ARTICLE
chen-spimc/IDIAP
A Localization/Verification Scheme for Finding Text in Images and Video Frames Based on Contrast Independent Features and Machine Learning Methods
Chen, Datong
Odobez, Jean-Marc
Thiran, Jean-Philippe
EXTERNAL
https://publications.idiap.ch/attachments/reports/2004/odobez_2004_spic.pdf
PUBLIC
https://publications.idiap.ch/index.php/publications/showcite/chen-rr0342
Related documents
Signal Processing: Image Communication
19
3
205-217
2004
March 2004
Similar to RR-03-42.
Automatic character detection in video sequences is a complex task, due to the variety of sizes and colors as well as to the complexity of the background. In this paper we address this problem by proposing a localization/verification scheme. Candidate text regions are first localized by using a fast algorithm with a very low rejection rate, which enables the character size normalization. Contrast independent features are then proposed for training machine learning tools in order to verify the text regions. Two kinds of machine learning tools, multilayer perceptrons and support vector machines, are compared based on four different features in the verification task. This scheme provides fast text detection in images and videos with a low computation cost, comparing with traditional methods.
REPORT
chen-rr0342/IDIAP
A Localization/Verification Scheme for Finding Text in Images and Video Frames Based on Contrast Independent Features and Machine Learning Methods
Chen, Datong
Odobez, Jean-Marc
EXTERNAL
https://publications.idiap.ch/attachments/reports/2003/rr03-42.pdf
PUBLIC
Idiap-RR-42-2003
2003
IDIAP
May 2003
Automatic character detection in video sequences is a complex task, due to the variety of sizes and colors as well as to the complexity of the background. In this paper we address this problem by proposing a localization/verification scheme. Candidate text regions are first localized by using a fast algorithm with a very low rejection rate, which enables the character size normalization. Contrast independent features are then proposed for training machine learning tools in order to verify the text regions. Two kinds of machine learning tools, multilayer perceptrons and support vector machines, are compared based on four different features in the verification task. This scheme provides fast text detection in images and videos with a low computation cost, comparing with traditional methods.