REPORT
Khoury_Idiap-RR-31-2013/IDIAP
Fusing Matching and Biometric Similarity Measures for Face Diarization in Video
Khoury, Elie
Gay, Paul
Odobez, Jean-Marc
EXTERNAL
https://publications.idiap.ch/attachments/reports/2013/Khoury_Idiap-RR-31-2013.pdf
PUBLIC
https://publications.idiap.ch/index.php/publications/showcite/Khoury_ACMICMR_2013
Related documents
Idiap-RR-31-2013
2013
Idiap
November 2013
CONF
Khoury_ACMICMR_2013/IDIAP
Fusing Matching and Biometric Similarity Measures for Face Diarization in Video
Khoury, Elie
Gay, Paul
Odobez, Jean-Marc
EXTERNAL
https://publications.idiap.ch/attachments/papers/2013/Khoury_ACMICMR_2013.pdf
PUBLIC
Proceedings of the 3rd ACM conference on International conference on multimedia retrieval
Dallas, Texas, USA
2013
ACM
97-104
This paper addresses face diarization in videos, that is, deciding which face appears and when in the video. To achieve this face-track clustering task, we propose a hierarchical approach combining the strength of two complementary measures: (i) a pairwise matching similarity relying on local interest points allowing the accurate clustering of faces tracks captured in similar conditions, a situation typically found in temporally close shots of broadcast videos or in talk-shows; (ii) a biometric cross-likelihood ratio similarity measure relying on Gaussian Mixture Models (GMMs) modeling the distribution of densely sampled local features (Discrete Cosine Transform (DCT) coefficients), that better handle appearance variability. Experiments carried out on a public video dataset and on the data from the French REPERE challenge demonstrate the effectiveness of our approach in comparison with state-of-the-art methods.