Update cookies preferences
 logo Idiap Research Institute        
 [BibTeX] [Marc21]
COMBINING VOCAL TRACT LENGTH NORMALIZATION WITH HIERARCHIAL LINEAR TRANSFORMATIONS
Type of publication: Conference paper
Citation: Saheer_ICASSP_2012
Publication status: Published
Booktitle: Proceedings in International conference on Speech and Signal processing
Year: 2012
Month: March
Pages: 4493-4496
Publisher: IEEE SPS (ICASSP)
Location: Kyoto, Japan
Crossref: Saheer_Idiap-RR-11-2012:
Abstract: Recent research has demonstrated the effectiveness of vocal tract length normalization (VTLN) as a rapid adaptation technique for statistical parametric speech synthesis. VTLN produces speech with naturalness preferable to that of MLLR based adaptation techniques, being much closer in quality to that generated by the original average voice model. However with only a single parameter, VTLN captures very few speaker specific characteristics when compared to linear transform based adaptation techniques. This paper proposes that the merits of VTLN can be combined with those of linear transform based adaptation in a hierarchial Bayesian framework, where VTLN is used as the prior information. A novel technique for propagating the gender information from the VTLN prior through constrained structural maximum aposteriori linear regression (CSMAPLR) adaptation is presented. Experiments show that the resulting transformation has improved speech quality with better naturalness, intelligibility and improved speaker similarity.
Keywords: constrained structural maximum a posteriori linear regression, hidden Markov models, speaker adaptation, Statistical parametric speech synthesis, vocal tract length normalization
Projects Idiap
EMIME
Authors Saheer, Lakshmi
Yamagishi, Junichi
Garner, Philip N.
Dines, John
Added by: [UNK]
Total mark: 0
Attachments
  • Saheer_ICASSP_2012.pdf
Notes