%Aigaion2 BibTeX export from Idiap Publications
%Tuesday 27 February 2024 05:22:30 AM

@INPROCEEDINGS{stephenson01b,
         author = {Stephenson, Todd Andrew and Magimai.-Doss, Mathew and Bourlard, Herv{\'{e}}},
       projects = {Idiap},
          month = {9},
          title = {Modeling Auxiliary Information in {B}ayesian Network Based {ASR}},
      booktitle = {7th European Conference on Speech Communication and Technology (Eurospeech~2001)},
         volume = {4},
           year = {2001},
        address = {Aalborg, Denmark},
           note = {IDIAP-RR 01-11},
       crossref = {stephenson01a},
       abstract = {Automatic speech recognition bases its models on the acoustic features derived from the speech signal. Some have investigated replacing or supplementing these features with information that can not be precisely measured (articulator positions, pitch, gender, etc.) automatically. Consequently, automatic estimations of the desired information would be generated. This data can degrade performance due to its imprecisions. In this paper, we describe a system that treats pitch as an auxiliary information within the framework of Bayesian networks, resulting in improved performance.},
            pdf = {https://publications.idiap.ch/attachments/papers/2001/todd-eurospeech2001.pdf},
     postscript = {ftp://ftp.idiap.ch/pub/papers/2001/todd-eurospeech2001.ps.gz},
ipdmembership={speech},
}



crossreferenced publications: 
@TECHREPORT{stephenson01a,
         author = {Stephenson, Todd Andrew and Magimai.-Doss, Mathew and Bourlard, Herv{\'{e}}},
       projects = {Idiap},
          title = {Modeling Auxiliary Information in {B}ayesian Network Based {ASR}},
           type = {Idiap-RR},
         number = {Idiap-RR-11-2001},
           year = {2001},
    institution = {IDIAP},
           note = {In ``7th European Conference on Speech Communication and Technology (Eurospeech~2001)'', 2001},
       abstract = {Automatic speech recognition bases its models on the acoustic features derived from the speech signal. Some have investigated replacing or supplementing these features with information that can not be precisely measured (articulator positions, pitch, gender, etc.) automatically. Consequently, automatic estimations of the desired information would be generated. This data can degrade performance due to its imprecisions. In this paper, we describe a system that treats pitch as an auxiliary information within the framework of Bayesian networks, resulting in improved performance.},
            pdf = {https://publications.idiap.ch/attachments/reports/2001/rr01-11.pdf},
     postscript = {ftp://ftp.idiap.ch/pub/reports/2001/rr01-11.ps.gz},
ipdmembership={speech},
}