Recognition of Handprinted Digits
Type of publication: | Idiap-RR |
Citation: | breuel-93.02 |
Number: | Idiap-RR-06-1993 |
Year: | 1993 |
Institution: | IDIAP |
Abstract: | This paper describes a system that recognizes hand-printed digits. The system is based on optimal bounded error matching, a technique already in common use in general-purpose 2D and 3D visual object recognition systems in cluttered, noisy scenes. In this paper, we demonstrate that the same techniques achieve high recognition rates (up to 99.2\%) on real-world data (the NIST database of hand-printed census forms and the CEDAR database of digits extracted from U.S. mail ZIP codes). As part of the system, we describe a post-processing step for $k$-nearest neighbor classifiers based on decision trees that can be used (in place of the usual heuristic methods) for setting thresholds and improves recognition rates significantly. |
Userfields: | ipdmembership={vision}, |
Keywords: | |
Projects |
Idiap |
Authors | |
Added by: | [UNK] |
Total mark: | 0 |
Attachments
|
|
Notes
|
|
|