%Aigaion2 BibTeX export from Idiap Publications %Thursday 21 November 2024 01:04:18 PM @TECHREPORT{Pinheiro_Idiap-RR-22-2013, author = {Pinheiro, Pedro H. O. and Collobert, Ronan}, projects = {Idiap, IM2}, month = {6}, title = {Recurrent Convolutional Neural Networks for Scene Parsing}, type = {Idiap-RR}, number = {Idiap-RR-22-2013}, year = {2013}, institution = {Idiap}, abstract = {Scene parsing is a technique that consist on giving a label to all pixels in an image according to the class they belong to. To ensure a good visual coherence and a high class accuracy, it is essential for a scene parser to capture image long range dependencies. In a feed-forward architecture, this can be simply achieved by considering a sufficiently large input context patch, around each pixel to be labeled. We propose an approach consisting of a recurrent convolutional neural network which allows us to consider a large input context, while limiting the capacity of the model. Contrary to most standard approaches, our method does not rely on any segmentation methods, nor any task-specific features. The system is trained in an end-to-end manner over raw pixels, and models complex spatial dependencies with low inference cost. As the context size increases with the built-in recurrence, the system identifies and corrects its own errors. Our approach yields state-of-the-art performance on both the Stanford Background Dataset and the SIFT Flow Dataset, while remaining very fast at test time.}, pdf = {https://publications.idiap.ch/attachments/reports/2013/Pinheiro_Idiap-RR-22-2013.pdf} }