducting a large number of experiments,

we investigate how many iterations of refinement

are useful, given the computational costs of

additional iterations. We evaluate different

variations of our RNG Transformer model on

the Turkish Treebank (Table 1).6 We use both

SynTr and UDify as initial parsers. The SynTr

model significantly outperforms the UDify model,

so the errors are harder to correct by adding the

RNGTr model (2.67% for SynTr versus 15.01%

for UDify of relative error reduction in LAS

after integration). In both cases, three iterations

of refinement achieve more improvement than

one iteration, but not by a large enough margin

to suggest the need for additional iterations. The

further analysis reported in Section 6.5 supports

the conclusion that, in general, an additional

iteration would neither help nor hurt accuracy.

The results in Table 1 also show that it is

better to include the stopping strategy described

in Section 3.3. In subsequent experiments, we

use three refinement iterations with the stopping

strategy, unless mentioned otherwise.

6.2 UD Treebank Results

Results for the UD treebanks are reported in

Table 2. We compare our models with previous

5The number of parameters and run times of each model

on the UD and Penn Treebanks are provided in Appendix B.
6We choose the Turkish Treebank because it is a low-

resource Treebank and there are more errors in the initial

parse for RNGTr to correct.

Model UAS LAS

SynTr 75.62 70.04

SynTr+RNGTr (T=1) 76.37 70.67

SynTr+RNGTr (T=3) w/o stop 76.33 70.61

SynTr+RNGTr (T=3) 76.29 70.84

UDify (Kondratyuk and Straka, 2019) 72.78 65.48

UDify+RNGTr (T=1) 74.13 68.60

UDify+RNGTr (T=3) w/o stop 75.68 70.32

UDify+RNGTr (T=3) 75.91 70.66

Table 1: Dependency parsing scores for different

variations of the RNG Transformer model on the

development set of UD Turkish Treebank (IMST).

state-of-the-art results (both trained mono-

lingually and multilingually), based on labeled

attachment score.7

The results with RNGTr refinement demon-

strate the effectiveness of the RNGTr model

at refining an initial dependency graph. First,

the UDify+RNGTr model achieves significantly

better LAS performance than the UDify model

in all languages. Second, although the SynTr

model significantly outperforms previous state-

of-the-art models on all these UD Treebanks,8 the

SynTr+RNGTr model achieves further significant

improvement over SynTr in four languages, and

no significant degradation in any language. Of

the nine languages where there is no significant

difference between SynTr and SynTr+RNGTr for

the given test sets, RNGTr refinement results in

higher LAS in eight languages and lower LAS in

only one (Russian).

The improvement of SynTr+RNGTr over

SynTr is particularly interesting because it is

a controlled demonstration of the effectiveness

of the graph refinement method of RNGTr. The

only difference between the SynTr model and

the final iteration of the SynTr+RNGTr model

is the graph inputs from the previous iteration

(Equations (7) versus (1)). By conditioning on

the full dependency graph, the SynTr+RNGTr

7Unlabeled attachment scores are provided in

Appendix C. All results are computed with the official

CoNLL 2018 shared task evaluation script (https://

universaldependencies.org/conll18/evaluation

.html).
8In particular, SynTr significantly outperforms UDify,

even though they are very similar models. In addition to

the model differences discussed in Section 4, there are some

differences in the way UDify and SynTr models are trained

that might explain this improvement, in particular, that

UDify is a multilingual multitask model, whereas SynTr is

a monolingual single-task model.

126

D
ow

nloaded from
 http://direct.m

it.edu/tacl/article-pdf/doi/10.1162/tacl_a_00358/1924163/tacl_a_00358.pdf by guest on 13 D
ecem

ber 2021

https://universaldependencies.org/conll18/evaluation.html
https://universaldependencies.org/conll18/evaluation.html
https://universaldependencies.org/conll18/evaluation.html


Language
Train Mono Multi Multi Multi+Mono Mono Mono Mono

Size [1] UDPipe UDify UDify+RNGTr SynTr SynTr+RNGTr Empty+RNGTr

Arabic 6.1K 81.8 82.94 82.88 85.93 (+17.81%) 86.23 86.31 (+0.58%) 86.05

Basque 5.4K 79.8 82.86 80.97 87.55 (+34.57%) 87.49 88.2 (+5.68%) 87.96

Chinese 4K 83.4 80.5 83.75 89.05 (+32.62%) 89.53 90.48 (+9.08%) 89.82

English 12.5K 87.6 86.97 88.5 91.23 (+23.74%) 91.41 91.52 (+1.28%) 91.23

Finnish 12.2K 83.9 87.46 82.03 91.87 (+54.76%) 91.80 91.92 (+1.46%) 91.78

Hebrew 5.2K 85.9 86.86 88.11 90.80 (+22.62%) 91.07 91.32 (+2.79%) 90.56

Hindi 13.3K 90.8 91.83 91.46 93.94 (+29.04%) 93.95 94.21 (+4.3%) 93.97

Italian 13.1K 91.7 91.54 93.69 94.65 (+15.21%) 95.08 95.16 (+1.62%) 94.96

Japanese 7.1K 92.1 93.73 92.08 95.41 (+42.06%) 95.66 95.71 (+1.16%) 95.56

Korean 4.4K 84.2 84.24 74.26 89.12 (+57.73%) 89.29 89.45 (+1.5%) 89.1

Russian 48.8K 91.0 92.32 93.13 94.51 (+20.09%) 94.60 94.47 (−2.4%) 94.31

Swedish 4.3K 86.9 86.61 89.03 92.02 (+27.26%) 92.03 92.46 (+5.4%) 92.40

Turkish 3.7K 64.9 67.56 67.44 72.07 (+14.22%) 72.52 73.08 (+2.04%) 71.99

Average − 84.9 85.81 85.18 89.86 90.05 90.33 89.98

Table 2: Labeled attachment scores on UD Treebanks for monolingual ([1] (Kulmizev et al., 2019)

and SynTr) and multilingual (UDPipe (Straka, 2018) and UDify (Kondratyuk and Straka, 2019))

baselines, and the refined models (+RNGTr) pre-trained with BERT (Devlin et al., 2019). The relative

error reduction from RNGTr refinement is shown in parentheses. Bold scores are not significantly

different from the best score in that row (with α = 0.01).

model’s final RNGTr iteration can capture any

kind of correlation in the dependency graph,

including both global and between-edge corre-

lations both locally and over long distances. This

result also further demonstrates the generality

and effectiveness of the G2GTr architecture for

conditioning on graphs (Equations (4) and (5)).

As expected, we get more improvement when

combining the RNGTr model with UDify, because

UDify’s initial dependency graph contains more

incorrect dependency relations for RNGTr to

correct. But after refinement, there is surprisingly

little difference between the performance of

the UDify+RNGTr and SynTr+RNGTr models,

suggesting that RNGTr is powerful enough to

correct any initial parse. To investigate the power

of the RNGTr architecture to correct any initial

parse, we also show results for a model with

an empty initial parse, Empty+RNGTr. For this

model, we run four iterations of refinement

(T=4), so that the amount of computation is the

same as for SynTr+RNGTr. The Empty+RNGTr

model achieves competitive results with the

UDify+RNGTr model (i.e., above the previous

state-of-the-art), and close to the results for

SynTr+RNGTr. This accuracy is achieved despite

the fact that the Empty+RNGTr model has

half as many parameters as the UDify+RNGtr

model and the SynTr+RNGTr model since it has

no separate initial parser. These Empty+RNGTr

results indicate that RNGTr architecture is a very

powerful method for graph refinement.

6.3 Penn Treebank and German

Corpus Results

UAS and LAS results for the Penn Treebanks, and

the German CoNLL 2009 Treebank are reported

in Table 3. We compare to the results of previous

state-of-the-art models and SynTr, and we use

the RNGTr model to refine both the biaffine

parser (Dozat and Manning, 2016) and SynTr, on

all Treebanks.9

Again, the SynTr model significantly outper-

forms previous state-of-the-art models, with a

5.78%, 9.15%, and 23.7% LAS relative error

reduction in English, Chinese, and German,

respectively. Despite this level of accuracy, adding

RNGTr refinement improves accuracy further

under both UAS and LAS. For the Chinese

Treebank, this improvement is significant, with a

5.46% LAS relative error reduction. When RNGTr

refinement is applied to the output of the biaffine

parser (Dozat and Manning, 2016), it achieves

a LAS relative error reduction of 10.64% for

9Results are calculated with the official evaluation script:

(https://depparse.uvt.nl/). For German, we use

https://ufal.mff.cuni.cz/conll2009-st/eval

-data.html.
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Model
English (PTB) Chinese (CTB) German (CoNLL)

Type UAS LAS UAS LAS UAS LAS

Chen and Manning (2014) T 91.8 89.6 83.9 82.4 − −
Dyer et al. (2015) T 93.1 90.9 87.2 85.7 − −
Ballesteros et al. (2016) T 93.56 91.42 87.65 86.21 88.83 86.10

Cross and Huang (2016) T 93.42 91.36 86.35 85.71 − −
Weiss et al. (2015) T 94.26 92.41 − − − −
Andor et al. (2016) T 94.61 92.79 − − 90.91 89.15

Mohammadshahi and Henderson (2020) T 96.11 94.33 − − − −
Ma et al. (2018) T 95.87 94.19 90.59 89.29 93.65 92.11

Fernández-González and Gómez-Rodrı́guez (2019) T 96.04 94.43 − − − −
Kiperwasser and Goldberg (2016) G 93.1 91.0 86.6 85.1 − −
Wang and Chang (2016) G 94.08 91.82 87.55 86.23 − −
Cheng et al. (2016) G 94.10 91.49 88.1 85.7 − −
Kuncoro et al. (2016) G 94.26 92.06 88.87 87.30 91.60 89.24

Ma and Hovy (2017) G 94.88 92.98 89.05 87.74 92.58 90.54

Ji et al. (2019) G 95.97 94.31 − − − −
Li et al. (2020)+ELMo G 96.37 94.57 90.51 89.45 − −
Li et al. (2020)+BERT G 96.44 94.63 90.89 89.73 − −
Biaffine (Dozat and Manning, 2016) G 95.74 94.08 89.30 88.23 93.46 91.44

Biaffine+RNGTr G 96.44 94.71 91.85 90.12 94.68 93.30

SynTr G 96.60 94.94 92.42 90.67 95.11 93.98

SynTr+RNGTr G 96.66 95.01 92.98 91.18 95.28 94.02

Table 3: Comparison of our models to previous state-of-the-art models on English (PTB) and Chinese

(CTB5.1) Penn Treebanks, and German CoNLL 2009 shared task treebank. ‘‘T’’ and ‘‘G’’ specify

‘‘Transition-based’’ and ‘‘Graph-based’’ models. Bold scores are not significantly different from the

best score in that column (with α = 0.01).

Figure 3: Error analysis, on the concatenation of UD Treebanks, of initial parsers (UDify and SynTr), their

integration with the RNGTr model, and the Empty+RNGTr model.

the English Treebank, 16.05% for the Chinese

Treebank, and 27.72% for the German Treebank.

These improvements, even over such strong initial

parsers, again demonstrate the effectiveness of the

RNGTr architecture for graph refinement.

6.4 Error Analysis

To better understand the distribution of errors

for our models, we follow McDonald and Nivre

(2011) and plot labeled attachment scores as a

function of dependency length, sentence length,

and distance to root.10 We compare the distri-

butions of errors made by the UDify (Kondratyuk

and Straka, 2019), SynTr, and refined models

(UDify+RNGTr, SynTr+RNGTr, and Empty+

RNGTr). Figure 3 shows the accuracies of the dif-

ferent models on the concatenation of all develop-

ment sets of UD Treebanks. Results show that

applying RNGTr refinement to the UDify model

results in a substantial improvement in accuracy

across the full range of values in all cases, and little

10We use the MaltEval tool (Nilsson and Nivre, 2008) for

calculating accuracies in all cases.
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Figure 4: Error analysis of SynTr and SynTr+RNGTr models on Chinese CTB Treebank.

difference in the error profile between the better

performing models. In all the plots, the gains from

RNGTr refinement are more pronounced for the

more difficult cases, where a larger or more global

view of the structure is beneficial.
As shown in the leftmost plot of Figure 3, adding

RNGTr refinement to UDify results in particular

gains for the longer dependencies, which are more

likely to interact with other dependencies. The

middle plot illustrates the accuracy of models as

a function of the distance to the root of the de-

pendency tree, which is calculated as the num-

ber of dependency relations from the dependent

to the root. When we add RNGTr refinement to

the UDify parser, we get particular gains for the

problematic middle depths, which are neither

the root nor leaves. Here, SynTr+RNGTr is also

particularly strong on these high nodes, whereas

SynTr is particularly strong on low nodes. In the

plot by sentence length, the larger improvements

from adding RNGTr refinement (both to UDify

and SynTr) are for the shorter sentences, which are

surprisingly difficult for UDify. Presumably, these

shorter sentences tend to be more idiosyncratic,

which is better handled with a global view of the

structure. (See Figure 5 for an example.) In all

these cases, the ability of RNGTr to capture any

kind of correlation in the dependency graph gives

the model a larger and more global view of the

correct output structure.
To further analyze where RNGTr refinement

is resulting in improvements, we compare the

error profiles of the SynTr and SynTr+RNGTr

models on the Chinese Penn Treebank, where

adding RNGTr refinement to SynTr results in

significant improvement (see Table 3). As shown

in Figure 4, RNGTr refinement results in particular

improvement on longer dependencies (left plot),

and on middle and greater depth nodes (right plot),

again showing that RNGTr does particularly well

on the difficult cases with more interactions with

other dependencies.

6.5 Refinement Analysis

To better understand how the RNG Transformer

model is doing refinement, we perform several

analyses of the trained UDify+RNGTr model.11

An example of this refinement is shown in

Figure 5, where the UDify model predicts an

incorrect dependency graph, but the RNGTr model

modifies it to build the gold dependency tree.

Refinements by Iteration: To measure the

accuracy gained from refinement at different

iterations, we define the following metric:

RELt = RER(LASt−1,LASt) (8)

where RER is relative error reduction, and t is the

refinement iteration. LAS0 is the accuracy of the

initial parser, UDify in this case.

To illustrate the refinement procedure for dif-

ferent dataset types, we split UD Treebanks based

on their training set size into ‘‘Low-Resource’’

and ‘‘High-Resource’’ datasets.12 Table 4 shows

the refinement metric (RELt) after each refine-

11We choose UDify as the initial parser because the RNGTr

model makes more changes to the parses of UDify than SynTr,

so we can more easily analyse these changes. Results with

SynTr as the initial parser are provided in Appendix D.
12We consider languages that have training data more than

10k sentences as ‘‘High-Resource’’.
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Figure 5: The shortest example corrected by

UDify+RNGTr in the English UD Treebank.

Dataset Type t = 1 t = 2 t = 3

Low-Resource +13.62% +17.74% +0.16%

High-Resource +29.38% +0.81% +0.41%

Table 4: Refinement analysis (LAS relative

error reduction) of the UDify+RNGTr model for

different refinement steps on the development

sets of UD Treebanks.

ment iteration of the UDify+RNGTr model on

these sets of UD Treebanks.13 Every refinement

step achieves an increase in accuracy, on both

low and high resource languages. But the amount

of improvement generally decreases for higher

refinement iterations. Interestingly, for languages

with less training data, the model cannot learn

to make all corrections in a single step but can

learn to make the remaining corrections in a sec-

ond step, resulting in approximately the same total

percentage of errors corrected as for high resource

13For these results we apply MST decoding after every

iteration, to allow proper evaluation of the intermediate

graphs.

Dependency Type t = 1 t = 2 t = 3

goeswith +57.83% +0.00% +2.61%
aux +66.04% +3.04% +3.12%
cop +48.17% +2.21% +3.01%
mark +44.97% +2.44% +0.00%
amod +45.58% +2.33% +0.00%
det +34.48% +0.00% +2.63%
acl +33.01% +0.89% +0.00%
xcomp +33.33% +0.80% +0.00%
nummod +28.50% +0.00% +1.43%
advcl +29.53% +1.26% +0.25%
dep +22.48% +2.02% +0.37%

Table 5: Relative F-score error reduction of a

selection of dependency types for each refine-

ment step on the concatenation of UD Treebanks

(with UDify as the initial parser).

Tree Type t = 1 t = 2 t = 3

Non-Projective +22.43% +3.92% +0.77%

Projective +29.6% +1.13% +0.0%

Table 6: Relative F-score error reduction of

projective and non-projective trees on the

concatenation of UD Treebanks (with UDify

as the initial parser).

languages. In general, different numbers of iter-

ations may be necessary for different datasets,

allowing efficiency gains by not performing un-

necessary refinement iterations.

Dependency Type Refinement: Table 5 shows

the relative improvement of different dependency

types for the UDify+RNGTr model at each refine-

ment step, ranked and selected by the total relative

error reduction. A huge amount of improvement is

achieved for all these dependency types at the first

iteration step, and then we have a considerable

further improvement for many of the remaining

refinement steps. The later refinement steps are

particularly useful for idiosyncratic dependencies

which require a more global view of the sentence,

such as auxiliary (aux) and copula (cop). A similar

pattern of improvements is found when SynTr is

used as the initial parser, reported in Appendix A.

Refinement by Projectivity: Table 6 shows

the relative improvement of each refinement step

for projective and non-projective trees. Although

the total gain is slightly higher for projective
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trees, non-projective trees require more iterations

to achieve the best results. Presumably, this is

because non-projective trees have more complex

non-local interactions between dependencies,

which requires more refinement iterations to fix

incorrect dependencies. This seems to contradict

the common belief that non-projective parsing is

better done with factorized graph-based models,

which do not model these interactions.

7 Conclusion

In this paper, we propose a novel architecture

for structured prediction, Recursive Non-auto-

regressive Graph-to-Graph Transformer (RNG

Transformer), to iteratively refine arbitrary

graphs. Given an initial graph, RNG Transformer

learns to predict a corrected graph over the

same set of nodes. Each iteration of refinement

predicts the edges of the graph in a non-auto-

regressive fashion, but conditions these predic-

tions on the entire graph from the previous

iteration. This graph conditioning and prediction

are made with the Graph-to-Graph Transformer

architecture (Mohammadshahi and Henderson,

2020), which can capture complex patterns of

interdependencies between graph edges and can

exploit BERT (Devlin et al., 2019) pre-training.

We evaluate the RNG Transformer architecture

by applying it to the problematic structured

prediction task of syntactic dependency parsing.

In the process, we also propose a graph-based

dependency parser (SynTr), which is the same as

one iteration of our RNG Transformer model but

without graph inputs. Evaluating on 13 languages

of the Universal Dependencies Treebanks, the

English and Chinese Penn Treebanks, and the

German CoNLL 2009 shared task treebank, our

SynTr model already significantly outperforms

previous state-of-the-art models on all these

treebanks. Even with this powerful initial parser,

RNG Transformer refinement almost always

improves accuracies, setting new state-of-the-art

accuracies for all treebanks. RNG Transformer

consistently results in improvement regardless

of the initial parser, reaching around the same

level of accuracy even when it is given an

empty initial parse, demonstrating the power of

this iterative refinement method. Error analysis

suggests that RNG Transformer refinement is

particularly useful for complex interdependencies

in the output structure.

The RNG Transformer architecture is a very

general and powerful method for structured pre-

diction, which could easily be applied to other

NLP tasks. It would especially benefit tasks that

require capturing complex structured interdepen-

dencies between graph edges, without losing the

computational benefits of a non-autoregressive

model.
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Appendix A Implementation Details

For better convergence, we use two different optimisers for pre-trained parameters and randomly

initialised parameters. We apply bucketed batching, grouping sentences by their lengths into the

same batch to speed up the training. Early stopping (based on LAS) is used during training.

We use ‘‘bert-multilingual-cased’’ for UD Treebanks.14 For English Penn Treebank, we use

‘‘bert-base-uncased’’, and for Chinese Penn Treebank, we use ‘‘bert-base-chinese.’’ We apply

pre-trained weights of ‘‘bert-base-german-cased’’ (Wolf et al., 2019) for German CoNLL

shared task 2009. Here is the list of hyper-parameters for RNG Transformer model:

Component Specification Component Specification

Optimiser BertAdam Feed-Forward layers (arc)

Base Learning rate 2e-3 No. Layers 2

BERT Learning rate 1e-5 Hidden size 500

Adam Betas(b1,b2) (0.9,0.999) Drop-out 0.33

Adam Epsilon 1e-5 Negative Slope 0.1

Weight Decay 0.01 Feed-Forward layers (rel)

Max-Grad-Norm 1 No. Layers 2

Warm-up 0.01 Hidden size 100

Self-Attention Drop-out 0.33

No. Layers 12 Negative Slope 0.1

No. Heads 12 Epoch 200

Embedding size 768 Patience 100

Max Position Embedding 512

Table 7: Hyper-parameters for training on all Treebanks. We stop training, if there is no

improvement in the current epoch, and the number of the current epoch is bigger than the

summation of last checkpoint and ‘‘Patience.’’

Appendix B Number of Parameters and Run Time Details:

We provide average run times and the number of parameters of each model on English Penn Treebanks,

and English UD Treebank. All experiments are computed with a graphics processing unit (GPU),

specifically the NVIDIA V100 model. We leave the issue of improving run times to future work.

Model No. parameters Training time (HH:MM:SS) Evaluation time (seconds)

Biaffine (Dozat and Manning, 2016) 13.5M 4:39:18 3.1

RNGTr 206.3M 24:10:40 20.6

SynTr 206.2M 6:56:40 7.5

Table 8: Run time details of our models on English Penn Treebank.

Model Training time (HH:MM:SS) Evaluation time (seconds)

UDify (Kondratyuk and Straka, 2019) 2:22:47 4.0

RNGTr 8:14:26 13.6

SynTr 1:29:43 3.7

Table 9: Run time details of our models on English UD Treebank.

14https://github.com/google-research/bert. For Chinese and Japanese, we use pre-trained ‘‘bert-base-

chinese’’ and ‘‘bert-base-japanese’’ models (Wolf et al., 2019) respectively.
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Appendix C Unlabeled Attachment Scores for UD Treebanks

Language
Multi Multi Multi+Mono Mono Mono Mono

UDPipe UDify UDify+RNGTr SynTr SynTr+RNGTr Empty+RNGTr

Arabic 87.54 87.72 89.73(+16.37%) 89.89 89.94(+0.49%) 89.68

Basque 86.11 84.94 90.49(+36.85%) 90.46 90.90(+4.61%) 90.69

Chinese 84.64 87.93 91.04(+25.76%) 91.38 92.47(+12.64%) 91.81

English 89.63 90.96 92.81(+20.46%) 92.92 93.08(+2.26%) 92.77

Finnish 89.88 86.42 93.49(+52.06%) 93.52 93.55(+0.47%) 93.36

Hebrew 89.70 91.63 93.03(+16.73%) 93.36 93.36(0.0%) 92.80

Hindi 94.85 95.13 96.44(+26.9%) 96.33 96.56(+6.27%) 96.37

Italian 93.49 95.54 95.72(+4.04%) 96.03 96.10(+1.76%) 95.98

Japanese 95.06 94.37 96.25(+33.40%) 96.43 96.54(+3.08%) 96.37

Korean 87.70 82.74 91.32(+49.71%) 91.35 91.49(+1.62%) 91.28

Russian 93.80 94.83 95.54(+13.73%) 95.53 95.47(−1.34%) 95.38

Swedish 89.63 91.91 93.72(+22.37%) 93.79 94.14(+5,64%) 94.14

Turkish 74.19 74.56 77.74(+12.5%) 77.98 78.50(+2.37%) 77.49

Average 88.94 89.13 92.10 92.23 92.46 92.16

Table 10: Unlabeled attachment scores on UD Treebanks for monolingual (SynTr) and multilingual

(UDPipe (Straka, 2018) and UDify (Kondratyuk and Straka, 2019)) baselines, and the refined models

(+RNGTr), pre-trained with BERT (Devlin et al., 2019). Bold scores are not significantly different

from the best score in that row (with α = 0.01).

Appendix D SynTr Refinement Analysis

Dependency Type t = 1 t = 2 t = 3

clf +17.60% +0.00% +0.00%

discourse +9.70% +0.00% +0.00%

aux +3.57% +3.71% +0.00%

case +2.78% +2.86% +0.00%

root +2.27% +2.33% +0.00%

nummod +2.68% +1.38% +0.00%

acl +3.74% +0.29% +0.00%

orphan +1.98% +1.24% +0.00%

dep +1.99% +0.80% +0.00%

cop +1.55% +0.78% +0.00%

advcl +1.98% +0.25% +0.00%

nsubj +1.07% +0.54% +0.00%

Table 11: Relative F-score error reduction, when SynTr is the

initial parser, of different dependency types for each refinement

step on the concatenation of UD Treebanks, ranked and selected

by the total relative error reduction.

Dataset Type t = 1 t = 2 t = 3

Low-Resource 2.46% 0.09% 0.08%

High-Resource 0.81% 0.80% 0.32%

(a)

Tree type t = 1 t = 2 t = 3

Non-Projective 5% 1.63% 0.13%

Projective 0.6% 0.61% 0.13%

(b)

Table 12: Refinement analysis of the SynTr+RNGTr model for different refinement steps. (a) Relative LAS error

reduction on the low-resource and high-resource subsets of UD Treebanks. (b) Relative F-score error reduction of

projective and non-projective trees on the concatenation of UD Treebanks.
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