Update cookies preferences
 logo Idiap Research Institute        
 [BibTeX] [Marc21]
Hardware-Friendly Learning Algorithms for Neural Networks: An Overview
Type of publication: Conference paper
Citation: Moerland-96.1
Booktitle: Proceedings of the Fifth International Conference on Microelectronics for Neural Networks and Fuzzy Systems: MicroNeuro'96
Year: 1996
Publisher: IEEE Computer Society Press
Location: Lausanne, Switzerland
Organization: EPFL and CSEM
Address: Los Alamitos, CA
ISBN: 0-8186-7373-7
Abstract: The hardware implementation of artificial neural networks and their learning algorithms is a fascinating area of research with far-reaching applications. However, the mapping from an ideal mathematical model to compact and reliable hardware is far from evident. This paper presents an overview of various methods that simplify the hardware implementation of neural network models. Adaptations that are proper to specific learning rules or network architectures are discussed. These range from the use of perturbation in multilayer feedforward networks and local learning algorithms to quantization effects in self-organizing feature maps. Moreover, in more general terms, the problems of inaccuracy, limited precision, and robustness are treated.
Userfields: dates={February 12--14}, ieeecn={PR07373}, ipdmembership={learning},
Keywords:
Projects Idiap
Authors Moerland, Perry
Fiesler, Emile
Added by: [UNK]
Total mark: 0
Attachments
  • hardware.pdf
Notes