%Aigaion2 BibTeX export from Idiap Publications %Thursday 02 January 2025 08:58:26 AM @INPROCEEDINGS{dhiraj:hcm:2006, author = {Joshi, Dhiraj and Gatica-Perez, Daniel}, projects = {Idiap}, title = {Finding groups of people in Google news}, booktitle = {{ACM} Int. Conf. on Human-Centered Multimedia ({HCM})}, year = {2006}, note = {IDIAP-RR 05-68}, crossref = {dhiraj:rr05-68}, abstract = {In this paper, we study the problem of content-based social network discovery among people who frequently appear in world news. Google news is used as the source of data. We describe a probabilistic framework for associating people with groups. A low-dimensional topic-based representation is first obtained for news stories via probabilistic latent semantic analysis (PLSA). This is followed by construction of semantic groups by clustering such representations. Unlike many existing social network analysis approaches, which discover groups based only on binary relations (e.g. co-occurrence of people in a news article,',','), our model clusters people using their topic distribution, which introduces contextual information in the group formation process (e.g. some people belong to several groups depending on the specific subject). The model has been used to study evolution of people with respect to topics over time. We also illustrate the advantages of our approach over a simple co-occurrence-based social network extraction method.}, pdf = {https://publications.idiap.ch/attachments/papers/2006/dhiraj-hcm-2006.pdf}, postscript = {ftp://ftp.idiap.ch/pub/papers/2006/dhiraj-hcm-2006.ps.gz}, ipdmembership={vision}, } crossreferenced publications: @TECHREPORT{dhiraj:rr05-68, author = {Joshi, Dhiraj and Gatica-Perez, Daniel}, projects = {Idiap}, title = {Finding groups of people in Google news}, type = {Idiap-RR}, number = {Idiap-RR-68-2005}, year = {2005}, institution = {IDIAP}, note = {Published in Proc. ACM Int. Conf. on Multimedia, Workshop on Human-Centered Multimedia (HCM,',','), Santa Barbara, Oct. 2006.}, abstract = {In this paper, we study the problem of content-based social network discovery among people who frequently appear in world news. Google news is used as the source of data. We describe a probabilistic framework for associating people with groups. A low-dimensional topic-based representation is first obtained for news stories via probabilistic latent semantic analysis (PLSA). This is followed by construction of semantic groups by clustering such representations. Unlike many existing social network analysis approaches, which discover groups based only on binary relations (e.g. co-occurrence of people in a news article,',','), our model clusters people using their topic distribution, which introduces contextual information in the group formation process (e.g. some people belong to several groups depending on the specific subject). The model has been used to study evolution of people with respect to topics over time. We also illustrate the advantages of our approach over a simple co-occurrence-based social network extraction method.}, pdf = {https://publications.idiap.ch/attachments/reports/2005/dhiraj-idiap-rr-05-68.pdf}, postscript = {ftp://ftp.idiap.ch/pub/reports/2005/dhiraj-idiap-rr-05-68.ps.gz}, ipdmembership={vision}, }