Posterior Features Applied to Speech Recognition Tasks with Limited Training Data
| Type of publication: | Idiap-RR |
| Citation: | aradilla:rr08-15 |
| Number: | Idiap-RR-15-2008 |
| Year: | 2008 |
| Institution: | IDIAP |
| Abstract: | This paper describes an approach where posterior-based features are applied in those recognition tasks where the amount of training data is insufficient to obtain a reliable estimate of the speech variability. A template matching approach is considered in this paper where posterior features are obtained from a MLP trained on an auxiliary database. Thus, the speech variability present in the features is reduced by applying the speech knowledge captured on the auxiliary database. When compared to state-of-the-art systems, this approach outperforms acoustic-based techniques and obtains comparable results to grapheme-based approaches. Moreover, the proposed method can be directly combined with other posterior-based HMM systems. This combination successfully exploits the complementarity between templates and parametric models. |
| Userfields: | ipdmembership={speech}, |
| Keywords: | |
| Projects: |
Idiap |
| Authors: | |
| Added by: | [UNK] |
| Total mark: | 0 |
|
Attachments
|
|
|
Notes
|
|
|
|
|