logo Idiap Research Institute        
 [BibTeX] [Marc21]
Facial Expression Analysis using Shape and Motion Information Extracted by Convolutional Neural Networks
Type of publication: Idiap-RR
Citation: fasel-RR-01-49
Number: Idiap-RR-49-2001
Year: 2001
Institution: IDIAP
Note: Published in the Proceedings of the IEEE Workshop on Neural Networks for Signal Processing (NNSP 2002,',','), Martigny, Switzerland, 2002
Abstract: In this paper we discuss a neural networks-based face analysis approach that is able to cope with faces subject to pose and lighting variations. Especially head pose variations are difficult to tackle and many face analysis methods require the use of sophisticated normalization procedures. Data-driven shape and motion-based face analysis approaches are introduced that are not only capable of extracting features relevant to a given face analysis task at hand, but are also robust with regard to translation and scale variations. This is achieved by deploying convolutional and time-delayed neural networks, which are either trained for face shape deformation or facial motion analysis.
Userfields: ipdmembership={vision},
Projects Idiap
Authors Fasel, B.
Crossref by fasel02b-conf
Added by: [UNK]
Total mark: 0
  • rr01-49.pdf
  • rr01-49.ps.gz