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Abstract—Deepfake videos, where a person’s face is automati-
cally swapped with a face of someone else, are becoming easier to
generate with more realistic results. In response to the threat such
manipulations can pose to our trust in video evidence, several
large datasets of deepfake videos and many methods to detect
them were proposed recently. However, it is still unclear how
realistic deepfake videos are for an average person and whether
the algorithms are significantly better than humans at detecting
them. In this paper, we present a subjective study conducted in a
crowdsourcing-like scenario, which systematically evaluates how
hard it is for humans to see if the video is deepfake or not. For
the evaluation, we used 120 different videos (60 deepfakes and
60 originals) manually pre-selected from the Facebook deepfake
database, which was provided in the Kaggle’s Deepfake Detection
Challenge 2020. For each video, a simple question: “Is face of
the person in the video real of fake?” was answered on average
by 19 naı̈ve subjects. The results of the subjective evaluation
were compared with the performance of two different state of
the art deepfake detection methods, based on Xception and
EfficientNets (B4 variant) neural networks, which were pre-
trained on two other large public databases: the Google’s subset
from FaceForensics++ and the recent Celeb-DF dataset. The
evaluation demonstrates that while the human perception is very
different from the perception of a machine, both successfully but
in different ways are fooled by deepfakes. Specifically, algorithms
struggle to detect those deepfake videos, which human subjects
found to be very easy to spot.

I. INTRODUCTION

Autoencoders and generative adversarial networks (GANs)
significantly improved the quality and realism of the automated
image generation and face swapping, leading to the deepfake
phenomena. Many are starting to believe that the proverb
‘seeing is believing’ is starting to loose its meaning when it
comes to digital video1. The concern for the impact of the
widespread deepfake videos on our trust in video recording is
growing. This public unease prompted researchers to propose
various datasets of deepfakes and methods to detect them.
Some of the latest approaches demonstrate encouraging accu-
racy, especially, if they are trained and evaluated on the same
datasets.

Many databases with deepfake videos were created to help
develop and train deepfake detection methods. One of the
first freely available database was based on VidTIMIT [1],
followed by the FaceForeniscs database, which ‘deepfaked’

1https://edition.cnn.com/interactive/2019/01/business/
pentagons-race-against-deepfakes/

(a) By Google (b) DeepfakeTIMIT

(c) By Facebook (d) Celeb-DF

Fig. 1: Examples of deepfakes (faces cropped from videos) in
different databases.

1′000 Youtube videos [2] and which later was extended with
a larger set of high resolution videos provided by Google [3].
Another recently proposed 5′000 videos-large database of
deepfakes generated from Youtube videos is Celeb-Df [4].
But the most extensive and the largest database to date with
more than 100K videos (80% of which are deepfakes) is
the dataset from Facebook, which appeared in the recent
Deepfake Detection Challenge hosted by Kaggle2. Figure 1
shows examples of faces cropped from deepfake videos in
various databases.

These datasets were generated using either the popular
open source code3, typically, deepfakes from Youtube videos,
or the latest methods by Google and Facebook for creating
deepfakes. The fact that even Google and Facebook, pri-
vate companies who are typically very frugal with making
large datasets publicly available, provided some of the most
extensive datasets for research shows how important and

2https://www.kaggle.com/c/deepfake-detection-challenge
3https://www.kaggle.com/c/deepfake-detection-challenge/discussion/
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Fig. 2: Cropped faces from different categories of deepfake videos from Facebook database (top row) and the corresponding
original versions (bottom row).

challenging is the deepfake detection for the scientific and
industrial communities. This abundance of deepfake video
data allowed researchers to train and test detection approaches
based on very deep neural networks, such as Xception [3],
capsules networks [5], ResNet-50 [6], and EfficientNet [7]
which were shown to outperform the methods based on
shallow CNNs, facial physical characteristics [8], [9], [10],
or distortion features [11], [12], [13].

However, despite the public and media uneasiness with
deepfake videos and the surge of automated methods for their
detection, little is known about how ‘good‘ the deepfakes
actually are at ‘fooling‘ human perception. Most of the public
perception that deepfakes are realistic comes from personal
experience of watching some video examples on Youtube,
the alarming media reports, and the understanding that the
deepfake generation technology will become more realistic
in the nearest future. There is a lack of scientific studies
on how realistic the currently available deepfakes are and
whether they can pose a threat to human perception of video.
The only study [3] that asked human subjects to evaluate 60
images (30 were fake but the number of deepfakes was not
reported) demonstrated that almost 80% of deepfake images
were successfully recognized as fake.

In this paper, we conducted a more comprehensive subjec-
tive evaluation (of deepfake videos instead of images), us-
ing the web-based framework for crowdsourcing experiments
QualityCrowd 2 [14]. We want to understand how easily an
average human observer can be spoofed by different types of
deepfake videos. For that purpose, we selected 120 videos (60
original and 60 deepfakes) from Facebook dataset2, because
it is the largest and one the most recent databases, and it
has many different variants of deepfakes, ranging from the

most obvious ones to those that look very realistic. We have
defined five categories of deepfakes (12 of each) by judging
them on how easy it is to spot their visual artifacts as ‘very
easy’, ‘easy’, ‘moderate’, ‘difficult’, and ‘very difficult’ (see
Figure 2 for some examples). For each video, on average 20
naı̈ve subjects (including PhD students, senior scientists, and
people in administration) had to answer if they think it is fake
or not.

Understanding how well people recognize deepfake is im-
portant, but also is the understanding of how detection algo-
rithms recognize them too. Policy decisions as well as people’s
perceptions are often based on the assumption that automated
detection algorithms perceive videos in a way that is similar
to humans4, which can be even dangerous when it comes to
such impactful technology as deepfake detection.

Therefore, in this paper, we also assess how two state of the
art algorithms, based on Xception model [15] and EfficientNet
variant B4 [7], both of which showed a great performance
on several deepfake databases [3]. pre-trained on two other
large databases from Google [3] (a subset of FaceForeniscs++)
and Celeb-DF [4], perform on the same videos and categories
of deepfakes that we used in our subjective evaluation. This
comparison provides a scientific insight on the differences
between human and machine perception of deepfake videos.

To allow researchers to verify, reproduce, and extend our
work, we provide the pre-trained models, subjective scores,
and the scripts used to analyze the data as an open source
package5.

4https://www.forbes.com/sites/fernandezelizabeth/2019/11/30/
ai-is-not-similar-to-human-intelligence-thinking-so-could-be-dangerous/

5Source code: https://gitlab.idiap.ch/bob/bob.paper.wifs2020



This paper has the following main contributions:
• A comprehensive subjective evaluation and the analy-

sis of human perception of different types of deepfake
videos;

• Assessment of Xception and EfficientNet based models
on the same videos to compare their performance with
human subjects;

• Models, subjective data, and analysis scripts are open
source;

II. DATA AND SUBJECTIVE EVALUATION

Since the resulted videos produced by automated deepfake
generation algorithms vary drastically visually, depending on
many factors (training data, the quality of the video for manip-
ulation, and the algorithm itself), we cannot label all deepfakes
into one visual category. Therefore, we have manually looked
through many videos of Facebook database2 and pre-selected
60 deepfake videos, split into five categories depending of
how clearly fake they look, with the corresponding 60 original
videos (see examples in Figure 2).

The evaluation was conducted using QualityCrowd 2 frame-
work [14] designed for crowdsourcing-based evaluations (Fig-
ure 3 shows a screenshot of a typical evaluation step). This
framework allows us to make sure subjects watch each video
fully at least once and are not able to skip any question.
Prior to the evaluation itself, a display brightness test was
performed using a method similar to that described in [16].
Since deepfake detection algorithms typically evaluate only
the face regions cropped using a face detector, to have a
comparable scenario, we have also shown to the human
subjects cropped face regions next to the original video (see
Figure 3).

Each of the 60 naı̈ve subjects who participated in the
evaluation had to answer the question after watching a given
video: “Is face of the person in the video real or fake?” with
the following options: “Fake”, “real”, and “I do not know.”
Prior to the evaluation, the explanation of the test was given
to the subjects with several test video examples of different
fake categories and real videos. The 120 were also split in
random batches of 40 each to reduce the total evaluation
time for one subject, so the average time per one evaluation
was about 16 minutes, which is consistent with the standard
recommendations.

Due to privacy concerns, we did not collect any personal
information from our subjects such as age or gender. Also,
the licensing conditions of Facebook database2 restricted the
evaluation to the premises of Idiap research institute, which
signed the license agreement not do distribute data outside.
Therefore, the subjects consisted of PhD students, scientists,
administration, and management of Idiap. Hence the age can
be estimated to be between 20 and 65 years old and the gender
distribution to be of a typical scientific community.

Unlike laboratory-based subjective experiments where all
subjects can be observed by operators and its test envi-
ronment can be controlled, the major shortcoming of the
crowdsourcing-based subjective experiments is the inability to

Fig. 3: Screenshot of one step of subjective evaluation (the
video is courtesy of Facebook database).

supervise participants behavior and to restrict their test con-
ditions. When using crowdsourcing for evaluation, there is a
risk of including untrusted data into analysis due to the wrong
test conditions or unreliable behavior of some subjects who
try to submit low quality work in order to reduce their effort.
For this reason, unreliable workers detection is an inevitable
process in crowdsourcing-based subjective experiments. There
are several methods for identifying the ‘trustworthiness’ of
the subject but since our evaluation was conducted within
premises of a scientific institute, we only used so called
‘honeypot’ method [16], [17] to filter out scores from people
who did not pay attention at all. Honeypot is a very easy
question that refers to the video the subject just watched in the
previous steps, e.g., “what was visible in the previous video?”
with obvious answers that test if a person even looked at the
video. Using this question, we filtered out the scores from 5
people from our final results, hence we ended up with 18.66
answers on average for each video, which is the number of
subjects commonly considered in subjective evaluations.

III. SUBJECTIVE EVALUATION RESULTS

For each deepfake or original video, we computed the
percentage of answers that were ‘certain & correct’, when
people selected ‘Real’ for an original or ‘Fake’ for a deepfake,
‘certain & incorrect’ (selected ‘Real’ for a deepfake or ‘Fake’
for an original) and ‘uncertain’, when the selection was ‘I
do not know’. We have averaged those percentages across
videos in each category to obtain the final percentages, which
are shown in Figure 4. From the figure, we can note that
the pre-selected deepfake categories, on average, reflect the
difficulty level of recognizing them. The interesting results is
the low number of uncertain answers, which means people
tend to be sure when it comes to judging the realism of a
video. And it also means people can be easily spoofed by a
good quality deepfake video, since only in 24.5% cases ‘well
done’ deepfake videos are perceived as fakes, even though
these subjects already knew they are looking for fakes. In
the scenario, when such deepfake would be distributed to an
unsuspected audience (e.g., via social media), we can expect



Fig. 4: Subjective answers for each category of deepfakes and
original unaltered videos.

Fig. 5: Median values with error bars from the ANOVA test
performed on subjective scores from five deepfake categories.

the number of people noticing it to be significantly lower. Also,
it is interesting to note that even videos from ‘easy’ category
were not as easy to spot (71.1% correct answers) compared to
the original videos (82.2%). Overall, we can see that people
are better at recognizing very obvious examples of deepfakes
or real unaltered videos.

To check whether the difference between videos from the
five deepfake categories is statistically significant based on
the subjective scores, we performed ANOVA test with the
corresponding box plot shown in Figure 5. The scores were
computed for each video (and per category when applicable)
by averaging the answers from all corresponding observers.
For each correct answer the score is 1 and for both wrong and
uncertain answer the score is 0. Please note that the red lines
in Figure 5 correspond to median values, not average, which
what we plotted in Figure 4. The p-value of ANOVA test is
below 4.7e − 11, which means the deepfake categories are
significantly different on average. However Figure 5 shows
that ‘easy’, ‘moderate’, and ‘difficult’ categories have large

Fig. 6: Average scores with confidence intervals for each video
in every video category.

TABLE I: Area under the curve (AUC) value on the test sets of
Google and Celeb-DF databases of Xception and EfficientNet
models.

Model Trained on AUC (%) on Test set

Xception Google database 100.00
Xception Celeb-DF database 100.0
EfficientNet Google database 99.99
EfficientNet Celeb-DF database 100.0

scores variations and overlap, which means some of the videos
from these categories are perceived similarly. It means some
of the deepfake videos could be moved to another category.
This observation is also supported by the Figure 6 which plots
the average scores with confidence intervals (computed using
Student’s t-distribution [18]) for each video in the deepfake
category (12 videos each) and originals (60 videos).

IV. EVALUATION OF ALGORITHMS

For the example of machine vision, we took two state of the
art algorithms: based on Xception model [15] and EfficientNet
variant B4 [7] shown to be performing very well on different
deepfake datasets and benchmarks [3]. We pre-trained these
models for 20 epochs each on the Google’s subset from
FaceForensics++ database [3] and Celeb-Df [4] to demonstrate
the impact of different training conditions on the evaluation
results. If evaluated on the test sets of the same databases they
were trained on, both Xception and EfficientNet classifiers
demonstrate a great performance as shown in Table I. We can
see that the area under the curve (AUC), which is the common
metric used to compare the performance of deepfake detection
algorithms, is almost at 100% in all cases.

We evaluated these models on the 120 videos we used in
the subjective test. Since these videos come from Facebook
database, they can be considered as unseen data, which is
still an obstacle for many DNN classifiers, as they do not
generalize well on the unseen data the fact also highlighted in
the recent Facebook Deepfake Detection Challenge [19]. To
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Fig. 7: The detection accuracy (the threshold corresponds to FAR 10% on development set of the respective database) for each
video category from subjective test by Xception and Efficient models pre-trained on Google and Celeb-DF databases.

compute performance accuracy, we need to select threshold.
We chose the threshold corresponding to the false accept
rate (FAR) of 10%, selected on the development set of the
respective database. We selected threshold based on FAR
value as oppose to equal error rate (EER) commonly used
in biometrics, because many practical deepfake detection or
anti-spoofing systems have a low bound requirement on FAR
value. In our case, FAR of 10% is quite generous.

Figure 7 demonstrate the evaluation results of pre-trained
Xception and EfficientNet models on the videos from the
subject test averaged for each deepfake category and originals
(when using threshold corresponding to FAR= 10%). In the
figure, blue bar corresponds to the percent of correctly detected
videos in the given category, and the orange bar correspond to
the percent of incorrectly detected. The results for algorithms
are very different from the results of the subjective test (see
Figure 4 for the evaluation results by human subjects). The
accuracy of the algorithms have no correlation to the visual
appearance of deepfakes. The algorithms ‘see’ these videos
very differently from how humans perceive the same videos.
To a human observer the result may even appear random.
We can even notice that all algorithms struggle the most
with the deepfake videos that were easy for human subjects.
It is evident that the choice of threshold and the training
data have major impact on the evaluation accuracy. However,
when selecting a deepfake detection system to use in practical
scenario, one cannot assume an algorithm’s perception will
have any relation to the way we think the videos look like.

If we remove the choice of the threshold and the pre-
selected video categories and simply evaluate the models on

the 120 videos from the subjective tests, the receiver operating
characteristic (ROC) curve and the corresponding AUC values
presented in Figure 8. From this figure, we can note that
ROC curves looks ‘normal’, as typical curves for classifiers
that do not generalize well on unseen data, especially taking
into account excellent performance on the test sets shown in
Table I. Figure 8 also shows that human subjects were more
accurate at assessing this set of videos since the corresponding
ROC curve is consistently higher with the highest AUC value
of 87.47%.

V. CONCLUSION

In this paper, we presented the results of subjective evalu-
ation of different categories of deepfake videos, ranging from
obviously fake to easy being confused with real videos. The
videos were manually pre-selected from Facebook database
and evaluated by 60 human subjects. The same videos were
also used in the evaluation of two state of the art deepfake de-
tection algorithms based on Xception and EfficientNet models,
which were separately pre-trained on Google and Celeb-DF
deepfake databases.

The subjective evaluation demonstrated that people are
consistent in the way the perceive different types of deepfakes.
Also, the results show that people are confused by good
quality deepfakes in 75.5% of cases. On the other hand, the
algorithms have a totally different perception of deepfakes
compared to human subjects. The algorithms struggle to detect
many deepfakes, which look obviously fake to humans, while
some of the algorithms (depending on the training data and
the selected threshold) can accurately detect videos that are
difficult for human subjects.
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Fig. 8: ROC curves with the corresponding AUC value of Xception and Efficient models pre-trained on Google and Celeb-DF
databases evaluated on all the videos from subjective test.

This paper shows that the deepfake generation is already
at the level of realism that would confuse the majority of the
public, especially in the browser-based viewing scenario. The
paper also shows that is important to clearly understand how a
given algorithms evaluates data and what conditions impact it
performance and in which way. What is even more important
is to not confuse and to not anthropomorphize machine vision
with human vision, because they are very different and do not
correlate with each other.
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