%Aigaion2 BibTeX export from Idiap Publications
%Saturday 21 December 2024 07:10:12 PM

@ARTICLE{Ganapathy_JASA-EL_2008,
         author = {Ganapathy, Sriram and Thomas, Samuel and Hermansky, Hynek},
       projects = {Idiap, IM2, AMIDA},
          month = {11},
          title = {Modulation Frequency Features For Phoneme Recognition In Noisy Speech},
        journal = {Journal of Acoustical Society of America - Express Letters},
           year = {2008},
       crossref = {Ganapathy_Idiap-RR-70-2008},
       abstract = {In this letter, a new feature extraction technique based on modulation spectrum derived from syllable-length segments of sub-band temporal envelopes is proposed. These sub-band envelopes are derived from  auto-regressive modelling of Hilbert envelopes of the signal in critical bands, processed by both a static (logarithmic) and a dynamic (adaptive loops) compression. These features are then used for machine recognition of phonemes in telephone speech. Without degrading the performance in clean conditions, the proposed features show significant improvements compared to other state-of-the-art speech analysis techniques. In addition to the overall phoneme recognition rates, the performance with broad phonetic classes is reported.},
            pdf = {https://publications.idiap.ch/attachments/papers/2008/Ganapathy_JASA-EL_2008.pdf}
}



crossreferenced publications: 
@TECHREPORT{Ganapathy_Idiap-RR-70-2008,
         author = {Ganapathy, Sriram and Thomas, Samuel and Hermansky, Hynek},
       projects = {Idiap, IM2, AMIDA},
          month = {10},
          title = {Modulation Frequency Features For Phoneme Recognition In Noisy Speech},
           type = {Idiap-RR},
         number = {Idiap-RR-70-2008},
           year = {2008},
    institution = {Idiap},
       abstract = {In this paper, a new feature extraction technique based on modulation spectrum derived from syllable-length segments of sub-band temporal envelopes is proposed. These sub-band envelopes are derived from  auto-regressive modelling of Hilbert envelopes of the signal in critical bands, processed by both a static (logarithmic) and a dynamic (adaptive loops) compression. These features are then used for machine recognition of phonemes in telephone speech. Without degrading the performance in clean conditions, the proposed features show significant improvements compared to other state-of-the-art speech analysis techniques. In addition to the overall phoneme recognition rates, the performance with broad phonetic classes is reported.},
            pdf = {https://publications.idiap.ch/attachments/reports/2008/Ganapathy_Idiap-RR-70-2008.pdf}
}