%Aigaion2 BibTeX export from Idiap Publications %Thursday 21 November 2024 12:57:05 PM @INPROCEEDINGS{Poh_04_fuse_all, author = {Poh, Norman and Bengio, Samy}, projects = {Idiap}, title = {A Novel Approach to Combining Client-Dependent and Confidence Information in Multimodal Biometric}, booktitle = {Fifth Int'l. Conf. Audio- and Video-Based Biometric Person Authentication {AVBPA}}, year = {2005}, crossref = {poh_04_fuse_all_rr}, abstract = {The issues of fusion with client-dependent and confidence information have been well studied separately in biometric authentication. In this study, we propose to take advantage of both sources of information in a discriminative framework. Initially, each source of information is processed on a per expert basis (plus on a per client basis for the first information and on a per example basis for the second information). Then, both sources of information are combined using a second-level classifier, across different experts. Although the formulation of such two-step solution is not new, the novelty lies in the way the sources of prior knowledge are incorporated prior to fusion using the second-level classifier. Because these two sources of information are of very different nature, one often needs to devise special algorithms to combine both information sources. Our framework that we call ``Prior Knowledge Incorporation'' has the advantage of using the standard machine learning algorithms. Based on $10 \times 32=320$ intramodal and multimodal fusion experiments carried out on the publicly available XM2VTS score-level fusion benchmark database, it is found that the generalisation performance of combining both information sources improves over using either or none of them, thus achieving a new state-of-the-art performance on this database.}, pdf = {https://publications.idiap.ch/attachments/reports/2005/norman-2005-AVBPA-pki.pdf}, postscript = {ftp://ftp.idiap.ch/pub/reports/2005/norman-2005-AVBPA-pki.ps.gz}, ipdmembership={learning}, } crossreferenced publications: @TECHREPORT{Poh_04_fuse_all_rr, author = {Poh, Norman and Bengio, Samy}, projects = {Idiap}, title = {A Novel Approach to Combining Client-Dependent and Confidence Information in Multimodal Biometric}, type = {Idiap-RR}, number = {Idiap-RR-68-2004}, year = {2004}, institution = {IDIAP}, abstract = {The issues of fusion with client-dependent and confidence information have been well studied separately in biometric authentication. In this study, we propose to take advantage of both sources of information in a discriminative framework. Initially, each source of information is processed on a per expert basis (plus on a per client basis for the first information and on a per example basis for the second information). Then, both sources of information are combined using a second-level classifier, across different experts. Although the formulation of such two-step solution is not new, the novelty lies in the way the sources of prior knowledge are incorporated prior to fusion using the second-level classifier. Because these two sources of information are of very different nature, one often needs to devise special algorithms to combine both information sources. Our framework that we call ``Prior Knowledge Incorporation'' has the advantage of using the standard machine learning algorithms. Based on $10 \times 32=320$ intramodal and multimodal fusion experiments carried out on the publicly available XM2VTS score-level fusion benchmark database, it is found that the generalisation performance of combining both information sources improves over using either or none of them, thus achieving a new state-of-the-art performance on this database.}, pdf = {https://publications.idiap.ch/attachments/reports/2004/rr04-68.pdf}, postscript = {ftp://ftp.idiap.ch/pub/reports/2004/rr04-68.ps.gz}, ipdmembership={learning}, }