Improving Continuous Speech Recognition System Performance with Grapheme Modelling
Type of publication: | Idiap-RR |
Citation: | magimai05a |
Number: | Idiap-RR-16-2005 |
Year: | 2005 |
Institution: | IDIAP |
Abstract: | This paper investigates automatic speech recognition system using context-dependent graphemes as subword units based on the conventional HMM/GMM system as well as TANDEM system. Experimental studies conducted on two different continuous speech recognition tasks show that systems using only context-dependent graphemes can yield competitive performance when compared to state-of-the-art context-dependent phoneme-based automatic speech recognition system. We further demonstrate that a system using both context-dependent phoneme and grapheme subword units can out perform either of these systems alone. |
Userfields: | ipdmembership={speech}, |
Keywords: | |
Projects |
Idiap |
Authors | |
Added by: | [UNK] |
Total mark: | 0 |
Attachments
|
|
Notes
|
|
|