Learning the Decision Function for Speaker Verification
Type of publication: | Conference paper |
Citation: | bengio:2001:icassp |
Booktitle: | IEEE International Conference on Acoustic, Speech, and Signal Processing, ICASSP |
Year: | 2001 |
Address: | Salt Lake, City, USA |
Note: | IDIAP-RR 00-40 |
Crossref: | bengio:2000:rr00-40: |
Abstract: | This paper explores the possibility to replace the usual thresholding decision rule of log likelihood ratios used in speaker verification systems by more complex and discriminant decision functions based for instance on Linear Regression models or Support Vector Machines. Current speaker verification systems, based on generative models such as HMMs or GMMs, can indeed easily be adapted to use such decision functions. Experiments on both text dependent and text independent tasks always yielded performance improvements and sometimes significantly. |
Userfields: | ipdmembership={speech, learning}, |
Keywords: | |
Projects |
Idiap |
Authors | |
Added by: | [UNK] |
Total mark: | 0 |
Attachments
|
|
Notes
|
|
|