Update cookies preferences
 logo Idiap Research Institute        
 [BibTeX] [Marc21]
DOMAIN ADAPTATION FOR GENERALIZATION OF FACE PRESENTATION ATTACK DETECTION IN MOBILE SETTINGS WITH MINIMAL INFORMATION
Type of publication: Conference paper
Citation: Mohammadi_Pruning_ICASSP_2020
Publication status: Accepted
Booktitle: 45th International Conference on Acoustics, Speech, and Signal Processing
Year: 2020
Publisher: IEEE
Location: Barcelona, Spain
URL: https://gitlab.idiap.ch/bob/bo...
Abstract: With face-recognition (FR) increasingly replacing fingerprint sensors for user-authentication on mobile devices, presentation attacks (PA) have emerged as the single most significant hurdle for manufacturers of FR systems. Current machine-learning based presentation attack detection (PAD) systems, trained in a data-driven fashion, show excellent performance when evaluated in intra-dataset scenarios. Their performance typically degrades significantly in cross-dataset evaluations. This lack of generalization in current PAD systems makes them unsuitable for deployment in real-world scenarios. Considering each dataset as representing a different domain, domain adaptation techniques have been proposed as a solution to this generalization problem. Here, we propose a novel one class domain adaptation method which uses domain guided pruning to adapt a pre-trained PAD network to the target dataset. The proposed method works without the need of collecting PAs in the target domain (i.e., with minimal information in the target domain). Experimental results on several datasets show promising performance improvements in cross-dataset evaluations.
Keywords: domain adaptation, domain generalization, feature selection, Presentation Attack Detection, pruning
Projects SWAN
Authors Mohammadi, Amir
Bhattacharjee, Sushil
Marcel, Sébastien
Added by: [UNK]
Total mark: 0
Attachments
  • Mohammadi_ICASSP2020_2020.pdf
Notes