More Efficiency in Multiple Kernel Learning
Type of publication: | Conference paper |
Citation: | grandvalet:ICML-1:2007 |
Booktitle: | International Conference on Machine Learning (ICML) |
Year: | 2007 |
Note: | IDIAP-RR 07-18 |
Crossref: | grandvalet:rr07-18: |
Abstract: | An efficient and general multiple kernel learning (MKL) algorithm has been recently proposed by \singleemcite{sonnenburg_mkljmlr}. This approach has opened new perspectives since it makes the MKL approach tractable for large-scale problems, by iteratively using existing support vector machine code. However, it turns out that this iterative algorithm needs several iterations before converging towards a reasonable solution. In this paper, we address the MKL problem through an adaptive 2-norm regularization formulation. Weights on each kernel matrix are included in the standard SVM empirical risk minimization problem with a $\ell_1$ constraint to encourage sparsity. We propose an algorithm for solving this problem and provide an new insight on MKL algorithms based on block 1-norm regularization by showing that the two approaches are equivalent. Experimental results show that the resulting algorithm converges rapidly and its efficiency compares favorably to other MKL algorithms. |
Userfields: | ipdmembership={learning}, |
Keywords: | |
Projects |
Idiap |
Authors | |
Added by: | [UNK] |
Total mark: | 0 |
Attachments
|
|
Notes
|
|
|