CONF Farrahi_SOCIALCOM-2_2010/IDIAP Mining Human Location-Routines Using a Multi-Level Approach to Topic Modeling Farrahi, Katayoun Gatica-Perez, Daniel EXTERNAL https://publications.idiap.ch/attachments/papers/2010/Farrahi_SOCIALCOM-2_2010.pdf PUBLIC 2010 IEEE Second International Conference on Social Computing, SIN Symposium Minneapolis, Minnesota, USA 2010 August 2010 446-451 In this work we address the problem of modeling varying time duration sequences for large-scale human routine discovery from cellphone sensor data using a multi-level approach to probabilistic topic models. We use an unsupervised learning approach that discovers human routines of varying durations ranging from half-hourly to several hours. Our methodology can handle large sequence lengths based on a principled procedure to deal with potentially large routine-vocabulary sizes, and can be applied to rather naive initial vocabularies to discover meaningful location-routines. We successfully apply the model to a large, real-life dataset, consisting of 97 cellphone users and 16 months of their location patterns, to discover routines with varying time durations.