CONF
Poh:2002:nnsp/IDIAP
A Multi-sample Multi-source Model for Biometric Authentication
Poh, Norman
Bengio, Samy
Korczak, Jerzy
EXTERNAL
https://publications.idiap.ch/attachments/reports/2002/rr02-14.pdf
PUBLIC
https://publications.idiap.ch/index.php/publications/showcite/poh02
Related documents
IEEE International Workshop on Neural Networks for Signal Processing (NNSP)
2002
In this study, two techniques that can improve the authentication process are examined: (i) multiple samples and (ii) multiple biometric sources. We propose the fusion of multiple samples obtained from multiple biometric sources at the score level. By using the average operator, both the theoretical and empirical results show that integrating as many samples and as many biometric sources as possible can improve the overall reliability of the system. This strategy is called multi-sample multi-source approach. This strategy was tested on a real-life database using neural networks trained in one-versus-all configuration.
REPORT
Poh02/IDIAP
A Multi-sample Multi-source Model for Biometric Authentication
Poh, Norman
Bengio, Samy
Korczak, Jerzy
EXTERNAL
https://publications.idiap.ch/attachments/reports/2002/rr02-14.pdf
PUBLIC
Idiap-RR-14-2002
2002
IDIAP
In this study, two techniques that can improve the authentication process are examined: (i) multiple samples and (ii) multiple biometric sources. We propose the fusion of multiple samples obtained from multiple biometric sources at the score level. By using the average operator, both the theoretical and empirical results show that integrating as many samples and as many biometric sources as possible can improve the overall reliability of the system. This strategy is called multi-sample multi-source approach. This strategy was tested on a real-life database using neural networks trained in one-versus-all configuration.