Evaluation of Probabilistic Occupancy Map People Detection for Surveillance Systems
Type of publication: | Conference paper |
Citation: | Berclaz_PETS_2009 |
Booktitle: | Proceedings of the IEEE International Workshop on Performance Evaluation of Tracking and Surveillance |
Year: | 2009 |
Abstract: | In this paper, we evaluate the Probabilistic Occupancy Map (POM) pedestrian detection algorithm on the PETS 2009 benchmark dataset. POM is a multi-camera generative detection method, which estimates ground plane occupancy from multiple background subtraction views. Occupancy probabilities are iteratively estimated by fitting a synthetic model of the background subtraction to the binary foreground motion. Furthermore, we test the integration of this algorithm into a larger framework designed for understanding human activities in real environments. We demonstrate accurate detection and localization on the PETS dataset, despite suboptimal calibration and foreground motion segmentation input. |
Keywords: | |
Projects |
Idiap |
Authors | |
Added by: | [UNK] |
Total mark: | 0 |
Attachments
|
|
Notes
|
|
|