CONF
vijayasenan:ASRU:2007/IDIAP
AGGLOMERATIVE INFORMATION BOTTLENECK FOR SPEAKER DIARIZATION OF MEETINGS DATA
Vijayasenan, Deepu
Valente, Fabio
Bourlard, Hervé
EXTERNAL
https://publications.idiap.ch/attachments/papers/2007/vijayasenan-ASRU-2007.pdf
PUBLIC
https://publications.idiap.ch/index.php/publications/showcite/vijayasenan:rr07-31
Related documents
IEEE Automatic Speech Recognition and Understanding Workshop
2007
IDIAP-RR 07-31
In this paper, we investigate the use of agglomerative Information Bottleneck (aIB) clustering for the speaker diarization task of meetings data. In contrary to the state-of-the-art diarization systems that models individual speakers with Gaussian Mixture Models, the proposed algorithm is completely non parametric . Both clustering and model selection issues of non-parametric models are addressed in this work. The proposed algorithm is evaluated on meeting data on the RT06 evaluation data set. The system is able to achieve Diarization Error Rates comparable to state-of-the-art systems at a much lower computational complexity.
REPORT
vijayasenan:rr07-31/IDIAP
AGGLOMERATIVE INFORMATION BOTTLENECK FOR SPEAKER DIARIZATION OF MEETINGS DATA
Vijayasenan, Deepu
Valente, Fabio
Bourlard, Hervé
EXTERNAL
https://publications.idiap.ch/attachments/reports/2007/vijayasenan-idiap-rr-07-31.pdf
PUBLIC
Idiap-RR-31-2007
2007
IDIAP
In this paper, we investigate the use of agglomerative Information Bottleneck (aIB) clustering for the speaker diarization task of meetings data. In contrary to the state-of-the-art diarization systems that models individual speakers with Gaussian Mixture Models, the proposed algorithm is completely non parametric . Both clustering and model selection issues of non-parametric models are addressed in this work. The proposed algorithm is evaluated on meeting data on the RT06 evaluation data set. The system is able to achieve Diarization Error Rates comparable to state-of-the-art systems at a much lower computational complexity.