Update cookies preferences
 logo Idiap Research Institute        
 [BibTeX] [Marc21]
Semi-supervised Learning with Semantic Knowledge Extraction for Improved Speech Recognition in Air Traffic Control
Type of publication: Conference paper
Citation: amurthy-interspeech-17
Publication status: Published
Booktitle: Proceedings of Interspeech 2017
Year: 2017
Month: August
Pages: 2406-2410
Location: Stockholm, Sweden
Crossref: Srinivasamurthy_Idiap-RR-21-2017:
DOI: http://dx.doi.org/10.21437/Interspeech.2017-1446
Abstract: Automatic Speech Recognition (ASR) can introduce higher levels of automation into Air Traffic Control (ATC), where spoken language is still the predominant form of communication. While ATC uses standard phraseology and a limited vocabulary, we need to adapt the speech recognition systems to local acoustic conditions and vocabularies at each airport to reach optimal performance. Due to continuous operation of ATC systems, a large and increasing amount of untranscribed speech data is available, allowing for semi-supervised learning methods to build and adapt ASR models. In this paper, we first identify the challenges in building ASR systems for specific ATC areas and propose to utilize out-of-domain data to build baseline ASR models. Then we explore different methods of data selection for adapting baseline models by exploiting the continuously increasing untranscribed data. We develop a basic approach capable of exploiting semantic representations of ATC commands. We achieve relative improvement in both word error rate (23.5%) and concept error rates (7%) when adapting ASR models to different ATC conditions in a semi-supervised manner.
Keywords:
Projects MALORCA
Authors Srinivasamurthy, Ajay
Motlicek, Petr
Himawan, Ivan
Szaszak, Gyorgy
Oualil, Youssef
Helmke, Hartmut
Added by: [UNK]
Total mark: 0
Attachments
  • amurthy-interspeech-17.pdf
Notes