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ABSTRACT

Recent work shows that it is possible to use deep learning
techniques to sense the speaker’s respiratory parameters di-
rectly from a speech signal. This can be a beneficial option for
future telehealth services. In this paper, we dive deeper and
study how respiratory effort depends on the linguistic content
of the speech utterance. This is obtained by analysis of respi-
ratory belt sensor data and phoneme-aligned speech data. The
results show, for example, that the respiratory effort was high-
est for fricatives, compared to other broad phonetic classes,
and especially high for the glottal consonants. The insights
may help to develop more efficient protocols for respiratory
health monitoring in telehealth applications.

Index Terms— breathing signal, phonetics, Respiratory
effort, speech technology, signal processing.

1. INTRODUCTION

Understanding the relationship between respiration and
speech production has been an important field of research
and the current pandemic situation of Covid-19 accelerates
this need [1]. Our previous research showed that respiratory
or breathing signals could be obtained automatically from
the speech signal using deep learning models [2, 3]. In this
study, we explore the relationship between breathing signal
and speech production at the phoneme level.

Earlier studies on respiratory effort and articulation activ-
ity during the speech were performed on sustained vowels,
selected consonants, and single utterances, and they showed
that respiratory flow volume measurements are relevant for
speech production [4, 5]. However, the current authors are
not aware of an earlier systematic studies on relations of res-
piratory effort and phonetic classes in normal conversational
or read speech content, possibly due to the difficulties in
aligning speech data with other sensor data at the phoneme
level. In the current paper the alignment is performed using
a HMM/GMM acoustic model trained with a large speech
database(Section 2.1).

Studying the respiratory effort at the phoneme level in
normal speech can provide deeper insights into the mecha-
nism of speech production. This would also have interesting

applications in diagnosis and monitoring pathological speech
conditions [6, 7]. For example, some dysarthric speakers have
problems producing bilabials, especially stops. By compar-
ing respiratory effort for bilabials to previous measurements
of the same speaker, it is possible to determine whether their
condition improves or deteriorates. Similar measurements
and comparisons can be carried out for non-native speak-
ers for assessment and training by providing instantaneous
feedback, especially while learning a new language. A bet-
ter understanding of the relation between linguistic content
and respiration effort can give us more insight into breathing
planning involved during the speech. Therefore, we have
studied the relationship between phonemes and their respira-
tory effort. We analyze the respiratory effort characteristics
of individual phonemes and different classes of phonemes
such as (1) Broad Phonetic Classes, (2) Voiced and Unvoiced
phonemes (3) Phonemes with the same place of articulation.

2. METHOD

Our speech database was collected at Philips Research1,
Eindhoven. The data was collected using the following setup:
two NeXus respiratory inductance plethysmography belts
(RIP belts) placed over the ribcage and abdomen. The belt
sensor data corresponds to the changes in the cross-sectional
area of ribcage and abdomen at the sample rate of 2 kHz. The
sum of ribcage and abdomen expansions measured by the
respiratory belt transducers is considered as the measure for
the respiratory or breathing signal [8]. This breathing signal
is down sampled to 100 hertz and mapped with the phoneme
aligned speech. Speech was captured at 48kHz sampling rate
using an Earthworks microphone M23 which is placed at a
distance of 1 meter from the speakers. The data consists of
recordings from 30 healthy subject’s data (15 male, 15 fe-
male) with ages in 20 to 40 years. Each subject was asked
to read out a phonetically balanced paragraph ’The Rainbow
Passage’ for approximately 2 minutes with regular speed and
controlled loudness. This allows us to assume that respi-
ratory effort involved in articulating a particular phoneme
is stable across the subjects which is also observed in our
analysis. Using same text for read speech, we receive similar

1with the approval of the Internal Committee of Biomedical Experiments.



linguistic content from each talker. Also, in read speech,
the breath events are largely organised around phrase and
sentence boundaries[9], while in spontaneous speech, higher
percentage of breath events are placed in ungrammatical lo-
cations [10]. Thus limiting our initial exploration for read
speech with controlled setup helps us make conclusive results
in this study.

Fig. 1. Respiratory belt signal with speech signal
2.1. Phoneme alignment

The read speech of each subject was phonetically aligned us-
ing an HMM/GMM acoustic model trained on 960 hours of
Librispeech data set using the Kaldi toolkit[11]. The fea-
tures are extracted at the frame rate of 10ms. The dictio-
nary is based on CMU-DICT, augmented with pronunciations
for new words obtained through grapheme-to-phoneme con-
version using Sequitur [12]. After obtaining the alignments,
we removed position markers and lexical stress markers from
the phones for our analysis. This yielded a phone set of 39
context-independent phones presented in Table 1.

2.2. Respiratory effort parameters

Respiratory effort information is measured by analyzing the
breathing signal with the phoneme aligned speech. The
Phoneme alignment gives the phoneme for each window size
of 10ms. Counting the number of consecutively repeating
phonemes(n), we calculate the duration(t) of a particular
phoneme (t = 10ms*n). As the speech and breathing signal
are aligned, we calculate the change in the breathing signal
over this time ’t’ to get the lung volume change over the
phoneme utterance.

As the breathing signal obtained based on RIP belts’ ex-
pansion and contraction estimates lung volume changes(∆LV)
[13], it has quantitative significance though not calibrated.
Breathing signal is normalized between 0 and 1 and the nor-
malized value can be used for comparison.

1. Lung volume change(∆LV): This is measured by
measuring the change over the breathing signal mea-

sured using RIP belt sensors for the window equal to
the length of the phoneme. Unit: Volume( cm3).

2. Lung volume change rate(∆LV/∆t): This is mea-
sured by dividing lung volume change(∆LV) with time
duration(∆t) of a phoneme. This can also be seen as the
velocity of lung volume change during speech. Unit:
Volume/time( cm3/s).

3. ANALYSIS

Using phone alignment, we extract the phoneme information
for each recording for all 30 subjects and calculate the du-
ration and respiratory effort parameters corresponding to the
phonemes. We initially grouped phonemes of each subject ac-
cording to Broad phonetic class (BPC), Voiced-Unvoiced, and
place of articulation and calculated the average time duration
and average respiratory effort parameters for each group. As
each subject is asked to read out the same Phonetically bal-
anced paragraph ’The Rainbow Passage’ with regular speed
and controlled loudness, we observed similar trend in res-
piratory effort parameters among all subjects for individual
phonemes and also groups of phonemes, which is evident
from the low standard deviation values in Figure 2. This en-
ables us to group phonemes of all the subjects together for
further analysis. Thus all the results reported in the follow-
ing sections are averaged values for individual phoneme for
all the 30 subjects. We also compared median and mean mea-
surements to understand the data distribution with respect to
different speakers and classes and found no difference; which
suggests that there aren’t many outliers.

3.1. Broad Phonetic Classes

Broad phonetic classes (BPC’s) have widely been used in
speech recognition research as, for instance, automatic lan-
guage identification [14]; speaking rate estimation [15]; multi
lingual systems [16] and, especially, in phone recognition
[17]. In this study, we consider the following BPC’s, see
Table 1: vowels, fricatives, nasals, approximants, and stops
or plosives.

Broad Phonetic
Class (BPC) Phones Count

UH, IH,AH,OY,OW
Vowels AE,AO,AY, IY,AA 15

AW,UW,EY,ER,EH
Fricatives V, TH,Z, ZH, SH 11

S, JH,F,DH,HH,CH
Nasals M,N,NG 3

Approximants R,W, Y, L 4
Stops or G,B, P,K 6
Plosives D,T

Table 1. Broad Phonetic classes



Fig. 2. ∆LV and ∆LV/∆t for Broad Phonetic classes

1. Among the BPCs, we observed the highest ∆LV and
∆LV/∆t values for fricatives (Figures 2). This is justi-
fied as fricatives are produced, not through a complete
closure, such as for stops, but by creating a partial ob-
struction of the airstream forced through a greatly nar-
rowed channel at the point of obstruction. This forced
airflow results in a higher rate of lung volume change.

2. If we leave out the fricatives and look at the remain-
ing four BPCs, we observe the highest ∆LV values for
vowels and the lowest values for nasals. However, for
these four BPCs, the ∆LV/∆t seems to be very similar.
This is probably caused by the differences in average
duration for the phonemes in these BPCs; vowels on
average are for a longer duration, and nasals are for a
shorter duration.

In figure 2, The standard deviation is plotted for the BPC’s
respiratory effort parameters. However, not any significant
difference is observed for any meaningful conclusions. Thus
standard deviation is not included in figures 3, 4, and 5 in this
paper for simplicity.

3.2. Voiced vs Unvoiced phonemes

Speech is produced by the vocal cords and the vocal tract
which includes the mouth and the lips. Voiced signals are
produced when the vocal cords vibrate during the pronun-
ciation of a phoneme and such phonemes are called voiced
phonemes. Unvoiced phonemes, by contrast, do not entail the
use of the vocal cords. Voiced phonemes tend to be louder
like vowels and unvoiced phonemes tend to be more abrupt
like stop consonants.

Analysis of ∆LV and ∆LV/∆t of voiced and unvoiced
phonemes based on broad phonetic classes and place of ar-
ticulation is very interesting in understanding the respiratory
effort in speech production.

From Figures 2, 3, and 4, it can be observed that :

1. Unvoiced phonemes have higher respiratory effort
compared to voiced phonemes (Figure 3). Voiced
phonemes are produced when the vocal cords vibrate,
which results in regular pulses from the glottal modu-
lation of the airstream. This constriction at the glottis
by voiced phonemes results in smaller lung volume
changes compared to unvoiced phonemes.

Phonemes
Voiced Phonemes All vowels, All nasals

All approximants
Fricatives : V, Z, S, JH, DH

Stops : G, D, B
Unvoiced Phonemes Stops : T, P, K

Fricatives : TH, ZH, SH, F, CH, HH

Table 2. Voiced and Unvoiced phonemes

Fig. 3. ∆LV and ∆LV/∆t of voiced and unvoiced phonemes.

Fig. 4. ∆LV and ∆LV/∆t of voiced and unvoiced phonemes
grouped as per Broad Phonetic Classes for fricatives and
stops.

2. Among fricatives, unvoiced fricatives have higher ∆LV
and ∆LV/∆t (Figure 4). Also among stops, unvoiced
stops have higher ∆LV and ∆LV/∆t than voiced stops
(Figure 4).

3. Nasals and voiced stops follow a similar trend for ∆LV
and ∆LV/∆t (Figures 2, 4). The nasal consonants are
the nasal counterparts of the voiced plosives in English,
the main difference being that the air does not escape
through the mouth, but rather the nasal tract [18].

4. Approximants follow the same trend as of Vowels (Fig-
ure 2). Both being voiced phonemes, approximants are
also referred to as semivowels because of their phonetic
similarity.

3.3. Phonemes based on place of articulation

Place of articulation (Table 3) refers to the location where the
constriction or obstruction of the vocal tract occurs, as well as
to the active or passive articulators involved in the production



of the consonant. Place of articulation generally is only used
for consonants, and therefore the vowels here get the place
attribute ’nil’. From Figure 5, it can be observed that :

1. All vowels, alveolars, palatals, retroflexs are voiced
phonemes and thus have lower respiratory effort.

2. The glottal phoneme has the highest lung volume
change and lung volume change rate. The glottal
phoneme in English is the unvoiced fricative HH.

3. The palatal phoneme has the least respiratory effort.
The palatal phoneme in English is the voiced approx-
imant Y, as in the word ’yes.’ We can observe that
the airflow is well constricted during this pronunciation
and hence lesser ∆LV and ∆LV/∆t.

Place of Voiced or
articulation Phones Unvoiced

Alveolar D, L, N, S, T, Z Voiced
Bilabial B, P Unvoiced

M Voiced
Dental TH Unvoiced

DH Voiced
Glottal HH Unvoiced

Labiodental F Unvoiced
V Voiced

Nil place All Vowels Voiced
Palatal Y Voiced

pos-alveolar CH, SH, ZH Unvoiced
JH Voiced

Retroflex ER, R Voiced
Velar K Unvoiced

G, NG, W Voiced

Table 3. Place of articulation

4. DISCUSSIONS
We present our research on respiratory effort for phonemes
and groups of phonemes. The results are assuring, given what
is known about lung volume changes and lung volume change
rate during speech production, and generally are in line with
previous findings. We observed higher ∆LV for unvoiced
compared to voiced consonants, as in Fig 3. Unvoiced stops
and fricatives have higher ∆LV compared to voiced stops
and fricatives Fig. 4, which is in line with the findings of
Stathopoulos [19]. This is plausible since the vocal folds do
not vibrate, and air can pass more easily between the vo-
cal folds for unvoiced consonants. For fricatives, ∆LV and
∆LV/∆t are higher. In fact, they show the highest respiratory
effort among all the BPCs (Figs. 2 and 3), especially for un-
voiced fricatives. This is plausible since to produce fricatives
air has to keep flowing, and the velocity of the airflow has
to be high enough to create frication (turbulence). Similarly,
to produce frication (turbulence) at the glottal folds, the air-
flow and velocity of the airflow must be high enough. This

Fig. 5. ∆LV and ∆LV/∆t of phonemes grouped as per place
of articulation

explains why glottal consonants have the highest respiratory
effort if we compare phoneme classes based on place of artic-
ulation.

5. CONCLUSIONS AND FUTURE WORK
In this paper, we study the relationship between linguistic
content and respiratory effort. Firstly, our research shows that
it is possible to obtain respiratory information at the level of
individual phonemes, which opens up novel possibilities to
study respiratory activity during speech production for spe-
cific phonemes or groups of phonemes. Our previous research
shows that the estimation of the respiration signal can be ob-
tained automatically from the speech signal only [2, 3]. The
combination of both approaches makes it possible to first es-
timate the breathing signal from speech, and next use this
breathing signal and the same speech signal to obtain infor-
mation at the phoneme level. It will then be feasible to ob-
tain information on respiratory effort for phonemes using only
speech signal, without using belts around chest and abdomen.
This combined approach could then be used for various tasks
such as diagnosis and monitoring for pathological speech, as-
sessment, real-time feedback for non-native speakers.
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