Local Features and 1D-HMMs for Fast and Robust Face Authentication
Type of publication: | Idiap-RR |
Citation: | cardinaux05-17 |
Number: | Idiap-RR-17-2005 |
Year: | 2005 |
Institution: | IDIAP |
Abstract: | It has been previously demonstrated that systems based on Hidden Markov Models (HMMs) are suitable for face recognition. The proposed approaches in the literature are either HMMs with one-dimensional (1D-HMMs) or two-dimensional (2D-HMMs) topology. Both have shown some serious drawbacks. The 1D-HMM approaches typically use a whole row (or column) of an image as observation vector and by consequence do not allow horizontal (or vertical) alignment. 2D-HMM approaches present some implementation issues because of the computational cost. In this paper, we propose a 1D-HMM approach which allow the use of local features and we will demonstate the accuracy of this approach on the so-called BANCA database. |
Userfields: | ipdmembership={vision}, |
Keywords: | |
Projects |
Idiap |
Authors | |
Added by: | [UNK] |
Total mark: | 0 |
Attachments
|
|
Notes
|
|
|