Recursive Non-Autoregressive Graph-to-Graph Transformer
for Dependency Parsing with Iterative Refinement

Alireza Mohammadshahi
Idiap Research Institute / EPFL.

alireza.mohammadshahi@idiap.ch

Abstract

We propose the Recursive Non-autoregressive
Graph-to-Graph Transformer architecture
(RNGTr) for the iterative refinement of arbi-
trary graphs through the recursive application
of a non-autoregressive Graph-to-Graph Trans-
former and apply it to syntactic dependency
parsing. We demonstrate the power and effec-
tiveness of RNGTr on several dependency
corpora, using a refinement model pre-trained
with BERT. We also introduce Syntactic
Transformer (SynTr), a non-recursive parser
similar to our refinement model. RNGTr can
improve the accuracy of a variety of initial
parsers on 13 languages from the Universal
Dependencies Treebanks, English and Chinese
Penn Treebanks, and the German CoNLL2009
corpus, even improving over the new state-of-
the-art results achieved by SynTr, significantly
improving the state-of-the-art for all corpora
tested.

1 Introduction

Self-attention models, such as Transformer
(Vaswani et al.,, 2017), have been hugely suc-
cessful in a wide range of natural language pro-
cessing (NLP) tasks, especially when combined
with language-model pre-training, such as BERT
(Devlin et al., 2019). These architectures contain
a stack of self-attention layers that can capture
long-range dependencies over the input sequence,
while still representing its sequential order using
absolute position encodings. Alternatively, Shaw
et al. (2018) propose to define sequential order
with relative position encodings, which are input
to the self-attention functions.

Recently, Mohammadshahi and Henderson
(2020) extended this sequence input method to the
input of arbitrary graph relations via the self-
attention mechanism, and combined it with an
attention-like function for graph relation predic-
tion, resulting in their proposed Graph-to-Graph

120

James Henderson
Idiap Research Institute
james.henderson@idiap.ch

Transformer architecture (G2GTr). They demon-
strated the effectiveness of G2GTr for transition-
based dependency parsing and its compatibility
with pre-trained BERT (Devlin et al., 2019). This
parsing model predicts one edge of the parse graph
at a time, conditioning on the graph of previous
edges, so it is an autoregressive model.

The G2GTr architecture could be used to
predict all the edges of a graph in parallel, but
such predictions are non-autoregressive. They
thus cannot fully model the interactions between
edges. For sequence prediction, this problem has
been addressed with non-autoregressive iterative
refinement (Novak et al., 2016; Lee et al., 2018;
Awasthi et al., 2019; Lichtarge et al., 2018).
Interactions between different positions in the
string are modeled by conditioning on a previous
version of the same string.

In this paper, we propose a new graph prediction
architecture that takes advantage of the full graph-
to-graph functionality of G2GTr to apply a G2GTr
model to refine the output graph recursively. This
architecture predicts all edges of the graph in
parallel, and is therefore non-autoregressive, but
can still capture any between-edge dependency by
conditioning on the previous version of the graph,
like an auto-regressive model.

This proposed Recursive Non-autoregressive
Graph-to-Graph Transformer (RNGTr) architec-
ture has three components. First, an initialization
model computes an initial graph, which can be
any given model for the task, even a trivial one.
Second, a G2GTr model takes the previous graph
as input and predicts each edge of the target graph.
Third, a decoding algorithm finds the best graph
given these edge predictions. The second and third
components are applied recursively to do iterative
refinement of the output graph until some stop-
ping criterion is met. The final output graph is the
graph output by the final decoding step.

The RNG Transformer architecture can be
applied to any task with a sequence or graph as

Transactions of the Association for Computational Linguistics, vol. 9, pp. 120-138, 2021. https://doi.org/10.1162/tacl_a_00358
Action Editor: Yue Zhang. Submission batch: 1/2020; Revision batch: 8/2020; Published 3/2021.
(© 2021 Association for Computational Linguistics. Distributed under a CC-BY 4.0 license.

d-ajone/oEY/NPE IWII0RIP//:dRY WOY papEOjuMOQ

€ [0B)/E9L¥Z61/85E00 € [9BY/Z91 L 0L/10P/IP!

120z Jequiaoaq €| uo 3sanb Aq Jpd-8GE00

https://doi.org/10.1162/tacl_a_00358

input and a graph over the same set of nodes as
output. We evaluate RNGTr on syntactic depen-
dency parsing because it is a difficult structured
prediction task, state-of-the-art initial parsers
are extremely competitive, and there is little
previous evidence that non-autoregressive models
(as in graph-based dependency parsers) are not
sufficient for this task. We aim to show that
capturing correlations between dependencies with
non-autoregressive iterative refinement results in
improvements, even in the challenging case of
state-of-the-art dependency parsers.

The evaluation demonstrates improvements
with several initial parsers, including previous
state-of-the-art dependency parsers, and the empty
parse. We also introduce a strong Transformer-
based dependency parser pre-trained with BERT
(Devlin et al., 2019), called Syntactic Transformer
(SynTr), using it both for our initial parser and as
the basis of our refinement model. Results on
13 languages from the Universal Dependencies
Treebanks (Nivre et al., 2018), English and
Chinese Penn Treebanks (Marcus et al., 1993;
Xue et al., 2002), and the German CoNLL 2009
corpus (Haji¢ et al., 2009) show significant im-
provements over all initial parsers and the state-
of-the-art.!

In this paper,
contributions:

we make the following

e We propose a novel architecture for the
iterative refinement of arbitrary graphs
(RNGTTr) that combines non-autoregressive
edge prediction with conditioning on the
complete graph.

e We propose a RNGTr model of syntactic
dependency parsing.

e We demonstrate significant improvements
over the previous state-of-the-art dependency
parsing results on Universal Dependency
Treebanks, Penn Treebanks, and the German
CoNLL 2009 corpus.

2 Dependency Parsing

Syntactic dependency parsing is a critical com-
ponent in a variety of natural language under-
standing tasks, such as semantic role labeling
(Marcheggiani and Titov, 2017), machine transla-

'Our implementation is available at: https: //github
.com/idiap/g2g-transformer.

121

tion (Chen et al., 2017), relation extraction (Zhang
et al., 2018), and natural language interfaces
(Pang et al., 2019). There are several approaches
to compute the dependency tree. Transition-based
parsers predict the dependency graph one edge
at a time through a sequence of parsing actions
(Yamada and Matsumoto, 2003; Nivre and Scholz,
2004; Titov and Henderson, 2007; Zhang and
Nivre, 2011). As in our approach, transformation-
based (Satta and Brill, 1996) and corrective
modeling parsers use various methods (e.g.,
Knight and Graehl, 2005; Hall and Novak, 2005;
Attardi and Ciaramita, 2007; Hennig and Kohn,
2017; Zheng, 2017) to correct an initial parse. We
take a graph-based approach to this correction.
Graph-based parsers (Eisner, 1996; McDonald
et al.,, 2005a; Koo and Collins, 2010) compute
scores for every possible dependency edge
and then apply a decoding algorithm to find
the highest scoring total tree. Typically, neural
graph-based models consist of two components:
an encoder that learns context-dependent vector
representations for the nodes of the dependency
graph, and a decoder that computes the depen-
dency scores for each pair of nodes and then
applies a decoding algorithm to find the highest-
scoring dependency tree.

There are several approaches to capture corre-
lations between dependency edges in graph-based
models. In first-order models, such as Maximum
Spanning Tree (MST) (Edmonds, 1967; Chu and
Liu, 1965; McDonald et al., 2005b), the score
for an edge must be computed without being sure
what other edges the model will choose. The model
itself only imposes the discrete tree constraint
between edges. Higher-order models (McDonald
and Pereira, 2006; Carreras, 2007; Koo and
Collins, 2010; Ma and Zhao, 2012; Zhang and
McDonald, 2012; Tchernowitz et al., 2016) keep
some between-edge information, but require more
decoding time.

In this paper, we apply first-order models,
specifically the MST algorithm, and show that
it is possible to keep correlations between edges
without increasing the time complexity by recur-
sively conditioning each edge score on a previous
prediction of the complete dependency graph.

3 RNG Transformer

The RNG Transformer architecture is illustrated
in Figure 1, in this case, applied to dependency

d-ajone/oEY/NPE IWII0RIP//:dRY WOY papEOjuMOQ

€ [0B)/E9L¥Z61/85E00 € [9BY/Z91 L 0L/10P/IP!

120z Jequiaoaq €| uo 3sanb Aq Jpd-8GE00

https://github.com/idiap/g2g-transformer
https://github.com/idiap/g2g-transformer

| How are you? |

A 4

l Initial Parser

J

RNG Transformer

[exs] [roor [vow] (o | (you] [7 | [s2r]
3] C L

Encoder

zt

Y

1 Biaffine classifiers |
1

| MLP projection

| Decoder Algorithm |

Decoder

VGT
==
[ROOT][How][are][you][?]

Figure 1: The Recursive Non-autoregressive Graph-to-
Graph Transformer architecture.

parsing. The input to a RNGTr model specifies
the input nodes W = (wy, ws,...,wy) (e.g., a
sentence), and the output is the final graph G7
(e.g., a parse tree) over this set of nodes. The first
step is to compute an initial graph of G° over W,
which can be done with any model. Then each
recursive iteration takes the previous graph G*~!
as input and predicts a new graph G°.

The RNGTr model predicts G' with a
novel version of a Graph-to-Graph Transformer
(Mohammadshahi and Henderson, 2020). Unlike
in the work of Mohammadshahi and Henderson
(2020), this G2GTr model predicts every edge of
the graph in a single non-autoregressive step. As
previously, the G2GTr first encodes the input
graph G'~! in a set of contextualized vector
representations Z = (z1,29,...,2nN), With one
vector for each node of the graph. The decoder
component then predicts the output graph G* by
first computing scores for each possible edge
between each pair of nodes and then applying a
decoding algorithm to output the highest-scoring
complete graph.

122

The RNGTr model can be formalized in terms
of an encoder ERNG and a decoder DRNG:

Zt — ERNG(W P, Gt—l)
t=1,....,T (1)

Gt — DRNG (Zt)

where W = (wq,ws,,...,wy) is the input
sequence of tokens, P = (pi,p2,,...,PN) is
their associated properties, and 7" is the number of
refinement iterations.

In the case of dependency parsing, W are the
words and symbols, P are their part-of-speech
tags, and the predicted graph at iteration ¢ is
specified as:

Gt = {(Z7j7l)7] :377N—1}

. (2)
where2 <i < N—-1,l € L

Each word w; has one head (parent) w; with
dependency label [from the label set L, where
the parent can also be the ROOT symbol wy (see
Section 3.1.1).

The following sections describe in more detail
each element of the proposed RNGTr dependency
parsing model.

3.1 Encoder

To compute the embeddings Z! for the nodes of
the graph, we use the Graph-to-Graph Transformer
architecture proposed by Mohammadshahi and
Henderson (2020), including a similar mechanism
to input the previously predicted dependency
graph G*~! to the attention mechanism. This graph
input allows the node embeddings to include both
token-level and relation-level information.

3.1.1 Input Embeddings

The RNGTr model receives a sequence of input
tokens (W) with their associated properties (P)
and builds a sequence of input embeddings
(X). For compatibility with BERT’s input token
representation (Devlin et al., 2019), the sequence
of input tokens starts with CLS and ends with
SEP symbols. For dependency parsing, it also
adds the ROOT symbol to the front of the sentence
to represent the root of the dependency tree. To
build token representation for a sequence of input
tokens, we sum several vectors. For the input
words and symbols, we sum the token embeddings
of a pre-trained BERT model EMB(w;), and
learned representations EMB(p;) of their Part-of-
Speech tags p;. To keep the order information

d-ajone/oEY/NPE IWII0RIP//:dRY WOY papEOjuMOQ

€ [0B)/E9L¥Z61/85E00 € [9BY/Z91 L 0L/10P/IP!

120z Jequiaoaq €| uo 3sanb Aq Jpd-8GE00

of the initial sequence, we add the position
embeddings of pre-trained BERT F; to our token
embeddings. The final input representations are
the sum of the position embeddings and the token
embeddings:

3)

3.1.2 Self-Attention Mechanism

Conditioning on the previously predicted output
graph G'~! is made possible by inputting relation
embeddings to the self-attention mechanism. This
edge input method was initially proposed by
Shaw et al. (2018) for relative position encoding,
and extending to unlabeled dependency graphs
in the Graph-to-Graph Transformer architecture
of Mohammadshahi and Henderson (2020). We
use it to input labeled dependency graphs, by
adding relation label embeddings to both the value
function and the attention weight function.

Transformers have multiple layers of self-
attention, each with multiple heads. The RNGTr
architecture uses the same architecture as
BERT (Devlin et al., 2019) but changes the
functions used by each attention head. Given the
token embeddings X at the previous layer and
the input graph G'~1, the values A=(ay,...,an)
computed by an attention head are:

a; =Y a(z, WY +r7Wl) @)
J

where rffl is a one-hot vector that represents
the labeled dependency relation between ¢ and
j in the graph G*~!. As shown in the matrix in
Figure 2, each rfj_l specifies both the label and
the direction of the relation (¢djpe; for ¢ — j
versus idpe + |L| for i < j, where |L| is
the number of dependency labels), or specifies
NONE (as 0). WZL € REILIFDxd gre the learned
relation embeddings. The attention weights o;;
are a Softmax applied to the attention function:

exp(e;j)
>_exp(ei;)
(W) (e, WK 4 LN(r WE)

€ij =)

Vd

where WL € RCILHFUXd gre different learned
relation embeddings. LN(-) is the layer normal-
ization function, used for better convergence.

Ckij =

123

S o l __________ ’

CLS | ROOT How are you ? |SEP
CLS 0 0 0 0 0 0 0
ROOT| 0 0 0 idroot 0 o |0
How | O 0 0 idagvmod+/Ll | O 0 0
are 0 | idroottlL! |idagymod 0 idnsubj|idpunct| O
you 0 0 0 idnsupj*ILI 0 0 0
? 0 0 0 idpunct+ILI 0 0 0
SEP | 0 0 0 0 0 0 0

Self-Attention Mechanism

Figure 2: Example of inputting dependency graph to
the self-attention mechanism.

Equations (4) and (5) constitute the mechanism
by which each iteration of refinement can con-
dition on the previous graph. Instead of the more
common approach of hard-coding some attention
heads to represent a relation (e.g., Ji et al., 2019),
all attention heads can learn for themselves how
to use the information about relations.

3.2 Decoder

The decoder uses the token embeddings Z¢ pro-
duced by the encoder to predict the new graph G*.
It consists of two components, a scoring function,
and a decoding algorithm. The graph found by
the decoding algorithm is the output graph G*
of the decoder. Here we propose components for
dependency parsing.

3.2.1 Scoring Function

We first produce four distinct vectors for each
token embedding z! from the encoder by passing
it through four feed-forward layers.

zf,(arcfdep) _ MLP(arcfdep) (Zf)

Zt,(arc—head) _ MLP(aTc_head)(zf)

1 l—d (6)
2'7(7"6 —dep) _ MLP(relfdep)(Z;f)

7

z;&,(rel—head) _ MLP(relfhead)(zt)

)

[0€3/291 L0 L/10p/3pd-8joile/|0 Y NPa W J08.1P//:dRY WOl papeojumoq

e [0B)/E9L¥Z61/8GE00 €

120z Jequiaoaq €| uo 3sanb Aq Jpd-8GE00

where the MLPs are all one-layer feed-forward
networks with LeakyReLLU activation functions.

These token embeddings are used to compute
probabilities for every possible dependency re-
lation, both unlabeled and labeled, similarly to
Dozat and Manning (2016). The distribution of the
unlabeled dependency graph is estimated using,
for each token ¢, a biaffine classifier over possible
heads j applied to zf’(arcfdep) and z;.’(arc*head).
Then for each pair ¢, 7, the distribution over
labels given an unlabeled dependency relation

is estimated using a biaffine classifier applied to
t,(rel—dep) t,(rel—head)
z; and z; .

3.2.2 Decoding Algorithms

The scoring function estimates a distribution over
graphs, but the RNGTr architecture requires the
decoder to output a single graph G*. Choosing this
graph is complicated by the fact that the scoring
function is non-autoregressive. Thus the estimate
consists of multiple independent components, and
there is no guarantee that every graph in this
distribution is a valid dependency graph.

We take two approaches to this problem, one
for intermediate parses G' and one for the final
dependency parse GT. To speed up each refine-
ment iteration, we ignore this problem for inter-
mediate dependency graphs. We build these
graphs by simply applying argmax independently
to find the head of each node. This may result
in graphs with loops, which are not trees,
but this does not seem to cause problems for
later refinement iterations.> For the final output
dependency tree, we use the maximum spanning
tree algorithm, specifically the Chu-Liu/Edmonds
algorithm (Chi, 1999; Edmonds, 1967), to find
the highest scoring valid dependency tree. This
is necessary to avoid problems when running the
evaluation scripts. The asymptotic complexity of
the full model is determined by the complexity of
this algorithm.?

3.3 Training

The RNG Transformer model is trained separately
on each refinement iteration. Standard gradient

2We leave to future work the investigation of different
decoding strategies that keep both speed and well-formedness
for the intermediate predicted graphs.

3The Tarjan variation (Karger et al., 1995) of the Chu-Liu
/Edmonds algorithm computes the highest-scoring tree in
O(n?) for dense graphs, which is the case here.

124

descent techniques are used, with cross-entropy
loss for each edge prediction. Error is not
backpropagated across iterations of refinement,
because no continuous values are being passed
from one iteration to another, only a discrete
dependency tree.

Stopping Criterion: In the RNG Transformer
architecture, the refinement of the predicted graph
can be done an arbitrary number of times, since
the same encoder and decoder parameters are
used at each iteration. In the experiments below,
we place a limit on the maximum number of
iterations. But sometimes the model converges
to an output graph before this limit is reached,
simply copying this graph during later iterations.
During training, to avoid multiple iterations where
the model is trained to simply copy the input
graph, the refinement iterations are stopped if
the new predicted dependency graph is the same
as the input graph. At test time, we also stop
computation in this case, but the output of the
model is not affected.

4 Initial Parsers

The RNGTr architecture requires a graph G° to
initialize the iterative refinement. We consider
several initial parsers to produce this graph. To
leverage previous work on dependency parsing
and provide a controlled comparison to the state-
of-the-art, we use parsing models from the recent
literature as both baselines and initial parsers. To
evaluate the importance of the initial parse, we
also consider a setting where the initial parse is
empty, so the first complete dependency tree is
predicted by the RNGTr model itself. Finally, the
success of our RNGTr dependency parsing model
leads us to propose an initial parsing model with
the same design, so that we can control for the
parser design in measuring the importance of the
RNG Transformer’s iterative refinement.

SynTr model We call this initial parser the
Syntactic Transformer (SynTr) model. It is the
same as one iteration of the RNGTr model shown
in Figure 1 and defined in Section 3, except that
there is no graph input to the encoder. Analogously
to (1), GY is computed as:

(7)

ZO — ESYNTR(W P)
GO — DSYNTR(zO)

[0€3/291 L0 L/10p/3pd-8joile/|0 Y NPa W J08.1P//:dRY WOl papeojumoq

€ [0BY/€91¥Z61/8G€00 ©

120z Jequiaoaq €| uo 3sanb Aq Jpd-8GE00

ESYNTR DSYNTR

where and are the SynTr encoder
and decoder, respectively. For the encoder, we use
the Transformer architecture of BERT (Devlin
et al., 2019) and initialize with pre-trained para-
meters of BERT. The token embeddings of the
final layer are used for Z°. For the decoder, we
use the same scoring function as described in
Section 3.2, and apply the Chu-Liu/Edmonds de-
coding algorithm (Chi, 1999; Edmonds, 1967) to
find the highest scoring tree.

This SynTr parsing model is very similar to the
UDify parsing model proposed by Kondratyuk
and Straka (2019). One difference that seems to
be important for the results reported in Section 6.2
is in the way BERT token segmentation is
handled. When BERT segments a word into sub-
words, UDify seems only to encode the first
segment, whereas SynTr encodes all segments
and only decodes with the first segment, as
discussed in Section 5.3. Also, UDify decodes
with an attention-based mixture of encoder layers,
whereas SynTr only uses the last layer.

5 Experimental Setup

5.1 Datasets

To evaluate our models, we apply them on several
kinds of datasets, namely, Universal Dependency
(UD) Treebanks, Penn Treebanks, and the German
CoNLL 2009 Treebank. For our evaluation on
UD Treebanks (UD v2.3) (Nivre et al., 2018), we
select languages based on the criteria proposed in
de Lhoneux et al. (2017), and adapted by Smith
et al. (2018). This set contains several languages
with different language families, scripts, character
set sizes, morphological complexity, and training
sizes and domains. For our evaluation of Penn
Treebanks, we use the English and Chinese Penn
Treebanks (Marcus et al., 1993; Xue et al., 2002).
For English, we use the same setting as defined
in Mohammadshahi and Henderson (2020). For
Chinese, we apply the same setup as described
in Chen and Manning (2014), including the use
of gold PoS tags. For our evaluation on the
German Treebank of the CoNLL 2009 shared
task (Haji¢ et al., 2009), we apply the same setup
as defined in Kuncoro et al. (2016). Following
Hajic et al. (2009); Nivre et al. (2018), we keep
punctuation for evaluation on the UD Treebanks
and the German corpus and remove it for the Penn
Treebanks (Nilsson and Nivre, 2008).

125

5.2 Baseline Models

For UD Treebanks, we compare to several baseline
parsing models. We use the monolingual parser
proposed by Kulmizev et al. (2019), which uses
BERT (Devlin et al., 2019) and ELMo (Peters
et al., 2018) embeddings as additional input
features. In addition, we compare to the multilin-
gual multitask models proposed by Kondratyuk
and Straka (2019) and Straka (2018). UDify
(Kondratyuk and Straka, 2019) is a multilingual
multitask model. UDPipe (Straka, 2018) is one of
the winners of CoNLL 2018 Shared Task (Zeman
et al., 2018). For a fair comparison, we report the
scores of UDPipe from Kondratyuk and Straka
(2019) using gold segmentation. UDify is on
average the best performing of these baseline
models, so we use it as one of our initial parsers
in the RNGTr model.

For Penn Treebanks and the German CoNLL
2009 corpus, we compare our models with pre-
vious state-of-the-art transition-based, and graph-
based models, including the biaffine parser (Dozat
and Manning, 2016), which includes the same
decoder as our model. We also use the biaffine
parser as an initial parser for the RNGTr model.

5.3 Implementation Details

The encoder is initialized with pre-trained BERT
(Devlin et al., 2019) models with 12 self-attention
layers. All hyper-parameters are provided in
Appendix A.

Since the wordpiece tokenizer (Wu et al., 2016)
of BERT differs from that used in the dependency
corpora, we apply the BERT tokenizer to each
corpus word and input all the resulting sub-words
to the encoder. For the input of dependency
relations, each dependency between two words
is specified as a relationship between their first
sub-words. We also input a new relationship
between each non-first sub-word and its associated
first sub-word as its head. For the prediction of
dependency relations, only the encoder embedding
of the first sub-word of each word is used by the
decoder.* The decoder predicts each dependency
as a relation between the first sub-words of
the corresponding words. Finally, for proper
evaluation, we map the predicted sub-word heads

4 In preliminary experiments, we found that predicting
dependencies using the first sub-words achieves better or
similar results compared to using the last sub-word or all
sub-words of each word.

d-ajone/oEY/NPE IWII0RIP//:dRY WOY papEOjuMOQ

€ [0B)/E9L¥Z61/85E00 € [9BY/Z91 L 0L/10P/IP!

120z Jequiaoaq €| uo 3sanb Aq Jpd-8GE00

and dependents to their original word positions in
the corpus.

6 Results and Discussion

After some initial experiments to determine the
maximum number of refinement iterations, we
report the performance of the RNG Transformer
model on the UD Treebanks, Penn Treebanks,
and German CoNLL 2009 Treebank.® The
RNGTr models perform substantially better than
previously proposed models on every dataset, and
RNGTT refinement improves over its initial parser
for almost every dataset. We also perform various
analyses to understand these results better.

6.1 The Number of Refinement Iterations

Before conducting a large number of experiments,
we investigate how many iterations of refinement
are useful, given the computational costs of
additional iterations. We evaluate different
variations of our RNG Transformer model on
the Turkish Treebank (Table 1).° We use both
SynTr and UDify as initial parsers. The SynTr
model significantly outperforms the UDify model,
so the errors are harder to correct by adding the
RNGTr model (2.67% for SynTr versus 15.01%
for UDify of relative error reduction in LAS
after integration). In both cases, three iterations
of refinement achieve more improvement than
one iteration, but not by a large enough margin
to suggest the need for additional iterations. The
further analysis reported in Section 6.5 supports
the conclusion that, in general, an additional
iteration would neither help nor hurt accuracy.
The results in Table 1 also show that it is
better to include the stopping strategy described
in Section 3.3. In subsequent experiments, we
use three refinement iterations with the stopping
strategy, unless mentioned otherwise.

6.2 UD Treebank Results

Results for the UD treebanks are reported in
Table 2. We compare our models with previous

5The number of parameters and run times of each model
on the UD and Penn Treebanks are provided in Appendix B.

5We choose the Turkish Treebank because it is a low-
resource Treebank and there are more errors in the initial
parse for RNGTTr to correct.

126

Model UAS LAS
SynTr 75.62 70.04
SynTr+RNGTr (T=1) 76.37 70.67
SynTr+RNGTTr (T=3) w/o stop 76.33 70.61
SynTr+RNGTr (T=3) 76.29 70.84
UDify (Kondratyuk and Straka, 2019) 72.78 65.48
UDify+RNGTr (T=1) 74.13 68.60
UDify+RNGTr (T=3) w/o stop 75.68 70.32
UDify+RNGTr (T=3) 75.91 70.66

Table 1: Dependency parsing scores for different
variations of the RNG Transformer model on the
development set of UD Turkish Treebank (IMST).

state-of-the-art results (both trained mono-
lingually and multilingually), based on labeled
attachment score.”

The results with RNGTr refinement demon-
strate the effectiveness of the RNGTr model
at refining an initial dependency graph. First,
the UDify+RNGTr model achieves significantly
better LAS performance than the UDify model
in all languages. Second, although the SynTr
model significantly outperforms previous state-
of-the-art models on all these UD Treebanks,? the
SynTr+RNGTr model achieves further significant
improvement over SynTr in four languages, and
no significant degradation in any language. Of
the nine languages where there is no significant
difference between SynTr and SynTr+RNGTr for
the given test sets, RNGTr refinement results in
higher LAS in eight languages and lower LAS in
only one (Russian).

The improvement of SynTr+RNGTr over
SynTr is particularly interesting because it is
a controlled demonstration of the effectiveness
of the graph refinement method of RNGTr. The
only difference between the SynTr model and
the final iteration of the SynTr+RNGTr model
is the graph inputs from the previous iteration
(Equations (7) versus (1)). By conditioning on
the full dependency graph, the SynTr+RNGTr

"Unlabeled attachment scores are provided in
Appendix C. All results are computed with the official
CoNLL 2018 shared task evaluation script (https://
universaldependencies.org/conlll8/evaluation
.html).

8In particular, SynTr significantly outperforms UDify,
even though they are very similar models. In addition to
the model differences discussed in Section 4, there are some
differences in the way UDify and SynTr models are trained
that might explain this improvement, in particular, that
UDity is a multilingual multitask model, whereas SynTr is
a monolingual single-task model.

[0€3/291 L0 L/10p/3pd-8joile/|0 Y NPa W J08.1P//:dRY WOl papeojumoq

€ [0BY/€91¥Z61/8G€00 ©

120z Jequiaoaq €| uo 3sanb Aq Jpd-8GE00

https://universaldependencies.org/conll18/evaluation.html
https://universaldependencies.org/conll18/evaluation.html
https://universaldependencies.org/conll18/evaluation.html

Language Train Mono Multi Multi Multi+Mono Mono Mono Mono
Size [1] UDPipe UDify UDify+RNGTr SynTr SynTr+RNGTr Empty+RNGTr

Arabic 6.1K 81.8 8294 82.88 85.93(+17.81%) 86.23 86.31 (+0.58%) 86.05
Basque 54K 79.8 82.86 80.97 87.55(+34.57%) 87.49 88.2(+5.68%) 87.96
Chinese 4K 834 80.5 83.75 89.05 (+32.62%) 89.53 90.48 (+9.08%) 89.82
English 125K 87.6 86.97 88.5 91.23 (+23.74%) 91.41 91.52 (+1.28%) 91.23
Finnish 122K 839 87.46 82.03 91.87 (+54.76%) 91.80 91.92 (+1.46%) 91.78
Hebrew 52K 859 86.86 88.11 90.80 (+22.62%) 91.07 91.32 (+2.79%) 90.56
Hindi 13.3K 90.8 91.83 9146 93.94 (+29.04%) 93.95 94.21 (+4.3%) 93.97
Italian 13.1K 91.7 91.54 93.69 94.65 (+15.21%) 95.08 95.16 (+1.62%) 94.96
Japanese 7.1K 92.1 93.73 92.08 9541 (+42.06%) 95.66 95.71 (+1.16%) 95.56
Korean 44K 84.2 84.24 7426 89.12 (+57.73%) 89.29 89.45 (+1.5%) 89.1

Russian 48.8K 91.0 92.32 93.13 94.51 (+20.09%) 94.60 94.47 (—2.4%) 94.31
Swedish 43K 86.9 86.61 89.03 92.02 (+27.26%) 92.03 92.46 (+5.4%) 92.40
Turkish 37K 649 67.56 6744 72.07 (+14.22%) 72.52 73.08 (+2.04%) 71.99
Average — 84.9 85.81 85.18 89.86 90.05 90.33 89.98

Table 2: Labeled attachment scores on UD Treebanks for monolingual ([1] (Kulmizev et al., 2019)
and SynTr) and multilingual (UDPipe (Straka, 2018) and UDify (Kondratyuk and Straka, 2019))
baselines, and the refined models (+RNGTr) pre-trained with BERT (Devlin et al., 2019). The relative
error reduction from RNGTTr refinement is shown in parentheses. Bold scores are not significantly
different from the best score in that row (with oo = 0.01).

model’s final RNGTr iteration can capture any
kind of correlation in the dependency graph,
including both global and between-edge corre-
lations both locally and over long distances. This
result also further demonstrates the generality
and effectiveness of the G2GTr architecture for
conditioning on graphs (Equations (4) and (5)).
As expected, we get more improvement when
combining the RNGTr model with UDify, because
UDify’s initial dependency graph contains more
incorrect dependency relations for RNGTr to
correct. But after refinement, there is surprisingly
little difference between the performance of
the UDify+RNGTr and SynTr+RNGTr models,
suggesting that RNGTr is powerful enough to
correct any initial parse. To investigate the power
of the RNGTr architecture to correct any initial
parse, we also show results for a model with
an empty initial parse, Empty+RNGTr. For this
model, we run four iterations of refinement
(T=4), so that the amount of computation is the
same as for SynTr+RNGTr. The Empty+RNGTr
model achieves competitive results with the
UDify+RNGTr model (i.e., above the previous
state-of-the-art), and close to the results for
SynTr+RNGTr. This accuracy is achieved despite
the fact that the Empty+RNGTr model has
half as many parameters as the UDify+RNGtr
model and the SynTr+RNGTr model since it has

127

no separate initial parser. These Empty+RNGTr
results indicate that RNGTr architecture is a very
powerful method for graph refinement.

6.3 Penn Treebank and German
Corpus Results

UAS and LAS results for the Penn Treebanks, and
the German CoNLL 2009 Treebank are reported
in Table 3. We compare to the results of previous
state-of-the-art models and SynTr, and we use
the RNGTr model to refine both the biaffine
parser (Dozat and Manning, 2016) and SynTr, on
all Treebanks.’

Again, the SynTr model significantly outper-
forms previous state-of-the-art models, with a
5.78%, 9.15%, and 23.7% LAS relative error
reduction in English, Chinese, and German,
respectively. Despite this level of accuracy, adding
RNGTr refinement improves accuracy further
under both UAS and LAS. For the Chinese
Treebank, this improvement is significant, with a
5.46% LAS relative error reduction. When RNGTr
refinement is applied to the output of the biaffine
parser (Dozat and Manning, 2016), it achieves
a LAS relative error reduction of 10.64% for

Results are calculated with the official evaluation script:
(https://depparse.uvt.nl/). For German, we use
https://ufal.mff.cuni.cz/conll2009-st/eval
—data.html.

[0€3/291 L0 L/10p/3pd-8joile/|0 Y NPa W J08.1P//:dRY WOl papeojumoq

e [0B)/E9L¥Z61/8GE00 €

120z Jequiaoaq €| uo 3sanb Aq Jpd-8GE00

https://depparse.uvt.nl/
https://ufal.mff.cuni.cz/conll2009-st/eval-data.html
https://ufal.mff.cuni.cz/conll2009-st/eval-data.html

Model English (PTB) Chinese (CTB) German (CoNLL)
Type UAS LAS UAS LAS UAS LAS
Chen and Manning (2014) T 918 896 839 824 - -
Dyer et al. (2015) T 931 909 872 857 — —
Ballesteros et al. (2016) T 9356 9142 87.65 86.21 88.83 86.10
Cross and Huang (2016) T 9342 91.36 86.35 85.71 — —
Weiss et al. (2015) T 9426 9241 — — — —
Andor et al. (2016) T 9461 9279 — — 90.91 89.15
Mohammadshahi and Henderson (2020) T 96.11 94.33 - — - -
Ma et al. (2018) T 9587 94.19 90.59 89.29 93.65 92.11
Ferndndez-Gonzdlez and Gémez-Rodriguez (2019) T 96.04 94.43 - — - -
Kiperwasser and Goldberg (2016) G 931 910 866 851 — —
Wang and Chang (2016) G 94.08 91.82 87.55 86.23 — —
Cheng et al. (2016) G 9410 9149 88.1 85.7 — —
Kuncoro et al. (2016) G 9426 92.06 88.87 87.30 91.60 89.24
Ma and Hovy (2017) G 9488 9298 89.05 87.74 92.58 90.54
Jietal. (2019) G 9597 9431 — - — —
Li et al. (2020)+ELMo G 96.37 94.57 90.51 89.45 — —
Li et al. (2020)+BERT G 9644 94.63 90.89 89.73 — —
Biaffine (Dozat and Manning, 2016) G 9574 94.08 89.30 88.23 93.46 91.44
Biaffine+RNGTr G 9644 9471 91.85 90.12 94.68 93.30
SynTr G 96.60 9494 9242 90.67 95.11 93.98
SynTr+RNGTr G 96.66 95.01 9298 91.18 95.28 94.02

Table 3: Comparison of our models to previous state-of-the-art models on English (PTB) and Chinese
(CTBS5.1) Penn Treebanks, and German CoNLL 2009 shared task treebank. ‘“T’” and ‘G’ specify
““Transition-based’” and ‘‘Graph-based’” models. Bold scores are not significantly different from the

best score in that column (with o = 0.01).

@
5
g
8
_

g 8
5 &
3
//
P
e
g e

R R

3 5

2 875 S 2 A

o o .
S 850 \\.\' S =
0 ~, & 0

— 825 o

b @

— .- UDIfy4+RNG-Tr ™
—-= SynTr+RNG-Tr
5 e Empty+RNG-Tr

@

o

o
®
&

~
N
n

@
3

= LDlfy 94 eI
=== SynTr \‘t;h,i_‘&?.\
—-= UDIfy+RNG-Tr N
— .= SynTr+RNG-Tr 93 S
----- Empty+RNG-Tr = \’\
Sl e, EN
_____ 8 e aw?\
e 5
S I 01 upiry \§
—=- SynTr A
90| —:- UDIfy+RNG-Tr
.......................... —-= SynTr+RNG-Tr
. 8ol Empty+RNG-Tr

ROOT 1 2 3 4 5 6 71 8
Dependency Length

9 >=10 0 E1 2 3

2

5 6 7
Distance to root

8 9 >=10 1-10 11-20 21-30 31-40 41-50 >50
Sentence Length

Figure 3: Error analysis, on the concatenation of UD Treebanks, of initial parsers (UDify and SynTr), their
integration with the RNGTr model, and the Empty+RNGTr model.

the English Treebank, 16.05% for the Chinese
Treebank, and 27.72% for the German Treebank.
These improvements, even over such strong initial
parsers, again demonstrate the effectiveness of the
RNGTT architecture for graph refinement.

6.4 Error Analysis

To better understand the distribution of errors
for our models, we follow McDonald and Nivre
(2011) and plot labeled attachment scores as a
function of dependency length, sentence length,

128

and distance to root.' We compare the distri-

butions of errors made by the UDify (Kondratyuk
and Straka, 2019), SynTr, and refined models
(UDify+RNGTr, SynTr+RNGTr, and Empty+
RNGTT). Figure 3 shows the accuracies of the dif-
ferent models on the concatenation of all develop-
ment sets of UD Treebanks. Results show that
applying RNGTr refinement to the UDify model
results in a substantial improvement in accuracy
across the full range of values in all cases, and little

10We use the MaltEval tool (Nilsson and Nivre, 2008) for
calculating accuracies in all cases.

[0€3/291 L0 L/10p/3pd-8joile/|0 Y NPa W J08.1P//:dRY WOl papeojumoq

e [0B)/E9L¥Z61/8GE00 €

120z Jequiaoaq €| uo 3sanb Aq Jpd-8GE00

©
o
=)

———————— SynTr
--=-= SynTr+RNGTr

©
i
5

F1-Score(100%)

© © © ©
N o N o
w o w o

/

i

i

o

©
e
=)

~
=
n

B [eem SynTr A

=== SynTr+RNGTr Ve

/ - z
92 “ Ny -
%

©
=

©
o

F1-Score(100%)

89 W

88

ROOT1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18
Dependency Length

ROOT 1 2 3 4 5 6 7
Distance to root

Figure 4: Error analysis of SynTr and SynTr+RNGTr models on Chinese CTB Treebank.

difference in the error profile between the better
performing models. In all the plots, the gains from
RNGTT refinement are more pronounced for the
more difficult cases, where a larger or more global

view of the structure is beneficial.
As shown in the leftmost plot of Figure 3, adding

RNGTr refinement to UDify results in particular
gains for the longer dependencies, which are more
likely to interact with other dependencies. The
middle plot illustrates the accuracy of models as
a function of the distance to the root of the de-
pendency tree, which is calculated as the num-
ber of dependency relations from the dependent
to the root. When we add RNGTr refinement to
the UDify parser, we get particular gains for the
problematic middle depths, which are neither
the root nor leaves. Here, SynTr+RNGTT is also
particularly strong on these high nodes, whereas
SynTr is particularly strong on low nodes. In the
plot by sentence length, the larger improvements
from adding RNGTr refinement (both to UDify
and SynTr) are for the shorter sentences, which are
surprisingly difficult for UDify. Presumably, these
shorter sentences tend to be more idiosyncratic,
which is better handled with a global view of the
structure. (See Figure 5 for an example.) In all
these cases, the ability of RNGTT to capture any
kind of correlation in the dependency graph gives
the model a larger and more global view of the

correct output structure.
To further analyze where RNGTr refinement

is resulting in improvements, we compare the
error profiles of the SynTr and SynTr+RNGTr
models on the Chinese Penn Treebank, where
adding RNGTr refinement to SynTr results in
significant improvement (see Table 3). As shown
in Figure 4, RNGTr refinement results in particular

129

improvement on longer dependencies (left plot),
and on middle and greater depth nodes (right plot),
again showing that RNGTr does particularly well
on the difficult cases with more interactions with
other dependencies.

6.5 Refinement Analysis

To better understand how the RNG Transformer
model is doing refinement, we perform several
analyses of the trained UDify+RNGTr model.!!
An example of this refinement is shown in
Figure 5, where the UDify model predicts an
incorrect dependency graph, but the RNGTr model
modifies it to build the gold dependency tree.

Refinements by Iteration: To measure the
accuracy gained from refinement at different
iterations, we define the following metric:

REL' = RER(LAS' !, LASY))

where RER is relative error reduction, and ¢ is the
refinement iteration. LAS is the accuracy of the
initial parser, UDify in this case.

To illustrate the refinement procedure for dif-
ferent dataset types, we split UD Treebanks based
on their training set size into ‘‘Low-Resource’
and ‘‘High-Resource’’ datasets.'> Table 4 shows
the refinement metric (REL?) after each refine-

"'We choose UDify as the initial parser because the RNGTr
model makes more changes to the parses of UDify than SynTr,
so we can more easily analyse these changes. Results with
SynTr as the initial parser are provided in Appendix D.

12We consider languages that have training data more than
10k sentences as ‘‘High-Resource’’.

d-ajone/oEY/NPE IWII0RIP//:dRY WOY papEOjuMOQ

€ [0B)/E9L¥Z61/85E00 € [9BY/Z91 L 0L/10P/IP!

120z Jequiaoaq €| uo 3sanb Aq Jpd-8GE00

shortest
UDify+RNGTr in the English UD Treebank.

Figure 5: The example corrected by

Dataset Type t=1 t=2 t=3
Low-Resource +13.62% +17.74% +0.16%
High-Resource +29.38% +0.81% +0.41%

Table 4: Refinement analysis (LAS relative
error reduction) of the UDify+RNGTr model for
different refinement steps on the development
sets of UD Treebanks.

ment iteration of the UDify+RNGTr model on
these sets of UD Treebanks.!® Every refinement
step achieves an increase in accuracy, on both
low and high resource languages. But the amount
of improvement generally decreases for higher
refinement iterations. Interestingly, for languages
with less training data, the model cannot learn
to make all corrections in a single step but can
learn to make the remaining corrections in a sec-
ond step, resulting in approximately the same total
percentage of errors corrected as for high resource

BFor these results we apply MST decoding after every
iteration, to allow proper evaluation of the intermediate
graphs.

130

Dependency Type t=1 t=2 t=3
goeswith +57.83% +0.00% +2.61%
aux +66.04% +3.04% +3.12%
cop +48.17% +2.21% +3.01%
mark +44.97% +2.44% +0.00%
amod +45.58% +2.33% +0.00%
det +34.48% +0.00% +2.63%
acl +33.01% +0.89% +0.00%
xcomp +33.33% +0.80% +0.00%
nummod +28.50% +0.00% +1.43%
advcl +29.53% +1.26% +0.25%
dep +22.48% +2.02% +0.37%

Table 5: Relative F-score error reduction of a
selection of dependency types for each refine-
ment step on the concatenation of UD Treebanks
(with UDify as the initial parser).

Tree Type t=1 t=2 t=3

Non-Projective +22.43% +3.92% +0.77%
Projective +29.6% +1.13% +0.0%

Table 6: Relative F-score error reduction of
projective and non-projective trees on the
concatenation of UD Treebanks (with UDify
as the initial parser).

languages. In general, different numbers of iter-
ations may be necessary for different datasets,
allowing efficiency gains by not performing un-
necessary refinement iterations.

Dependency Type Refinement: Table 5 shows
the relative improvement of different dependency
types for the UDify+RNGTr model at each refine-
ment step, ranked and selected by the total relative
error reduction. A huge amount of improvement is
achieved for all these dependency types at the first
iteration step, and then we have a considerable
further improvement for many of the remaining
refinement steps. The later refinement steps are
particularly useful for idiosyncratic dependencies
which require a more global view of the sentence,
such as auxiliary (aux) and copula (cop). A similar
pattern of improvements is found when SynTr is
used as the initial parser, reported in Appendix A.

Refinement by Projectivity: Table 6 shows
the relative improvement of each refinement step
for projective and non-projective trees. Although
the total gain is slightly higher for projective

d-ajone/oEY/NPE IWII0RIP//:dRY WOY papEOjuMOQ

€ [0B)/E9L¥Z61/85E00 € [9BY/Z91 L 0L/10P/IP!

120z Jequiaoaq €| uo 3sanb Aq Jpd-8GE00

trees, non-projective trees require more iterations
to achieve the best results. Presumably, this is
because non-projective trees have more complex
non-local interactions between dependencies,
which requires more refinement iterations to fix
incorrect dependencies. This seems to contradict
the common belief that non-projective parsing is
better done with factorized graph-based models,
which do not model these interactions.

7 Conclusion

In this paper, we propose a novel architecture
for structured prediction, Recursive Non-auto-
regressive Graph-to-Graph Transformer (RNG
Transformer), to iteratively refine arbitrary
graphs. Given an initial graph, RNG Transformer
learns to predict a corrected graph over the
same set of nodes. Each iteration of refinement
predicts the edges of the graph in a non-auto-
regressive fashion, but conditions these predic-
tions on the entire graph from the previous
iteration. This graph conditioning and prediction
are made with the Graph-to-Graph Transformer
architecture (Mohammadshahi and Henderson,
2020), which can capture complex patterns of
interdependencies between graph edges and can
exploit BERT (Devlin et al., 2019) pre-training.

We evaluate the RNG Transformer architecture
by applying it to the problematic structured
prediction task of syntactic dependency parsing.
In the process, we also propose a graph-based
dependency parser (SynTr), which is the same as
one iteration of our RNG Transformer model but
without graph inputs. Evaluating on 13 languages
of the Universal Dependencies Treebanks, the
English and Chinese Penn Treebanks, and the
German CoNLL 2009 shared task treebank, our
SynTr model already significantly outperforms
previous state-of-the-art models on all these
treebanks. Even with this powerful initial parser,
RNG Transformer refinement almost always
improves accuracies, setting new state-of-the-art
accuracies for all treebanks. RNG Transformer
consistently results in improvement regardless
of the initial parser, reaching around the same
level of accuracy even when it is given an
empty initial parse, demonstrating the power of
this iterative refinement method. Error analysis
suggests that RNG Transformer refinement is
particularly useful for complex interdependencies
in the output structure.

131

The RNG Transformer architecture is a very
general and powerful method for structured pre-
diction, which could easily be applied to other
NLP tasks. It would especially benefit tasks that
require capturing complex structured interdepen-
dencies between graph edges, without losing the
computational benefits of a non-autoregressive
model.

Acknowledgment

We are grateful to the Swiss National Science
Foundation, grant CRSII5-180320, for funding
this work. We also thank Lesly Miculicich, other
members of the Idiap NLU group, the anonymous
reviewers, and Yue Zhang for helpful discussions
and suggestions.

References

Daniel Andor, Chris Alberti, David Weiss,
Aliaksei Severyn, Alessandro Presta, Kuzman
Ganchev, Slav Petrov, and Michael Collins.
2016. Globally normalized transition-based
neural networks. In Proceedings of the 54th
Annual Meeting of the Association for Compu-
tational Linguistics (Volume 1: Long Papers),
pages 2442-2452. Association for Compu-
tational Linguistics, Berlin, Germany, DOI:
https://doi.org/10.18653/v1/P16
-1231

Giuseppe Attardi and Massimiliano Ciaramita.
2007. Tree revision learning for dependency
parsing. In Human Language Technologies
2007: The Conference of the North American
Chapter of the Association for Computational
Linguistics;, Proceedings of the Main Con-
ference, pages 388-395, Rochester, New York.
Association for Computational Linguistics.

Abhijeet Awasthi, Sunita Sarawagi, Rasna
Goyal, Sabyasachi Ghosh, and Vihari Piratla.
2019. Parallel iterative edit models for local
sequence transduction. In Proceedings of the
2019 Conference on Empirical Methods in
Natural Language Processing and the 9th
International Joint Conference on Natural
Language Processing (EMNLP-1IJCNLP),
pages 4251-4261.DOIL: https://doi.org
/10.18653/v1/D19-1435

[0€3/291 L0 L/10p/3pd-8joile/|0 Y NPa W J08.1P//:dRY WOl papeojumoq

e [0B)/E9L¥Z61/8GE00 €

120z Jequiaoaq €| uo 3sanb Aq Jpd-8GE00

https://doi.org/10.18653/v1/P16-1231
https://doi.org/10.18653/v1/P16-1231
https://doi.org/10.18653/v1/D19-1435
https://doi.org/10.18653/v1/D19-1435

Miguel Ballesteros, Yoav Goldberg, Chris Dyer,

and Noah A. Smith. 2016. Training with explo-
ration improves a greedy stack LSTM parser. In
Proceedings of the 2016 Conference on Empir-
ical Methods in Natural Language Processing,
pages 2005-2010, Austin, Texas. Association
for Computational Linguistics. DOL: https://
doi.org/10.18653/v1/D16-1211

Xavier Carreras. 2007. Experiments with a higher-

order projective dependency parser. In Proceed-
ings of the 2007 Joint Conference on Empirical
Methods in Natural Language Processing
and Computational Natural Language Learn-
ing (EMNLP-CoNLL), pages 957-961, Prague,
Czech Republic. Association for Computational
Linguistics.

Danqgi Chen and Christopher Manning. 2014.

A fast and accurate dependency parser using
neural networks. In Proceedings of the 2014
Conference on Empirical Methods in Natural
Language Processing (EMNLP), pages 740-750,
Doha, Qatar. Association for Computational
Linguistics. DOI: https://doi.org/10
.3115/v1/D14-1082

Huadong Chen, Shujian Huang, David Chiang,

and Jiajun Chen. 2017. Improved neural ma-
chine translation with a syntax-aware encoder
and decoder. Proceedings of the 55th Annual
Meeting of the Association for Computational
Linguistics (Volume 1: Long Papers).

Hao Cheng, Hao Fang, Xiaodong He, Jianfeng

Gao, and Li Deng. 2016. Bi-directional atten-
tion with agreement for dependency parsing. In
Proceedings of the 2016 Conference on Empir-
ical Methods in Natural Language Processing,
pages 2204-2214, Austin, Texas, Association
for Computational Linguistics. DOI: https://
doi.org/10.18653/v1/P17-1177

Zhiyi Chi. 1999. Statistical properties of proba-

bilistic context-free grammars. Computational
Linguistics, 25(1):131-160.

Chu Yoeng-jin and Liu Tseng-hong. 1965 On

the shortest arborescence of a directed graph.
Science Sinica, 14:1396—-1400.

James Cross and Liang Huang. 2016. Incremental

parsing with minimal features using bi-
directional LSTM. In Proceedings of the 54th
Annual Meeting of the Association for Com-

putational Linguistics (Volume 2: Short
Papers), pages 32-37, Berlin, Germany. Asso-
ciation for Computational Linguistics.

Miryam de Lhoneux, Sara Stymne, and Joakim

Nivre. 2017. Old school vs. new school: Com-
paring transition-based parsers with and without
neural network enhancement. In Proceedings
of the 15th International Workshop on
Treebanks and Linguistic Theories (TLT15),
pages 99-110.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and

Kristina Toutanova. 2019. BERT: Pre-training
of deep bidirectional transformers for language
understanding. In Proceedings of the 2019
Conference of the North American Chapter of
the Association for Computational Linguistics:
Human Language Technologies, Volume 1
(Long and Short Papers), pages 4171-4186,
Minneapolis, Minnesota. Association for
Computational Linguistics.

Timothy Dozat and Christopher D. Manning.

2016. Deep biaffine attention for neural
dependency parsing.

Chris Dyer, Miguel Ballesteros, Wang Ling,

Austin Matthews, and Noah A. Smith. 2015.
Transition-based dependency parsing with
stack long short-term memory. In Proceedings
of the 53rd Annual Meeting of the Association
for Computational Linguistics and the 7th Inter-
national Joint Conference on Natural Language
Processing (Volume 1: Long Papers),
pages 334-343, Beijing, China. Association for
Computational Linguistics. DOI: https://
doi.org/10.3115/v1/P15-1033

Jack Edmonds. 1967. Optimum branchings. Jour-

nal of Research of the national Bureau of

Standards B, 71(4):233-240.DOI: https://
doi.org/10.6028/jres.071B.032

Jason M. Eisner. 1996. Three new probabilistic

models for dependency parsing: An explora-
tion. In COLING 1996 Volume 1: The 16th
International Conference on Computational
Linguistics. DOI: https://doi.org/10
.3115/992628.992688

Daniel Fernandez-Gonzalez and Carlos Gémez-

Rodriguez. 2019. Left-to-right dependency
parsing with pointer networks. In Proceedings
of the 2019 Conference of the North American

d-ajone/oEY/NPE IWII0RIP//:dRY WOY papEOjuMOQ

€ [0B)/E9L¥Z61/85E00 € [9BY/Z91 L 0L/10P/IP!

120z Jequiaoaq €| uo 3sanb Aq Jpd-8GE00

https://doi.org/10.18653/v1/D16-1211
https://doi.org/10.18653/v1/D16-1211
https://doi.org/10.3115/v1/D14-1082
https://doi.org/10.3115/v1/D14-1082
https://doi.org/10.18653/v1/P17-1177
https://doi.org/10.18653/v1/P17-1177
https://doi.org/10.3115/v1/P15-1033
https://doi.org/10.3115/v1/P15-1033
https://doi.org/10.6028/jres.071B.032
https://doi.org/10.6028/jres.071B.032
https://doi.org/10.3115/992628.992688
https://doi.org/10.3115/992628.992688

Chapter of the Association for Computational
Linguistics: Human Language Technologies,
Volume 1 (Long and Short Papers),
pages 710-716, Minneapolis, Minnesota.
Association for Computational Linguistics.

Jan Haji¢, Massimiliano Ciaramita, Richard
Johansson, Daisuke Kawahara, Maria Antonia
Marti, Lluis Marquez, Adam Meyers, Joakim
Nivre, Sebastian Padd, Jan gtépz’mek, Pavel
Stranak, Mihai Surdeanu, Nianwen Xue, and
Yi Zhang. 2009. The CoNLL-2009 shared
task: Syntactic and semantic dependencies in
multiple languages. In Proceedings of the Thir-
teenth Conference on Computational Natural
Language Learning (CoNLL 2009): Shared
Task, pages 1-18, Boulder, Colorado. Asso-
ciation for Computational Linguistics. DOI:
https://doi.org/10.3115/1596409
.1596411

Keith Hall and Vaclav Novak. 2005. Corrective

modeling for non-projective dependency
parsing. In Proceedings of the Ninth Interna-
tional Workshop on Parsing Technology,
pages 42-52, Vancouver, British Columbia.
Association for Computational Linguistics
DOI: https://doi.org/10.3115/1654494
.1654499, PMID: 15739952

Felix Hennig and Arne Kohn. 2017. Dependency
tree transformation with tree transducers. In
Proceedings of the NoDaLiDa 2017 Workshop
on Universal Dependencies (UDW 2017),
pages 58-66.

Tao Ji, Yuanbin Wu, and Man Lan. 2019.

Graph-based dependency parsing with graph
neural networks. In Proceedings of the 57th
Annual Meeting of the Association for Com-
putational Linguistics, pages 2475-2485,
Florence, Italy. Association for Computational
Linguistics. DOI: https://doi.org/10
.18653/v1/P19-1237

David R. Karger, Philip N. Klein, and Robert E.
Tarjan. 1995. A randomized linear-time algo-
rithm to find minimum spanning trees. Journal
of the ACM (JACM), 42(2):321-328.

tations. Transactions of the Association for
Computational Linguistics, 4:313-327.

K. Knight and J. Graehl. 2005. An overview

of probabilistic tree transducers for natural
language processing. In A. Gelbukh, editor,
Computational Linguistics and Intelligent
Text Processing. CICLing 2005. Lecture Notes
in Computer Science, vol 3406, pages 1-24,
Springer, Berlin, Heidelberg. DOI: https: //
doi.org/10.1007/978-3-540-30586
-6_1

Dan Kondratyuk and Milan Straka. 2019.

75 languages, 1 model: Parsing universal
dependencies universally. Proceedings of the
2019 Conference on Empirical Methods in
Natural Language Processing and the 9th
International Joint Conference on Natural Lan-
guage Processing (EMNLP-1IJCNLP). DOI:
https://doi.org/10.18653/v1/D19

-1279

Terry Koo and Michael Collins. 2010. Efficient

third-order dependency parsers. In Proceedings
of the 48th Annual Meeting of the Association
for Computational Linguistics, pages 1-11.

Artur Kulmizev, Miryam de Lhoneux, Johannes

Gontrum, Elena Fano, and Joakim Nivre.
2019. Deep contextualized word embeddings
in transition-based and graph-based depen-
dency parsing - a tale of two parsers revisited.
Proceedings of the 2019 Conference on
Empirical Methods in Natural Language
Processing and the 9th International Joint
Conference on Natural Language Processing
(EMNLP-IJCNLP). DOI: https://doi
.org/10.18653/v1/D19-1277

Adhiguna Kuncoro, Miguel Ballesteros, Lingpeng

Kong, Chris Dyer, and Noah A. Smith. 2016.
Distilling an ensemble of greedy dependency
parsers into one MST parser. In Proceed-
ings of the 2016 Conference on Empirical
Methods in Natural Language Processing,
pages 1744-1753, Austin, Texas. Associ-
ation for Computational Linguistics. DOI:
https://doi.org/10.18653/v1/D16
-1180

d-ajone/oEY/NPE IWII0RIP//:dRY WOY papEOjuMOQ

€ [0B)/E9L¥Z61/85E00 € [9BY/Z91 L 0L/10P/IP!

120z Jequiaoaq €| uo 3sanb Aq Jpd-8GE00

Eliyahu Kiperwasser and Yoav Goldberg. 2016.
Simple and accurate dependency parsing Jason Lee, Elman Mansimov, and Kyunghyun
using bidirectional LSTM feature represen- Cho. 2018. Deterministic non-autoregressive

133

https://doi.org/10.3115/1596409.1596411
https://doi.org/10.3115/1596409.1596411
https://doi.org/10.3115/1654494.1654499
https://doi.org/10.3115/1654494.1654499
https://europepmc.org/article/MED/15739952
https://doi.org/10.18653/v1/P19-1237
https://doi.org/10.18653/v1/P19-1237
https://doi.org/10.1007/978-3-540-30586-6_1
https://doi.org/10.1007/978-3-540-30586-6_1
https://doi.org/10.1007/978-3-540-30586-6_1
https://doi.org/10.18653/v1/D19-1279
https://doi.org/10.18653/v1/D19-1279
https://doi.org/10.18653/v1/D19-1277
https://doi.org/10.18653/v1/D19-1277
https://doi.org/10.18653/v1/D16-1180
https://doi.org/10.18653/v1/D16-1180

neural sequence modeling by iterative refine-
ment. In Proceedings of the 2018 Conference
on Empirical Methods in Natural Lan-
guage Processing, pages 1173—-1182, Brussels,
Belgium. Association for Computational
Linguistics. DOI: https://doi.org/10
.18653/v1/D18-1149

Miryam de Lhoneux, Sara Stymne, and
Joakim Nivre. 2017. Old school vs. new
school: Comparing transition-based parsers
with and without neural network enhancement.
In Proceedings of the 15th International
Workshop on Treebanks and Linguistic
Theories (TLT15), pages 99-110.

Zuchao Li, Hai Zhao, and Kevin Parnow. 2020.

Global greedy dependency parsing. In The
Thirty-Fourth AAAI Conference on Artificial
Intelligence, AAAI 2020, The Thirty-Second
Innovative Applications of Artificial Intel-
ligence Conference, IAAI 2020, The Tenth
AAAI Symposium on Educational Advances in
Artificial Intelligence, EAAI 2020, New York,
NY, USA, February 7-12, 2020, pages
8319-8326. AAAI Press. DOI: https://
doi.org/10.1609/aaai.v34105.6348

Jared Lichtarge, Christopher Alberti, Shankar

Kumar, Noam Shazeer, and Niki Parmar.
2018. Weakly supervised grammatical error
correction using iterative decoding. arXiv
preprint arXiv:1811.01710.

Xuezhe Ma and Eduard Hovy. 2017. Neural

probabilistic model for non-projective MST
parsing. In Proceedings of the Eighth Inter-
national Joint Conference on Natural Language
Processing (Volume 1: Long Papers),
pages 59-69, Taipei, Taiwan. Asian Federation
of Natural Language Processing.

Xuezhe Ma, Zecong Hu, Jingzhou Liu, Nanyun
Peng, Graham Neubig, and Eduard Hovy.
2018. Stack-pointer networks for dependency
parsing. In Proceedings of the 56th Annual
Meeting of the Association for Computational
Linguistics (Volume 1: Long Papers),
pages 1403—-1414, Melbourne, Australia. Asso-
ciation for Computational Linguistics.

Xuezhe Ma and Hai Zhao. 2012. Fourth-order

dependency parsing. In Proceedings of
COLING 2012: Posters, pages 785-796,

134

Mumbai, India. The COLING 2012 Organizing
Committee.

Diego Marcheggiani and Ivan Titov. 2017.

Encoding sentences with graph convolutional
networks for semantic role labeling. In Pro-
ceedings of the 2017 Conference on Empi-
rical Methods in Natural Language Processing,
pages 1506-1515, Copenhagen, Denmark.
Association for Computational Linguistics.
DOI: https://doi.org/10.18653/v1
/D17-1159

Mitchell P. Marcus, Beatrice Santorini, and

Mary Ann Marcinkiewicz. 1993. Building a
large annotated corpus of English: The Penn
Treebank. Computational Linguistics, 19(2):
313-330. DOI: https://doi.org/10
.21236/ADA273556

Ryan McDonald, Koby Crammer, and Fernando

Pereira. 2005a. Online large-margin training
of dependency parsers. In Proceedings of
the 43rd Annual Meeting of the Association
for Computational Linguistics (ACL’05),
pages 91-98, Ann Arbor, Michigan. Asso-
ciation for Computational Linguistics. DOI:
https://doi.org/10.3115/1219840

.1219852

Ryan McDonald and Joakim Nivre. 2011.

Analyzing and integrating dependency parsers.
Computational Linguistics, 37(1):197-230.
DOI:https://doi.org/10.1162/coli
-~a_00039

Ryan McDonald and Fernando Pereira. 2006.

Online learning of approximate dependency
parsing algorithms. In 77/th Conference of
the European Chapter of the Association
for Computational Linguistics, Trento, Italy.
Association for Computational Linguistics.

Ryan McDonald, Fernando Pereira, Kiril Ribarov,

and Jan Haji¢. 2005b. Non-projective depen-
dency parsing using spanning tree algorithms.
In Proceedings of Human Language
Technology Conference and Conference on
Empirical Methods in Natural Language
Processing, pages 523-530, Vancouver,
British Columbia, Canada. Association for
Computational Linguistics. DOI: https://
doi.org/10.3115/1220575.1220641

d-ajone/oEY/NPE IWII0RIP//:dRY WOY papEOjuMOQ

€ [0B)/E9L¥Z61/85E00 € [9BY/Z91 L 0L/10P/IP!

120z Jequiaoaq €| uo 3sanb Aq Jpd-8GE00

https://doi.org/10.18653/v1/D18-1149
https://doi.org/10.18653/v1/D18-1149
https://doi.org/10.1609/aaai.v34i05.6348
https://doi.org/10.1609/aaai.v34i05.6348
https://doi.org/10.18653/v1/D17-1159
https://doi.org/10.18653/v1/D17-1159
https://doi.org/10.21236/ADA273556
https://doi.org/10.21236/ADA273556
https://doi.org/10.3115/1219840.1219852
https://doi.org/10.3115/1219840.1219852
https://doi.org/10.1162/coli_a_00039
https://doi.org/10.1162/coli_a_00039
https://doi.org/10.3115/1220575.1220641
https://doi.org/10.3115/1220575.1220641

Alireza Mohammadshahi and James Henderson.
2020. Graph-to-graph transformer for
transition-based dependency parsing. In Pro-
ceedings of the 2020 Conference on Empirical
Methods in Natural Language Processing:
Findings, pages 3278-3289, Online. Associ-
ation for Computational Linguistics.

Jens Nilsson and Joakim Nivre. 2008. MaltEval:
an evaluation and visualization tool for
dependency parsing. In LREC 2008.

Joakim Nivre, Mitchell Abrams, Zeljko Agic,
Lars Ahrenberg, Lene Antonsen, Katya Aplonova,
Maria Jesus Aranzabe, Gashaw Arutie,
Masayuki Asahara, Luma Ateyah, Mohammed
Attia, Aitziber Atutxa, Liesbeth Augustinus,
Elena Badmaeva, Miguel Ballesteros, Esha
Banerjee, Sebastian Bank, Verginica Barbu
Mititelu, Victoria Basmov, John Bauer, Sandra
Bellato, Kepa Bengoetxea, Yevgeni Berzak,
Irshad Ahmad Bhat, Riyaz Ahmad Bhat,
Erica Biagetti, Eckhard Bick, Rogier Blokland.
2018. Universal dependencies 2.3. LINDAT/
CLARIN digital library at the Institute of
Formal and Applied Linguistics (UFAL),
Faculty of Mathematics and Physics, Charles
University.

Joakim Nivre and Mario Scholz. 2004. Determin-
istic dependency parsing of English text. In
COLING 2004: Proceedings of the 20th Inter-
national Conference on Computational Lin-
guistics, pages 64-70, Geneva, Switzerland.
COLING DOI: https://doi.org/10
.3115/1220355.1220365

Roman Novak, Michael Auli, and David Grangier.
2016. Iterative refinement for machine
translation.

Deric Pang, Lucy H. Lin, and Noah A. Smith.
2019. Improving natural language inference
with a pretrained parser.

Matthew Peters, Mark Neumann, Mohit Iyyer,
Matt Gardner, Christopher Clark, Kenton Lee,
and Luke Zettlemoyer. 2018. Deep contextu-
alized word representations. In Proceedings of
the 2018 Conference of the North American
Chapter of the Association for Computational
Linguistics: Human Language Technologies,
Volume 1 (Long Papers), pages 2227-2237,
New Orleans, Louisiana. Association for

135

Computational Linguistics. DOI: https://
doi.org/10.18653/v1/N18-1202

Girogion Satta and Eric Brill. 1996. Efficient
transformation-based parsing. In 34th Annual
Meeting of the Association for Computa-
tional Linguistics, pages 255-262, Santa Cruz,
California, USA. Association for Computa-
tional Linguistics. DOI: https://doi.org
/10.3115/981863.981897

Peter Shaw, Jakob Uszkoreit, and Ashish
Vaswani. 2018. Self-attention with relative
position representations. In Proceedings of
the 2018 Conference of the North American
Chapter of the Association for Computational
Linguistics: Human Language Technologies,
Volume 2 (Short Papers), pages 464-468,
New Orleans, Louisiana. Association for
Computational Linguistics DOI: https://
doi.org/10.18653/v1/N18-2074

Aaron Smith, Miryam de Lhoneux, Sara Stymne,
and Joakim Nivre. 2018. An investigation
of the interactions between pre-trained word
embeddings, character models and POS
tags in dependency parsing. In Proceed-
ings of the 2018 Conference on Empirical
Methods in Natural Language Processing,
pages 2711-2720, Brussels, Belgium. Asso-
ciation for Computational Linguistics. DOI:
https://doi.org/10.18653/v1/D18
-1291

Milan Straka. 2018. UDPipe 2.0 prototype at
CoNLL 2018 UD shared task. In Proceedings
of the CoNLL 2018 Shared Task: Multilingual
Parsing from Raw Text to Universal Depen-
dencies, pages 197-207, Brussels, Belgium.
Association for Computational Linguistics.

Ilan Tchernowitz, Liron Yedidsion, and Roi
Reichart. 2016. Effective greedy inference
for graph-based non-projective dependency
parsing. In Proceedings of the 2016 Conference
on Empirical Methods in Natural Language
Processing, pages 711-720, Austin, Texas.
Association for Computational Linguistics.
DOI: https://doi.org/10.18653/v1
/D16-1068

Ivan Titov and James Henderson. 2007. A latent
variable model for generative dependency
parsing. In Proceedings of the Tenth Interna-
tional Conference on Parsing Technologies,

d-ajone/oEY/NPE IWII0RIP//:dRY WOY papEOjuMOQ

€ [0B)/E9L¥Z61/85E00 € [9BY/Z91 L 0L/10P/IP!

120z Jequiaoaq €| uo 3sanb Aq Jpd-8GE00

https://doi.org/10.3115/1220355.1220365
https://doi.org/10.3115/1220355.1220365
https://doi.org/10.18653/v1/N18-1202
https://doi.org/10.18653/v1/N18-1202
https://doi.org/10.3115/981863.981897
https://doi.org/10.3115/981863.981897
https://doi.org/10.18653/v1/N18-2074
https://doi.org/10.18653/v1/N18-2074
https://doi.org/10.18653/v1/D18-1291
https://doi.org/10.18653/v1/D18-1291
https://doi.org/10.18653/v1/D16-1068
https://doi.org/10.18653/v1/D16-1068

pages 144-155, Prague, Czech Republic. Asso-
ciation for Computational Linguistics. DOI:
https://doi.org/10.3115/1621410
.1621428

Ashish Vaswani, Noam Shazeer, Niki Parmar,

Jakob Uszkoreit, Llion Jones, Aidan N. Gomez,
Lukasz Kaiser, and Illia Polosukhin. 2017.
Attention is all you need.

Wenhui Wang and Baobao Chang. 2016. Graph-

based dependency parsing with bidirectional
LSTM. In Proceedings of the 54th
Annual Meeting of the Association for
Computational Linguistics (Volume 1: Long
Papers), pages 2306-2315, Berlin, Germany.
Association for Computational Linguistics.

David Weiss, Chris Alberti, Michael Collins,

and Slav Petrov. 2015. Structured training for
neural network transition-based parsing. In
Proceedings of the 53rd Annual Meeting of
the Association for Computational Linguistics
and the 7th International Joint Conference on
Natural Language Processing (Volume 1: Long
Papers), pages 323-333, Beijing, China. Asso-
ciation for Computational Linguistics. DOI:
https://doi.org/10.3115/v1/P15-1032
-1032 PMID: 26003913 PMCID:
PMC4695984

Thomas Wolf, Lysandre Debut, Victor Sanh,

Julien Chaumond, Clement Delangue, Anthony
Moi, Pierric Cistac, Tim Rault, R’emi Louf,
Morgan Funtowicz, and Jamie Brew. 2019.
Huggingface’s transformers: State-of-the-art
natural language processing. ArXiv, abs/
1910.03771. DOI: https://doi.org/10
.18653/v1/2020 .emnlp-demos . 6, PMCID:
PMC7365998

Yonghui Wu, Mike Schuster, Zhifeng Chen,

Quoc V Le, Mohammad Norouzi, Wolfgang
Macherey, Maxim Krikun, Yuan Cao, Qin Gao,
Klaus Macherey, and others. 2016. Google’s
neural machine translation system: Bridging the
gap between human and machine translation.
arXiv preprint arXiv:1609.08144.

Nianwen Xue, Fu-Dong Chiou, and Martha

Palmer. 2002. Building a large-scale annotated
Chinese corpus. In COLING 2002: The 19th
International Conference on Computational
Linguistics.

136

Hiroyasu Yamada and Yuji Matsumoto.

2003. Statistical dependency analysis with
support vector machines. In Proceedings of
the Eighth International Conference on Par-
sing Technologies, pages 195-206. Nancy,
France.

Daniel Zeman, Jan Haji¢, Martin Popel, Martin

Potthast, Milan Straka, Filip Ginter, Joakim
Nivre, and Slav Petrov. 2018. CoNLL 2018
shared task: Multilingual parsing from raw text
to universal dependencies. In Proceedings of
the CoNLL 2018 Shared Task: Multilingual
Parsing from Raw Text to Universal
Dependencies, pages 1-21, Brussels, Belgium.
Association for Computational Linguistics.

Hao Zhang and Ryan McDonald. 2012. Gene-

ralized higher-order dependency parsing with
cube pruning. In Proceedings of the 2012 Joint
Conference on Empirical Methods in Natu-
ral Language Processing and Computational
Natural Language Learning, pages 320-331,
Jeju Island, Korea. Association for Computa-
tional Linguistics.

Yue Zhang and Joakim Nivre. 2011. Transition-

based dependency parsing with rich non-local
features. In Proceedings of the 49th Annual
Meeting of the Association for Computa-
tional Linguistics: Human Language Technolo-
gies, pages 188-193, Portland, Oregon, USA.
Association for Computational Linguistics.
https://www.aclweb.org/anthology
/P11-2033.

Yuhao Zhang, Peng Qi, and Christopher D.

Manning. 2018. Graph convolution over pruned
dependency trees improves relation extrac-
tion. In Proceedings of the 2018 Conference
on Empirical Methods in Natural Language
Processing, pages 2205-2215, Brussels,
Belgium. Association for Computational Lin
guistics. DOI: https://doi.org/10
.18653/v1/D18-1244

Xiaoqing Zheng. 2017. Incremental graph-based

neural dependency parsing. In Proceedings
of the 2017 Conference on Empirical
Methods in Natural Language Processing,
pages 1655-1665, Copenhagen, Denmark.
Association for Computational Linguistics.
PMID: 28199123

d-ajone/oEY/NPE IWII0RIP//:dRY WOY papEOjuMOQ

€ [0B)/E9L¥Z61/85E00 € [9BY/Z91 L 0L/10P/IP!

120z Jequiaoaq €| uo 3sanb Aq Jpd-8GE00

https://doi.org/10.3115/1621410.1621428
https://doi.org/10.3115/1621410.1621428
https://doi.org/10.3115/v1/P15-1032
https://doi.org/10.3115/v1/P15-1032
https://europepmc.org/article/MED/26003913
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4695984
https://doi.org/10.18653/v1/2020.emnlp-demos.6
https://doi.org/10.18653/v1/2020.emnlp-demos.6
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7365998
https://www.aclweb.org/anthology/P11-2033
https://www.aclweb.org/anthology/P11-2033
https://doi.org/10.18653/v1/D18-1244
https://doi.org/10.18653/v1/D18-1244
https://europepmc.org/article/MED/28199123

Appendix A Implementation Details

For better convergence, we use two different optimisers for pre-trained parameters and randomly
initialised parameters. We apply bucketed batching, grouping sentences by their lengths into the
same batch to speed up the training. Early stopping (based on LAS) is used during training.
We use ‘‘bert-multilingual-cased’” for UD Treebanks.!* For English Penn Treebank, we use
‘‘bert-base-uncased’’, and for Chinese Penn Treebank, we use °‘bert-base-chinese.”” We apply
pre-trained weights of ‘‘bert-base-german-cased’” (Wolf et al., 2019) for German CoNLL
shared task 2009. Here is the list of hyper-parameters for RNG Transformer model:

Component Specification Component Specification
Optimiser BertAdam Feed-Forward layers (arc)

Base Learning rate 2e-3 No. Layers 2
BERT Learning rate le-5 Hidden size 500
Adam Betas(by,bs) (0.9,0.999) Drop-out 0.33
Adam Epsilon le-5 Negative Slope 0.1
Weight Decay 0.01 Feed-Forward layers (rel)
Max-Grad-Norm 1 No. Layers 2
Warm-up 0.01 Hidden size 100
Self-Attention Drop-out 0.33
No. Layers 12 Negative Slope 0.1
No. Heads 12 Epoch 200
Embedding size 768 Patience 100
Max Position Embedding 512

Table 7: Hyper-parameters for training on all Treebanks. We stop training, if there is no
improvement in the current epoch, and the number of the current epoch is bigger than the
summation of last checkpoint and *‘Patience.”’

Appendix B Number of Parameters and Run Time Details:

We provide average run times and the number of parameters of each model on English Penn Treebanks,
and English UD Treebank. All experiments are computed with a graphics processing unit (GPU),
specifically the NVIDIA V100 model. We leave the issue of improving run times to future work.

Model No. parameters Training time (HH:MM:SS) Evaluation time (seconds)
Biaffine (Dozat and Manning, 2016) 13.5M 4:39:18 3.1
RNGTr 206.3M 24:10:40 20.6
SynTr 206.2M 6:56:40 7.5

Table 8: Run time details of our models on English Penn Treebank.

Model Training time (HH:MM:SS) Evaluation time (seconds)
UDify (Kondratyuk and Straka, 2019) 2:22:47 4.0
RNGTr 8:14:26 13.6
SynTr 1:29:43 3.7

Table 9: Run time details of our models on English UD Treebank.

“https://github.com/google-research/bert. For Chinese and Japanese, we use pre-trained *‘bert-base-
chinese’” and ‘‘bert-base-japanese’” models (Wolf et al., 2019) respectively.

137

d-ajone/oEY/NPE IWII0RIP//:dRY WOY papEOjuMOQ

€ [0B)/E9L¥Z61/85E00 € [9BY/Z91 L 0L/10P/IP!

120z Jequiaoaq €| uo 3sanb Aq Jpd-8GE00

https://github.com/google-research/bert

Appendix C Unlabeled Attachment Scores for UD Treebanks

Language Multi Multi Multi+Mono Mono Mono Mono
UDPipe UDify UDify+RNGTr SynTr SynTr+RNGTr Empty+RNGTr
Arabic 87.54 87.72 89.73(+16.37%) 89.89 89.94(+0.49%) 89.68
Basque 86.11 84.94 90.49(+36.85%) 90.46 90.90(+4.61%) 90.69
Chinese 84.64 87.93 91.04(+25.76%) 91.38 92.47(+12.64%) 91.81
English 89.63 90.96 92.81(+20.46%) 92.92 93.08(+2.26%) 92.77
Finnish 89.88 86.42 93.49(+52.06%) 93.52 93.55(+0.47%) 93.36
Hebrew 89.70 91.63 93.03(+16.73%) 93.36 93.36(0.0%) 92.80
Hindi 94.85 95.13 96.44(+26.9%) 96.33 96.56(+6.27%) 96.37
Italian 93.49 95.54 95.72(+4.04%) 96.03 96.10(+1.76%) 95.98
Japanese 95.06 94.37 96.25(+33.40%) 96.43 96.54(+3.08%) 96.37
Korean 87.70 82.74 91.32(+49.71%) 91.35 91.49(+1.62%) 91.28
Russian 93.80 94.83 95.54(+13.73%) 95.53 95.47(—1.34%) 95.38
Swedish 89.63 91.91 93.72(+22.37%) 93.79 94.14(+5,64%) 94.14
Turkish 74.19 74.56 77.774(+12.5%) 77.98 78.50(+2.37%) 77.49
Average 88.94 89.13 92.10 92.23 92.46 92.16

Table 10: Unlabeled attachment scores on UD Treebanks for monolingual (SynTr) and multilingual
(UDPipe (Straka, 2018) and UDify (Kondratyuk and Straka, 2019)) baselines, and the refined models
(+RNGTT), pre-trained with BERT (Devlin et al., 2019). Bold scores are not significantly different

from the best score in that row (with o = 0.01).

Appendix D SynTr Refinement Analysis

Dependency Type t=1 t=2 t=3

clf +17.60% +0.00% +0.00%
discourse +9.70% +0.00% +0.00%
aux +3.57% +3.71% +0.00%
case +2.78% +2.86% +0.00%
root +2.27% +2.33% +0.00%
nummod +2.68% +1.38% +0.00%
acl +3.74% +0.29% +0.00%
orphan +1.98% +1.24% +0.00%
dep +1.99% +0.80% +0.00%
cop +1.55% +0.78% +0.00%
advcl +1.98% +0.25% +0.00%
nsubj +1.07% +0.54% +0.00%

Table 11: Relative F-score error reduction, when SynTr is the
initial parser, of different dependency types for each refinement
step on the concatenation of UD Treebanks, ranked and selected
by the total relative error reduction.

Dataset Type t=1 t=2 +t=3 Tree type t=1 t=2 +t=3

Low-Resource 2.46% 0.09% 0.08% Non-Projective 5% 1.63% 0.13%

High-Resource 0.81% 0.80% 0.32% Projective 0.6% 0.61% 0.13%
(@) (b)

Table 12: Refinement analysis of the SynTr+RNGTr model for different refinement steps. (a) Relative LAS error
reduction on the low-resource and high-resource subsets of UD Treebanks. (b) Relative F-score error reduction of

projective and non-projective trees on the concatenation of UD Treebanks.

138

[0€3/291 L0 L/10p/3pd-8joile/|0 Y NPa W J08.1P//:dRY WOl papeojumoq

e [0B)/E9L¥Z61/8GE00 €

120z Jequiaoaq €| uo 3sanb Aq Jpd-8GE00

	Introduction
	Dependency Parsing
	RNG Transformer
	Encoder
	Input Embeddings
	Self-Attention Mechanism

	Decoder
	Scoring Function
	Decoding Algorithms

	Training

	Initial Parsers
	Experimental Setup
	Datasets
	Baseline Models
	Implementation Details

	Results and Discussion
	The Number of Refinement Iterations
	UD Treebank Results
	Penn Treebank and GermanCorpus Results
	Error Analysis
	Refinement Analysis

	Conclusion

